Revision as of 07:50, 15 June 2003 edit210.50.72.119 (talk)No edit summary← Previous edit | Latest revision as of 17:24, 19 December 2024 edit undoTea2min (talk | contribs)Extended confirmed users, Pending changes reviewers21,795 edits Undid revision 1263942562 by 173.251.109.133 (talk)Tag: Undo | ||
Line 1: | Line 1: | ||
{{short description|Discrete model studied in computer science}} | |||
] | |||
{{Use dmy dates|date=July 2020}} | |||
A '''cellular automaton''' (plural: '''cellular automata''') is a ] model studied in ] and ]. It consists of an infinite, regular grid of ''cells'', each in one of a finite number of ''states''. The grid can be in any finite number of dimensions. Time is also discrete, and the state of a cell at time ''t'' is a function of the state of a finite number of cells called the ''neighborhood'' at time ''t-1''. These neighbors are the same relative to each cell, and do not change. (Though the cell itself may be in its neighborhood, it is not usually considered a neighbor.) Every cell has the same rule for updating. Each time the rules are applied a new ''generation'' is produced. | |||
] ] creating "]" in the cellular automaton ]<ref>] (1995), '']'', Penguin Books, London, {{ISBN|978-0-14-016734-4}}, {{ISBN|0-14-016734-X}}</ref>]] | |||
A '''cellular automaton''' (pl. '''cellular automata''', abbrev. '''CA''') is a discrete ] studied in ]. Cellular automata are also called '''cellular spaces''', '''tessellation automata''', '''homogeneous structures''', '''cellular structures''', '''tessellation structures''', and '''iterative arrays'''.<ref name=reviews>{{Cite journal | url=http://www.stephenwolfram.com/publications/articles/ca/83-statistical/ | author=Wolfram, Stephen | author-link=Stephen Wolfram | title=Statistical Mechanics of Cellular Automata | journal=Reviews of Modern Physics | issue=3 | volume=55 | pages=601–644 | year=1983 | doi=10.1103/RevModPhys.55.601 | bibcode=1983RvMP...55..601W | access-date=28 February 2011 | archive-date=21 September 2013 | archive-url=https://web.archive.org/web/20130921060232/http://www.stephenwolfram.com/publications/articles/ca/83-statistical/ | url-status=dead }}</ref> Cellular automata have found application in various areas, including ], ] and ] modeling. | |||
One example of a cellular automaton (CA) would be an infinite sheet of graph paper, where each square is a cell, each cell has two possible states (black and white), and the neighbors of a cell are the 8 squares touching it. Then, there are 2<sup>9</sup> = 512 possible patterns for a cell and its neighbors. The rule for the cellular automaton could be given as a table. For each of the 512 possible patterns, the table would state whether the center cell will be black or white on the next time step. See ] for the most popular CA of this form. | |||
A cellular automaton consists of a regular grid of ''cells'', each in one of a finite number of '']'', such as ''on'' and ''off'' (in contrast to a ]). The grid can be in any finite number of dimensions. For each cell, a set of cells called its ''neighborhood'' is defined relative to the specified cell. An initial state (time ''t'' = 0) is selected by assigning a state for each cell. A new ''generation'' is created (advancing ''t'' by 1), according to some fixed ''rule'' (generally, a mathematical function)<ref>{{cite book|title=Cellular Automata Machines: A New Environment for Modeling|first1=Tommaso|last1=Toffoli|first2=Norman|last2=Margolus|publisher=MIT Press|year=1987|isbn=9780262200608|page=27|url=https://books.google.com/books?id=HBlJzrBKUTEC&pg=PA27}}</ref> that determines the new state of each cell in terms of the current state of the cell and the states of the cells in its neighborhood. Typically, the rule for updating the state of cells is the same for each cell and does not change over time, and is applied to the whole grid simultaneously,<ref>{{cite book | author=Schiff, Joel L. | title=Cellular Automata: A Discrete View of the World | year=2011 | publisher=Wiley & Sons, Inc | isbn=9781118030639 | ref=schiff|page=40|url=https://books.google.com/books?id=uXJC2C2sRbIC&pg=PA40}}</ref> though exceptions are known, such as the ] and ]. | |||
It is usually assumed that every cell in the universe starts in the same state, except for a finite number of cells in other states. More generally, it is sometimes assumed that the universe starts out covered with a periodic pattern, and only a finite number of cells violate that pattern. The latter assumption is common in one-dimensional cellular automata. | |||
The concept was originally discovered in the 1940s by ] and ] while they were contemporaries at ]. While studied by some throughout the 1950s and 1960s, it was not until the 1970s and ], a two-dimensional cellular automaton, that interest in the subject expanded beyond academia. In the 1980s, ] engaged in a systematic study of one-dimensional cellular automata, or what he calls ]; his research assistant ] showed that ] is ]. | |||
Cellular automata are often simulated on a finite grid rather than an infinite one. In two dimensions, the universe would be a rectangle instead of an infinite plane. The edges are usually handled with a ''toroidal'' arrangement: when you go off the top, you come in at the corresponding position on the bottom, and when you go off the left you come in on the right (This essentially simulates an infinite periodic tiling). This can be visualized as taping the left and right edges together to form a tube, then taping the top and bottom edges of the tube together to form a torus (doughnut shape). Universes of other dimensions are handled similarly. This is done in order to solve boundary problems with neighborhoods. For example, with a 1-dimensional cellular automaton, like the examples below, the neighborhood of a cell x<sub>i</sub> <sup>t</sup> (where t is the time step (vertical), and i is the index in one generation ) is x<sub>i-1</sub><sup>t-1</sup>, x<sub>i</sub><sup>t-1</sup>, x<sub>i</sub><sup>t+1</sup>, there are obviously going to be problems when a cell on a left border is going to reference the upper left cell as part of its neighborhood, which it cannot, since it is not in the cellular space! | |||
The primary classifications of cellular automata, as outlined by Wolfram, are numbered one to four. They are, in order, automata in which patterns generally stabilize into ], automata in which patterns evolve into mostly stable or oscillating structures, automata in which patterns evolve in a seemingly chaotic fashion, and automata in which patterns become extremely complex and may last for a long time, with stable local structures. This last class is thought to be ], or capable of simulating a ]. Special types of cellular automata are '']'', where only a single configuration leads directly to a subsequent one, and ''totalistic'', in which the future value of individual cells only depends on the total value of a group of neighboring cells. Cellular automata can simulate a variety of real-world systems, including biological and chemