Misplaced Pages

Cassava: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 17:48, 13 February 2015 editCorinne (talk | contribs)25,840 edits Reverting vandalism or test edit← Previous edit Revision as of 09:32, 14 February 2015 edit undoCjmstriker (talk | contribs)1 edit Food use processing and toxicityNext edit →
Line 174: Line 174:
==Food use processing and toxicity== ==Food use processing and toxicity==
] ]
Cassava roots and leaves should not be consumed raw because they contain two ], ] and ]. These are decomposed by ], a naturally occurring ] in cassava, liberating ] (HCN).<ref name="cereda">{{Cite doi|10.1590/S0104-79301996000100002}}</ref> Cassava varieties are often categorized as either sweet or bitter, signifying the absence or presence of toxic levels of cyanogenic glucosides, respectively. The so-called sweet (actually not bitter) cultivars can produce as little as 20 milligrams of ] (CN) per kilogram of fresh roots, whereas bitter ones may produce more than 50 times as much (1 g/kg). Cassavas grown during ] are especially high in these toxins.<ref>{{cite journal|author=Aregheore E. M, Agunbiade O. O.|title=The toxic effects of cassava (manihot esculenta grantz) diets on humans: a review.|journal=Vet. Hum. Toxicol.|year=1991|volume=33|pages=274–275|pmid=1650055|issue=3 }}</ref><ref>{{cite journal|author=White W. L. B., Arias-Garzon D. I., McMahon J. M., Sayre R. T.|title=Cyanogenesis in Cassava, The Role of Hydroxynitrile Lyase in Root Cyanide Production|journal=Plant Physiol.|year=1998|volume=116|pages=1219–1225|doi=10.1104/pp.116.4.1219|pmid=9536038|issue=4|pmc=35028}}</ref> A dose of 25&nbsp;mg of pure cassava cyanogenic glucoside, which contains 2.5&nbsp;mg of cyanide, is sufficient to kill a rat.<ref>EFSA Panel on Food additives, flavourings, processing aids and materials in contact with food (AFC), 2004. Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC) on hydrocyanic acid in flavourings and other food ingredients with flavouring properties. .</ref> Excess cyanide residue from improper preparation is known to cause acute cyanide intoxication, and goiters, and has been linked to ataxia (a neurological disorder affecting the ability to walk, also known as '']'').<ref name="fao.org"/> It has also been linked to tropical calcific pancreatitis in humans, leading to chronic pancreatitis.<ref>{{cite journal|author=Bhatia E|title=Tropical calcific pancreatitis: strong association with SPINK1 trypsin inhibitor mutations|journal=gastroenterology.|year=2002|volume=123|pages=1020–1025|pmid= 12360463|issue=4|doi=10.1053/gast.2002.36028}}</ref> Cassava roots,peels and leaves should not be consumed raw because they contain two ], ] and ]. These are decomposed by ], a naturally occurring ] in cassava, liberating ] (HCN).<ref name="cereda">{{Cite doi|10.1590/S0104-79301996000100002}}</ref> Cassava varieties are often categorized as either sweet or bitter, signifying the absence or presence of toxic levels of cyanogenic glucosides, respectively. The so-called sweet (actually not bitter) cultivars can produce as little as 20 milligrams of ] (CN) per kilogram of fresh roots, whereas bitter ones may produce more than 50 times as much (1 g/kg). Cassavas grown during ] are especially high in these toxins.<ref>{{cite journal|author=Aregheore E. M, Agunbiade O. O.|title=The toxic effects of cassava (manihot esculenta grantz) diets on humans: a review.|journal=Vet. Hum. Toxicol.|year=1991|volume=33|pages=274–275|pmid=1650055|issue=3 }}</ref><ref>{{cite journal|author=White W. L. B., Arias-Garzon D. I., McMahon J. M., Sayre R. T.|title=Cyanogenesis in Cassava, The Role of Hydroxynitrile Lyase in Root Cyanide Production|journal=Plant Physiol.|year=1998|volume=116|pages=1219–1225|doi=10.1104/pp.116.4.1219|pmid=9536038|issue=4|pmc=35028}}</ref> A dose of 25&nbsp;mg of pure cassava cyanogenic glucoside, which contains 2.5&nbsp;mg of cyanide, is sufficient to kill a rat.<ref>EFSA Panel on Food additives, flavourings, processing aids and materials in contact with food (AFC), 2004. Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC) on hydrocyanic acid in flavourings and other food ingredients with flavouring properties. .</ref> Excess cyanide residue from improper preparation is known to cause acute cyanide intoxication, and goiters, and has been linked to ataxia (a neurological disorder affecting the ability to walk, also known as '']'').<ref name="fao.org"/> It has also been linked to tropical calcific pancreatitis in humans, leading to chronic pancreatitis.<ref>{{cite journal|author=Bhatia E|title=Tropical calcific pancreatitis: strong association with SPINK1 trypsin inhibitor mutations|journal=gastroenterology.|year=2002|volume=123|pages=1020–1025|pmid= 12360463|issue=4|doi=10.1053/gast.2002.36028}}</ref>


Societies that traditionally eat cassava generally understand some processing (soaking, cooking, fermentation, etc.) is necessary to avoid getting sick.<ref>Food and Agriculture Organization of the United Nations, "Roots, tubers, plantains and bananas in human nutrition", Rome, 1990, Ch. 7 "Toxic substances and antinutritional factors", first paragraph. Document available online at http://www.fao.org/docrep/t0207e/T0207E00.htm#Contents. Ch. 7 appears at http://www.fao.org/docrep/t0207e/T0207E08.htm#Cassava%20toxicity. (Accessed 25 June 2011.)</ref> Societies that traditionally eat cassava generally understand some processing (soaking, cooking, fermentation, etc.) is necessary to avoid getting sick.<ref>Food and Agriculture Organization of the United Nations, "Roots, tubers, plantains and bananas in human nutrition", Rome, 1990, Ch. 7 "Toxic substances and antinutritional factors", first paragraph. Document available online at http://www.fao.org/docrep/t0207e/T0207E00.htm#Contents. Ch. 7 appears at http://www.fao.org/docrep/t0207e/T0207E08.htm#Cassava%20toxicity. (Accessed 25 June 2011.)</ref>

Revision as of 09:32, 14 February 2015

"Yuca" redirects here. For Yucca, see Yucca (disambiguation).

Cassava
Leaves of the cassava plant
A manioc tuber
Scientific classification
Kingdom: Plantae
(unranked): Angiosperms
(unranked): Eudicots
(unranked): Rosids
Order: Malpighiales
Family: Euphorbiaceae
Subfamily: Crotonoideae
Tribe: Manihoteae
Genus: Manihot
Species: M. esculenta
Binomial name
Manihot esculenta
Crantz
Synonyms
  • Janipha aipi (Pohl) J.Presl
  • Janipha manihot (L.) Kunth
  • Jatropha aipi (Pohl) A.Moller
  • Jatropha diffusa (Pohl) Steud.
  • Jatropha digitiformis (Pohl) Steud.
  • Jatropha dulcis J.F.Gmel.
  • Jatropha flabellifolia (Pohl) Steud.
  • Jatropha glauca A.Rich. nom. illeg.
  • Jatropha janipha Lour. nom. illeg.
  • Jatropha loureiroi (Pohl) Steud.
  • Jatropha manihot L.
  • Jatropha mitis Rottb.
  • Jatropha mitis Sessé & Moc. nom. illeg.
  • Jatropha paniculata Ruiz & Pav. ex Pax
  • Jatropha silvestris Vell.
  • Jatropha stipulata Vell.
  • Mandioca aipi (Pohl) Link
  • Mandioca dulcis (J.F.Gmel.) D.Parodi
  • Mandioca utilissima (Pohl) Link
  • Manihot aipi Pohl
  • Manihot aypi Spruce
  • Manihot cannabina Sweet
  • Manihot cassava Cook & Collins nom. inval.
  • Manihot diffusa Pohl
  • Manihot digitiformis Pohl
  • Manihot dulcis (J.F. Gmel.) Pax
  • Manihot dulcis (J.F.Gmel.) Baill.
  • Manihot edule A.Rich.
  • Manihot edulis A. Rich.
  • Manihot flabellifolia Pohl
  • Manihot flexuosa Pax & K.Hoffm.
  • Manihot guyanensis Klotzsch ex Pax nom. illeg.
  • Manihot loureiroi Pohl
  • Manihot manihot (L.) H.Karst. nom. inval.
  • Manihot melanobasis Müll.Arg.
  • Manihot sprucei Pax
  • Manihot utilissima Pohl

Manihot esculenta, with common names cassava (/kəˈsɑːvə/), Brazilian arrowroot, manioc, and tapioca, a woody shrub of the Euphorbiaceae (spurge) family native to South America, is extensively cultivated as an annual crop in tropical and subtropical regions for its edible starchy tuberous root, a major source of carbohydrates. Though it is sometimes called yuca in Spanish, it differs from the yucca, an unrelated fruit-bearing shrub in the Asparagaceae family. Cassava, when dried to a powdery (or pearly) extract, is called tapioca; its fermented, flaky version is named garri.

Cassava is the third largest source of food carbohydrates in the tropics, after rice and maize. Cassava is a major staple food in the developing world, providing a basic diet for over half a billion people. It is one of the most drought-tolerant crops, capable of growing on marginal soils. Nigeria is the world's largest producer of cassava, while Thailand is the largest exporter of dried cassava.

Cassava is classified as sweet or bitter. Farmers often prefer the bitter varieties because they deter pests, animals, and thieves. Like other roots and tubers, both bitter and sweet varieties of cassava contain antinutritional factors and toxins. It must be properly prepared before consumption. Improper preparation of cassava can leave enough residual cyanide to cause acute cyanide intoxication and goiters, and may even cause ataxia or partial paralysis. The more toxic varieties of cassava are a fall-back resource (a "food security crop") in times of famine in some places.

Description

The cassava root is long and tapered, with a firm, homogeneous flesh encased in a detachable rind, about 1 mm thick, rough and brown on the outside. Commercial varieties can be 5 to 10 cm (2.0 to 3.9 in) in diameter at the top, and around 15 to 30 cm (5.9 to 11.8 in) long. A woody cordon runs along the root's axis. The flesh can be chalk-white or yellowish. Cassava roots are very rich in starch and contain significant amounts of calcium (50 mg/100g), phosphorus (40 mg/100g) and vitamin C (25 mg/100g). However, they are poor in protein and other nutrients. In contrast, cassava leaves are a good source of protein (rich in lysine) but deficient in the amino acid methionine and possibly tryptophan.

Details of cassava plantsUnprocessed rootsLeafLeaf detailPicked budsSeeds

Vernacular names

In the vernacular languages of the places where it is cultivated, cassava is called yuca (in Spanish), mandioca (Spanish and Portuguese), aipim or macaxeira (Portuguese), manioka or maniota (Polynesian), balinghoy or kamoteng kahoy (in the Philippines), শিমলু আলু shimolu aalu in Assamese, tabolchu (in Northeast India, Garo Hills), kuchik kilangu or maravallik kilangu (in Tamil, in Tamil Nadu), akpụ (in Igbo),rōgṑ (inHausa), mogo (in Africa), mandioca and kappa (predominantly in India).

History

Yuca in Moche culture, 100 AD, Larco Museum Collection

Wild populations of M. esculenta subspecies flabellifolia, shown to be the progenitor of domesticated cassava, are centered in west-central Brazil, where it was likely first domesticated more than 10,000 years BP. Forms of the modern domesticated species can also be found growing in the wild in the south of Brazil. By 4,600 BC, manioc pollen appears in the Gulf of Mexico lowlands, at the San Andrés archaeological site. The oldest direct evidence of cassava cultivation comes from a 1,400-year-old Maya site, Joya de Cerén, in El Salvador. With its high food potential, it had become a staple food of the native populations of northern South America, southern Mesoamerica, and the Caribbean by the time of the Spanish conquest. Its cultivation was continued by the colonial Portuguese and Spanish.

Cassava was a staple food for pre-Columbian peoples in the Americas and is often portrayed in indigenous art. The Moche people often depicted yuca in their ceramics.

Cassava was introduced to Africa by Portuguese traders from Brazil in the 16th century. Maize and cassava are now important staple foods, replacing native African crops. Cassava is sometimes described as the 'bread of the tropics' but should not be confused with the tropical and equatorial bread tree (Encephalartos), the breadfruit (Artocarpus altilis) or the African breadfruit (Treculia africana).

Economic importance

A cross section of cassava

World production of cassava root was estimated to be 184 million tonnes in 2002, rising to 230 million tonnes in 2008. The majority of production in 2002 was in Africa, where 99.1 million tonnes were grown; 51.5 million tonnes were grown in Asia; and 33.2 million tonnes in Latin America and the Caribbean. Nigeria is the world's largest producer of cassava. However, based on the statistics from the FAO of the United Nations, Thailand is the largest exporting country of dried cassava, with a total of 77% of world export in 2005. The second largest exporting country is Vietnam, with 13.6%, followed by Indonesia (5.8%) and Costa Rica (2.1%). Worldwide cassava production increased by 12.5% between 1988 and 1990.

In 2010, the average yield of cassava crops worldwide was 12.5 tonnes per hectare. The most productive cassava farms in the world were in India, with a nationwide average yield of 34.8 tonnes per hectare in 2010.

Cassava, yams (Dioscorea spp.) and sweet potatoes (Ipomoea batatas) are important sources of food in the tropics. The cassava plant gives the third highest yield of carbohydrates per cultivated area among crop plants, after sugarcane and sugar beets. Cassava plays a particularly important role in agriculture in developing countries, especially in sub-Saharan Africa, because it does well on poor soils and with low rainfall, and because it is a perennial that can be harvested as required. Its wide harvesting window allows it to act as a famine reserve and is invaluable in managing labor schedules. It offers flexibility to resource-poor farmers because it serves as either a subsistence or a cash crop.

Cassava in cultivation in Democratic Republic of Congo

No continent depends as much on root and tuber crops in feeding its population as does Africa. In the humid and subhumid areas of tropical Africa, it is either a primary staple food or a secondary costaple. In Ghana, for example, cassava and yams occupy an important position the agricultural economy and contribute about 46% of the agricultural gross domestic product. Cassava accounts for a daily caloric intake of 30% in Ghana and is grown by nearly every farming family. The importance of cassava to many Africans is epitomised in the Ewe (a language spoken in Ghana, Togo and Benin) name for the plant, agbeli, meaning "there is life". The price of cassava has risen significantly in the last half decade, and lower-income people have turned to other carbohydrate-rich foods, such as rice.

In Tamil Nadu, India, the National Highway 68 between Thalaivasal and Attur has many cassava processing factories alongside it—indicating a local abundance. Cassava is widely cultivated and eaten as a staple food in Andhra Pradesh and in Kerala besides being commonly cultivated and popular in Assam where it plays an important source of carbohydrates specially for natives of hilly areas.

In the subtropical region of southern China, cassava is the fifth-largest crop in term of production, after rice, sweet potato, sugar cane and maize. China is also the largest export market for cassava produced in Vietnam and Thailand. Over 60% of cassava production in China is concentrated in a single province, Guangxi, averaging over 7 million tonnes annually.

Uses

Alcoholic beverages

Main article: Alcoholic beverage § Beverages by type

Alcoholic beverages made from cassava include Cauim and tiquira (Brazil), kasiri (Sub-Saharan Africa), masato (Peruvian Amazonia chicha), parakari or kari (Guyana), nihamanchi (South America) aka nijimanche (Ecuador and Peru), ö döi (chicha de yuca, Ngäbe-Bugle, Panama), sakurá (Brazil, Surinam).

Culinary

Main article: Cassava-based dishes
Cassava heavy cake

Cassava-based dishes are widely consumed wherever the plant is cultivated; some have regional, national, or ethnic importance. Cassava must be cooked properly to detoxify it before it is eaten.

Cassava can be cooked in many ways. The soft-boiled root of the sweet variety has a delicate flavor and can replace boiled potatoes in many uses: as an accompaniment for meat dishes or made into purées, dumplings, soups, stews, gravies, etc. This plant is used in cholent in some households, as well. Deep fried (after boiling or steaming), it can replace fried potatoes, bringing a distinctive flavor. It can be made into a flour that is used in breads, cakes and cookies. In Brazil, detoxified manioc is ground and cooked to a dry, often hard or crunchy meal known as farinha which is used as a condiment, toasted in butter, or eaten alone as a side dish.

Nutritional profile

Processing cassava starch into cassava noodles, Kampong Cham.

Cassava root is essentially a carbohydrate source. Its composition shows 60–65 percent moisture, 20–31 percent carbohydrate, 1–2 percent crude protein and a comparatively low content of vitamins and minerals. However, the roots are rich in calcium and vitamin C and contain a nutritionally significant quantity of thiamine, riboflavin and nicotinic acid. Cassava starch contains 70 percent amylopectin and 20 percent amylose. Cooked cassava starch has a digestibility of over 75 percent.

Cassava root is a poor source of protein. Despite the very low quantity, the quality of cassava root protein is fairly good in terms of essential amino acids. Methionine, cysteine and cystine are, however, limiting amino acids in cassava root.

Cassava is attractive as nutrition source in certain ecosystems because cassava is one of the most drought-tolerant crops, can be successfully grown on marginal soils, and gives reasonable yields where many other crops do not grow well. Cassava is well adapted within latitudes 30° north and south of the equator, at elevations between sea level and 2,000 m (6,600 ft) above sea level, in equatorial temperatures, with rainfalls of 50 millimeters to 5 m (16 ft) annually, and to poor soils with a pH ranging from acidic to alkaline. These conditions are common in certain parts of Africa and South America.

Cassava is a highly productive crop in terms of food calories produced per unit land area per unit of time, significantly higher than other staple crops. Cassava can produce food calories at rates exceeding 250,000 cal/hectare/day compared with 176,000 for rice, 110,000 for wheat, and 200,000 for maize (corn).

Cassava, like other foods, also has antinutritional and toxic factors. Of particular concern are the cyanogenic glucosides of cassava (linamarin and lotaustralin). These, on hydrolysis, release hydrocyanic acid (HCN). The presence of cyanide in cassava is of concern for human and for animal consumption. The concentration of these antinutritional and unsafe glycosides varies considerably between varieties and also with climatic and cultural conditions. Selection of cassava species to be grown, therefore, is quite important. Once harvested, bitter cassava must be treated and prepared properly prior to human or animal consumption, while sweet cassava can be used after simple boiling.

Comparison with other major staple foods

The following table shows the nutrient content of cassava and compares it with major staple foods in a raw form. Raw forms of these staples, however, are not edible and cannot be digested. These must be sprouted, or prepared and cooked as appropriate for human consumption. In sprouted or cooked form, the relative nutritional and antinutritional contents of each of these grains is remarkably different from that of raw form of these grains reported in this table. The nutrition value for each staple food in cooked form depends on the cooking method (boiling, baking, steaming, frying, etc.).

The table shows that cassava is a good energy source, but like potato, cassava's protein and essential nutrients density is lower than other staple foods.

Nutrient content of 10 major staple foods per 100 g dry weight
Staple Maize (corn) Rice, white Wheat Potatoes Cassava Soybeans, green Sweet potatoes Yams Sorghum Plantain RDA
Water content (%) 10 12 13 79 60 68 77 70 9 65
Raw grams per 100 g dry weight 111 114 115 476 250 313 435 333 110 286
Nutrient
Energy (kJ) 1698 1736 1574 1533 1675 1922 1565 1647 1559 1460 8,368–10,460
Protein (g) 10.4 8.1 14.5 9.5 3.5 40.6 7.0 5.0 12.4 3.7 50
Fat (g) 5.3 0.8 1.8 0.4 0.7 21.6 0.2 0.6 3.6 1.1 44–77
Carbohydrates (g) 82 91 82 81 95 34 87 93 82 91 130
Fiber (g) 8.1 1.5 14.0 10.5 4.5 13.1 13.0 13.7 6.9 6.6 30
Sugar (g) 0.7 0.1 0.5 3.7 4.3 0.0 18.2 1.7 0.0 42.9 minimal
Minerals RDA
Calcium (mg) 8 32 33 57 40 616 130 57 31 9 1,000
Iron (mg) 3.01 0.91 3.67 3.71 0.68 11.09 2.65 1.80 4.84 1.71 8
Magnesium (mg) 141 28 145 110 53 203 109 70 0 106 400
Phosphorus (mg) 233 131 331 271 68 606 204 183 315 97 700
Potassium (mg) 319 131 417 2005 678 1938 1465 2720 385 1426 4700
Sodium (mg) 39 6 2 29 35 47 239 30 7 11 1,500
Zinc (mg) 2.46 1.24 3.05 1.38 0.85 3.09 1.30 0.80 0.00 0.40 11
Copper (mg) 0.34 0.25 0.49 0.52 0.25 0.41 0.65 0.60 - 0.23 0.9
Manganese (mg) 0.54 1.24 4.59 0.71 0.95 1.72 1.13 1.33 - - 2.3
Selenium (μg) 17.2 17.2 81.3 1.4 1.8 4.7 2.6 2.3 0.0 4.3 55
Vitamins RDA
Vitamin C (mg) 0.0 0.0 0.0 93.8 51.5 90.6 10.4 57.0 0.0 52.6 90
Thiamin (B1) (mg) 0.43 0.08 0.34 0.38 0.23 1.38 0.35 0.37 0.26 0.14 1.2
Riboflavin (B2) (mg) 0.22 0.06 0.14 0.14 0.13 0.56 0.26 0.10 0.15 0.14 1.3
Niacin (B3) (mg) 4.03 1.82 6.28 5.00 2.13 5.16 2.43 1.83 3.22 1.97 16
Pantothenic acid (B5) (mg) 0.47 1.15 1.09 1.43 0.28 0.47 3.48 1.03 - 0.74 5
Vitamin B6 (mg) 0.69 0.18 0.34 1.43 0.23 0.22 0.91 0.97 - 0.86 1.3
Folate Total (B9) (μg) 21 9 44 76 68 516 48 77 0 63 400
Vitamin A (IU) 238 0 10 10 33 563 4178 460 0 3220 5000
Vitamin E, alpha-tocopherol (mg) 0.54 0.13 1.16 0.05 0.48 0.00 1.13 1.30 0.00 0.40 15
Vitamin K1 (μg) 0.3 0.1 2.2 9.0 4.8 0.0 7.8 8.7 0.0 2.0 120
Beta-carotene (μg) 108 0 6 5 20 0 36996 277 0 1306 10500
Lutein+zeaxanthin (μg) 1506 0 253 38 0 0 0 0 0 86 6000
Fats RDA
Saturated fatty acids (g) 0.74 0.20 0.30 0.14 0.18 2.47 0.09 0.13 0.51 0.40 minimal
Monounsaturated fatty acids (g) 1.39 0.24 0.23 0.00 0.20 4.00 0.00 0.03 1.09 0.09 22–55
Polyunsaturated fatty acids (g) 2.40 0.20 0.72 0.19 0.13 10.00 0.04 0.27 1.51 0.20 13–19
RDA

raw yellow dent corn
raw unenriched long-grain white rice
raw hard red winter wheat
raw potato with flesh and skin
raw cassava
raw green soybeans
raw sweet potato
raw sorghum
raw yam
raw plantains
unofficial

Biofuel

In many countries, significant research has begun to evaluate the use of cassava as an ethanol biofuel feedstock. Under the Development Plan for Renewable Energy in the Eleventh Five-Year Plan in the People's Republic of China, the target is to increase the application of ethanol fuel by nongrain feedstock to 2 million tonnes, and that of biodiesel to 200 thousand tonnes by 2010. This will be equivalent to a substitute of 10 million tonnes of petroleum. As a result, cassava (tapioca) chips have gradually become a major source for ethanol production. On December 22, 2007, the largest cassava ethanol fuel production facility was completed in Beihai, with annual output of 200 thousand tons, which would need an average of 1.5 million tons of cassava. In November 2008, China-based Hainan Yedao Group reportedly invested $51.5m (£31.8m) in a new biofuel facility that is expected to produce 33 million US gallons (120,000 m) a year of bioethanol from cassava plants.

Animal feed

Tubers being grated; a close-up of the product; same drying on road to be used for pig and chicken feed

Cassava tubers and hay are used worldwide as animal feed. Cassava hay is harvested at a young growth stage (three to four months) when it reaches about 30 to 45 cm (12 to 18 in) above ground; it is then sun-dried for one to two days until it has final dry matter content of less than 85%. Cassava hay contains high protein (20–27% crude protein) and condensed tannins (1.5–4% CP). It is valued as a good roughage source for ruminants such as dairy or beef cattle, buffalo, goats, and sheep, whether by direct feeding or as a protein source in concentrate mixtures.

Laundry starch

Manioc is also used in a number of commercially-available laundry products, especially as starch for shirts and other garments. Using manioc starch diluted in water and spraying it over fabrics before ironing helps stiffen collars.

Medicinal use

Cassava root has been promoted as a treatment for bladder and prostate cancer. However, according to the American Cancer Society, "there is no convincing scientific evidence that cassava or tapioca is effective in preventing or treating cancer".

Food use processing and toxicity

Cassava root, peeled

Cassava roots,peels and leaves should not be consumed raw because they contain two cyanogenic glucosides, linamarin and lotaustralin. These are decomposed by linamarase, a naturally occurring enzyme in cassava, liberating hydrogen cyanide (HCN). Cassava varieties are often categorized as either sweet or bitter, signifying the absence or presence of toxic levels of cyanogenic glucosides, respectively. The so-called sweet (actually not bitter) cultivars can produce as little as 20 milligrams of cyanide (CN) per kilogram of fresh roots, whereas bitter ones may produce more than 50 times as much (1 g/kg). Cassavas grown during drought are especially high in these toxins. A dose of 25 mg of pure cassava cyanogenic glucoside, which contains 2.5 mg of cyanide, is sufficient to kill a rat. Excess cyanide residue from improper preparation is known to cause acute cyanide intoxication, and goiters, and has been linked to ataxia (a neurological disorder affecting the ability to walk, also known as konzo). It has also been linked to tropical calcific pancreatitis in humans, leading to chronic pancreatitis.

Societies that traditionally eat cassava generally understand some processing (soaking, cooking, fermentation, etc.) is necessary to avoid getting sick.

Symptoms of acute cyanide intoxication appear four or more hours after ingesting raw or poorly processed cassava: vertigo, vomiting, and collapse. In some cases, death may result within one or two hours. It can be treated easily with an injection of thiosulfate (which makes sulfur available for the patient's body to detoxify by converting the poisonous cyanide into thiocyanate).

"Chronic, low-level cyanide exposure is associated with the development of goiter and with tropical ataxic neuropathy, a nerve-damaging disorder that renders a person unsteady and uncoordinated. Severe cyanide poisoning, particularly during famines, is associated with outbreaks of a debilitating, irreversible paralytic disorder called konzo and, in some cases, death. The incidence of konzo and tropical ataxic neuropathy can be as high as 3% in some areas."

Cassava bread

Brief soaking (four hours) of cassava is not sufficient, but soaking for 18–24 hours can remove up to half the level of cyanide. Drying may not be sufficient, either.

For some smaller-rooted, sweet varieties, cooking is sufficient to eliminate all toxicity. The cyanide is carried away in the processing water and the amounts produced in domestic consumption are too small to have environmental impact. The larger-rooted, bitter varieties used for production of flour or starch must be processed to remove the cyanogenic glucosides. and then ground into flour, which is then soaked in water, squeezed dry several times, and toasted. The starch grains that float to the surface during the soaking process are also used in cooking. The flour is used throughout South America and the Caribbean. Industrial production of cassava flour, even at the cottage level, may generate enough cyanide and cyanogenic glycosides in the effluents to have a severe environmental impact.

A safe processing method used by the pre-Columbian indigenous people of the Americas is to mix the cassava flour with water into a thick paste and then let it stand in the shade for five hours in a thin layer spread over a basket. In that time, about 83% of the cyanogenic glycosides are broken down by the linamarase; the resulting hydrogen cyanide escapes to the atmosphere, making the flour safe for consumption the same evening.

The traditional method used in West Africa is to peel the roots and put them into water for three days to ferment. The roots then are dried or cooked. In Nigeria and several other west African countries, including Ghana, Benin, Togo, Ivory Coast, and Burkina Faso, they are usually grated and lightly fried in palm oil to preserve them. The result is a foodstuff called gari. Fermentation is also used in other places such as Indonesia (see Tapai). The fermentation process also reduces the level of antinutrients, making the cassava a more nutritious food.

The reliance on cassava as a food source and the resulting exposure to the goitrogenic effects of thiocyanate has been responsible for the endemic goiters seen in the Akoko area of southwestern Nigeria.

People dependent on cassava risk cyanide poisoning and malnutrition diseases such as kwashiorkor and endemic goiter.

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Cassava" – news · newspapers · books · scholar · JSTOR (September 2013) (Learn how and when to remove this message)

A project called "BioCassava Plus" is developing a cassava with lower cyanogen glucosides and fortified with vitamin A, iron and protein to help the nutrition of people in sub-Saharan Africa. In 2011, the director of the program said he hoped to obtain regulatory approvals by 2017.

Farming

Harvesting

Cassava is harvested by hand by raising the lower part of the stem and pulling the roots out of the ground, then removing them from the base of the plant. The upper parts of the stems with the leaves are plucked off before harvest. Cassava is propagated by cutting the stem into sections of approximately 15 cm, these being planted prior to the wet season.

Postharvest handling and storage

  • Cassava starch processing Cassava starch processing
  • Cassava starch processing Cassava starch processing
  • Cassava starch Cassava starch
  • Spreading Casabe burrero (cassava bread) to dry, Venezuela Spreading Casabe burrero (cassava bread) to dry, Venezuela
  • Cassava starch processing near Hanoi, Vietnam. Cassava starch processing near Hanoi, Vietnam.
  • Cassava starch processing near Hanoi, Vietnam. Cassava starch processing near Hanoi, Vietnam.
  • Cassava starch processing near Hanoi, Vietnam. Cassava starch processing near Hanoi, Vietnam.

Cassava undergoes postharvest physiological deterioration, or PPD, once the tubers are separated from the main plant. The tubers, when damaged, normally respond with a healing mechanism. However, the same mechanism, which involves coumaric acids, initiates about 15 minutes after damage, and fails to switch off in harvested tubers. It continues until the entire tuber is oxidized and blackened within two to three days after harvest, rendering it unpalatable and useless. Recent work has indicated that PPD is related to the accumulation of reactive oxygen species (ROS)initiated by cyanide release during mechanical harvesting. Based on this research, cassava shelf life was increased to up to 2 weeks by overexpressing a cyanide insensitive alternative oxidase

PPD is one of the main obstacles currently preventing farmers from exporting cassavas abroad and generating income. Cassava can be preserved in various ways such as coating in wax or freezing.

Frozen cassava leaves from the Philippines sold at a Los Angeles market

The major cause of losses during cassava chip storage is infestation by insects. A wide range of species that feed directly on the dried chips have been reported as the cause of weight loss in the stored produce. Some loss assessment studies and estimations on dried cassava chips have been carried out in different countries. Hiranandan and Advani (1955) measured 12 - 14% post-harvest weight losses in India for chips stored for about five months. Killick (1966) estimated for Ghana that 19% of the harvest cassava roots are lost annually, and Nicol (1991) estimated a 15–20% loss of dried chips stored for eight months. Pattinson (1968) estimated for Tanzania a 12% weight loss of cassava chips stored for five months, and Hodges et al. (1985) assessed during a field survey postharvest losses of up to 19% after 3 months and up to 63% after four to five months due to the infestation of Prostephanus truncatus (Horn). In Togo, Stabrawa (1991) assessed postharvest weight losses of 5% after one month of storage and 15% after three months of storage due to insect infestation, and Compton (1991) assessed weight losses of about 9% for each store in the survey area in Togo. Wright et al. (1993) assessed postharvest losses of chips of about 14% after four months of storage, about 20% after seven months of storage and up to 30% when P. truncatus attacked the dried chips. In addition, Wright et al. (1993) estimated about 4% of the total national cassava production in Togo is lost during the chip storage. This was about equivalent to 0.05% of the GNP in 1989.

Plant breeding has resulted in cassava that is tolerant to PPD. Sánchez et al. identified four different sources of tolerance to PPD. One comes from Walker's Manihot (M. walkerae) of southern Texas in the United States and Tamaulipas in Mexico. A second source was induced by mutagenic levels of gamma rays, which putatively silenced one of the genes involved in PPD genesis. A third source was a group of high-carotene clones. The antioxidant properties of carotenoids are postulated to protect the roots from PPD (basically an oxidative process). Finally, tolerance was also observed in a waxy-starch (amylose-free) mutant. This tolerance to PPD was thought to be cosegregated with the starch mutation, and is not a pleiotropic effect of the latter.

Pests

Main article: List of cassava diseases

In Africa, the cassava mealybug (Phenacoccus manihoti) and cassava green mite (Mononychellus tanajoa) can cause up to 80% crop loss, which is extremely detrimental to the production of subsistence farmers. These pests were rampant in the 1970s and 1980s but were brought under control following the establishment of the Biological Control Center for Africa of the IITA under the leadership of Dr. Hans Rudolf Herren. The Centre investigated biological control for cassava pests; two South American natural enemies Apoanagyrus lopezi (a parasitoid wasp) and Typhlodromalus aripo (a predatory mite) were found to effectively control the cassava mealybug and the cassava green mite, respectively.

The cassava mosaic virus causes the leaves of the cassava plant to wither, limiting the growth of the root. An outbreak of the virus in Africa in the 1920s led to a major famine. The virus is spread by the whitefly and by the transplanting of diseased plants into new fields. Sometime in the late 1980s, a mutation occurred in Uganda that made the virus even more harmful, causing the complete loss of leaves. This mutated virus has been spreading at a rate of 50 mi (80 km) per year, and as of 2005 may be found throughout Uganda, Rwanda, Burundi, the Democratic Republic of the Congo and the Republic of the Congo.

Recently, brown streak disease has been identified as a major threat to cassava cultivation worldwide.

A wide range of plant parasitic nematodes have been reported associated with cassava worldwide. These include Pratylenchus brachyurus., Rotylenchulus reniformis, Helicotylenchus spp., Scutellonema spp. and Meloidogyne spp., of which Meloidogyne incognita and Meloidogyne javanica are the most widely reported and economically important. Meloidogyne spp. feeding produces physically damaging galls with eggs inside them. Galls later merge as the females grow and enlarge, and they interfere with water and nutrient supply. Cassava roots become tough with age and restrict the movement of the juveniles and the egg release. It is therefore possible that extensive galling can be observed even at low densities following infection. Other pest and diseases can gain entry through the physical damage caused by gall formation, leading to rots. They have not been shown to cause direct damage to the enlarged storage roots, but plants can have reduced height if there was loss of enlarged root weight.

Research on nematode pests of cassava is still in the early stages; results on the response of cassava is, therefore, not consistent, ranging from negligible to seriously damaging. Since nematodes have such a seemingly erratic distribution in cassava agricultural fields, it is not easy to clearly define the level of direct damage attributed to nematodes and thereafter quantify the success of a chosen management method.

The use of nematicides has been found to result in lower numbers of galls per feeder root compared to a control, coupled with a lower number of rots in the storage roots. The nematicide Femaniphos, when used, did not affect crop growth and yield parameter variables measured at harvest. Nematicide use in cassava is neither practical nor sustainable; currently the use of tolerant and resistant varieties is the most practical and sustainable management method.

See also

References

  1. "The Plant List: A Working List of All Plant Species". Retrieved 4 January 2015.
  2. ^ "USDA GRIN Taxonomy". Retrieved 4 January 2014.
  3. "Cassava". Food and Agriculture Organization of the United Nations.
  4. Fauquet Claude, Fargette Denis (1990). "African Cassava Mosaic Virus: Etiology, Epidemiology, and Control" (PDF). Plant Disease. 74 (6): 404–11. doi:10.1094/pd-74-0404.
  5. "Dimensions of Need: An atlas of food and agriculture". Food and Agriculture Organization of the United Nations. 1995.
  6. Linley Chiwona-Karltun, Chrissie Katundu, James Ngoma, Felistus Chipungu, Jonathan Mkumbira, Sidney Simukoko, Janice Jiggins (2002) 'Bitter cassava and women: an intriguing response to food security', LEISA Magazine, volume 18 Issue 4. Online version accessed on 2009-08-11.
  7. Food and Agriculture Organization of the United Nations, "Roots, tubers, plantains and bananas in human nutrition", Rome, 1990, Ch. 7 "Toxic substances and antinutritional factors", third paragraph. Document available online at http://www.fao.org/docrep/t0207e/T0207E00.htm#Contents. Ch. 7 appears at http://www.fao.org/docrep/t0207e/T0207E08.htm#Cassava%20toxicity. (Accessed 25 June 2011.)
  8. ^ Food and Agriculture Organization of the United Nations, Roots, tubers, plantains and bananas in human nutrition, Rome, 1990, Ch. 7 "Toxic substances and antinutritional factors". Document available online at http://www.fao.org/docrep/t0207e/T0207E00.htm#Contents. Ch. 7 appears at http://www.fao.org/docrep/t0207e/T0207E08.htm#Cassava%20toxicity. (Accessed 25 June 2011.)
  9. Food and Agriculture Organization of the United Nations, Roots, tubers, plantains and bananas in human nutrition, Rome, 1990, Ch. 7 "Toxic substances and antinutritional factors" (under "Epidemic spastic paraparesis"). Document available online at http://www.fao.org/docrep/t0207e/T0207E00.htm#Contents. Ch. 7 appears at http://www.fao.org/docrep/t0207e/T0207E08.htm#Cassava%20toxicity. (Accessed 25 June 2011.
  10. Ravindran, Velmerugu (1992). "Preparation of cassava leaf products and their use as animal feeds" (PDF). FAO animal production and health paper (95). Rome, Italy: Food and Agriculture Organization of the United Nations: 111–125. Retrieved 2010-08-13.
  11. Attention: This template ({{cite pmid}}) is deprecated. To cite the publication identified by PMID 10318928, please use {{cite journal}} with |pmid=10318928 instead.
  12. Pope, Kevin; Pohl, Mary E. D.; Jones, John G.; Lentz, David L.; von Nagy, Christopher; Vega, Francisco J.; Quitmyer Irvy R.; "Origin and Environmental Setting of Ancient Agriculture in the Lowlands of Mesoamerica", Science, 18 May 2001: Vol. 292. no. 5520, pp. 1370–1373.
  13. University of Colorado at Boulder, (2007) "CU-Boulder Archaeology Team Discovers First Ancient Manioc Fields In Americas", press release August 20, 2007, accessed August 29, 2007.
  14. Berrin, Katherine & Larco Museum. The Spirit of Ancient Peru:Treasures from the Museo Arqueológico Rafael Larco Herrera. New York: Thames & Hudson, 1997.
  15. "The cassava transformation in Africa". The Food and Agriculture Organization of the United Nations (FAO).
  16. Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1007/978-1-4020-9283-1_13, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1007/978-1-4020-9283-1_13 instead.
  17. FAO
  18. "FAOSTAT: Production, Crops, Cassava, 2010 data". Food and Agriculture Organization. 2011.
  19. Nutrition per Hectare for Staple Crops, http://www.gardeningplaces.com/articles/nutrition-per-hectare1.htm
  20. Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1086/341532, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1086/341532 instead.
  21. Frederick Douglass Opie, Hog and Hominy: Soul Food from Africa to America, (Columbia University Press 2008), chapters 1–2.
  22. Olumide O. Tewe (2004). "The Global Cassava Development Strategy". FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS.
  23. "Nutrient data laboratory". United States Department of Agriculture. Retrieved August 10, 2016.
  24. Stuart's Brasil: Aipim, Mandioca, Manioc, Pão-de-pobre, Cassava(Manihot esculenta)
  25. clean-cohol.com
  26. Cassava bio-ethanol plant to open in China - 05 Nov 2008 - News from BusinessGreen
  27. Abeygunasekera, Anuruddha M; Palliyaguruge, Kalana H (2013). "Does cassava help to control prostate cancer? A case report". Journal of Pharmaceutical Technology and Drug Research. 2: 3. doi:10.7243/2050-120X-2-3.
  28. "Cassava". American Cancer Society. November 2008. Retrieved 22 September 2013.
  29. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1590/S0104-79301996000100002, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1590/S0104-79301996000100002 instead.
  30. Aregheore E. M, Agunbiade O. O. (1991). "The toxic effects of cassava (manihot esculenta grantz) diets on humans: a review". Vet. Hum. Toxicol. 33 (3): 274–275. PMID 1650055.
  31. White W. L. B., Arias-Garzon D. I., McMahon J. M., Sayre R. T. (1998). "Cyanogenesis in Cassava, The Role of Hydroxynitrile Lyase in Root Cyanide Production". Plant Physiol. 116 (4): 1219–1225. doi:10.1104/pp.116.4.1219. PMC 35028. PMID 9536038.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  32. EFSA Panel on Food additives, flavourings, processing aids and materials in contact with food (AFC), 2004. Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC) on hydrocyanic acid in flavourings and other food ingredients with flavouring properties. EFSA Journal 105, 1–28.
  33. Bhatia E (2002). "Tropical calcific pancreatitis: strong association with SPINK1 trypsin inhibitor mutations". gastroenterology. 123 (4): 1020–1025. doi:10.1053/gast.2002.36028. PMID 12360463.
  34. Food and Agriculture Organization of the United Nations, "Roots, tubers, plantains and bananas in human nutrition", Rome, 1990, Ch. 7 "Toxic substances and antinutritional factors", first paragraph. Document available online at http://www.fao.org/docrep/t0207e/T0207E00.htm#Contents. Ch. 7 appears at http://www.fao.org/docrep/t0207e/T0207E08.htm#Cassava%20toxicity. (Accessed 25 June 2011.)
  35. Food and Agriculture Organization of the United Nations, "Roots, tubers, plantains and bananas in human nutrition", Rome, 1990, Ch. 7 "Toxic substances and antinutritional factors", under sub-heading "Acute cyanide intoxication." Document available online at http://www.fao.org/docrep/t0207e/T0207E00.htm#Contents. Ch. 7 appears at http://www.fao.org/docrep/t0207e/T0207E08.htm#Cassava%20toxicity. (Accessed 25 June 2011.)
  36. Wagner, Holly. "CASSAVA'S CYANIDE-PRODUCING ABILITIES CAN CAUSE NEUROPATHY ..." Retrieved 21 June 2010.
  37. Food and Agriculture Organization of the United Nations, "Roots, tubers, plantains and bananas in human nutrition", Rome, 1990, Ch. 7 "Toxic substances and antinutritional factors", sixth paragraph. Document available online at http://www.fao.org/docrep/t0207e/T0207E00.htm#Contents. Ch. 7 appears at http://www.fao.org/docrep/t0207e/T0207E08.htm#Cassava%20toxicity. (Accessed 25 June 2011.) TABLE 7.1, TABLE 7.2 and TABLE 7.3 compare the effectiveness of different preparation methods for removing toxicity.
  38. Attention: This template ({{cite pmid}}) is deprecated. To cite the publication identified by PMID 7576161, please use {{cite journal}} with |pmid=7576161 instead.
  39. "New method of cyanide removal to help millions" (Press release). The Australian National University. 2007-02-07. Retrieved 2007-05-04.
  40. Oboh G, Oladunmoye MK (2007). "Biochemical changes in micro-fungi fermented cassava flour produced from low- and medium-cyanide variety of cassava tubers". Nutr Health. 18 (4): 355–67. doi:10.1177/026010600701800405. PMID 18087867.
  41. Akindahunsi AA, Grissom FE, Adewusi SR, Afolabi OA, Torimiro SE, Oke OL (1998). "Parameters of thyroid function in the endemic goitre of Akungba and Oke-Agbe villages of Akoko area of southwestern Nigeria". African journal of medicine and medical sciences. 27 (3–4): 239–42. PMID 10497657.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  42. Biocassava Plus Mission and Objectives Retrieved 25 April 2011
  43. Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1146/annurev-arplant-042110-103751, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1146/annurev-arplant-042110-103751 instead.
  44. Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1038/news.2011.233, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1038/news.2011.233 instead.
  45. Zidenga T, et al., (2012). Extending cassava root shelf life via reduction of reactive oxygen species production. Plant Physiology 159: 1396–1407
  46. N. Morante,T. Sánchez,H. Ceballos, F. Calle, J. C. Pérez, C. Egesi, C. E. Cuambe, A. F. Escobar, D. Ortiz, A. L. Chávez, and M. Fregene. (2010) Tolerance to Postharvest Physiological Deterioration in Cassava Roots. Crop Science, Vol. 50, No. 4, p. 1333-1338.
  47. 1995: Herren - The World Food Prize - Improving the Quality, Quantity and Availability of Food in the World
  48. ^ "Virus Ravages Cassava Plants in Africa". The New York Times. May 31, 2010
  49. "Hungry African Nations Balk at Biotech Cassava". stltoday.com. St. Louis Post-Dispatch. Retrieved 2008-08-11.
  50. Mc Sorley, R., Ohair, S. K. and Parrado, J.L. 1983. Nematodes of Cassava. Manihot esculenta Crantz. Nematropica 13:261-287
  51. Gapasin , R. M. 1980. Reaction of golden yellow cassava to Meloidogyne spp.. Inoculation. Annals of Tropical Research 2:49-53
  52. ^ Coyne, D. L. 1994. Nematode pests of cassava. African Crop Science Journal, Vol. 2. No.4, pp355-359
  53. Caveness, F.E. 1982. Root-knot nematode as parasites of cassava. IITA research briefs 3(2):2-3
  54. Coyne, D.L. and Talwana, L.A.H. 2000. Reaction of cassava cultivars to root-knot nematode (Meloidogyne spp.) in pot experiments and farmer-managed field trials in Uganda. International Journal of Nematology 10:153–158
  55. Makumbi-kidza, N. N., Speijer and Sikora R. A. 2000. Effects of Meloidogyne incognita on Growth and Storage-Root Formation of Cassava (Manihot esculenta). J Nematol.; 32(4S): 475–477.
  56. Gapasin, R.M. 1980. Reaction of golden yellow cassava to Meloidogyne spp. Inoculation. Annals of Tropical Research 2:49-53
  57. Theberge, R. L. (eds). 1985. Common African Pests and Diseases of cassava, Yam, Sweet Potato and Cocoyam. International Institute of Tropical Agriculture (IITA). Ibadan, Nigeria 107 p.
  58. .Coyne, D. L. 1994. Nematode pests of cassava. African Crop Science Journal, Vol. 2. No.4, pp355-359
  59. Coyne DL, Kagoda F, Wambugu E, Ragama P (2006) Response of cassava to nematicide application and plant-parasitic nematode infection in East Africa, with emphasis on root-knot nematode. International Journal of Pest Management 52, 215-23

External links

Bioenergy
Biofuels
Energy from
foodstock
Non-food
energy crops
Technology
Concepts
Cuisines
Continental
African
Americas
Asian
European
Oceanian
Intercontinental
National and
regional
Ethnic
Religious
Historical
Styles
Lists
Related
Lists of countries by agricultural output rankings
Cereals
Fruit
Vegetables
Other
Related
Categories: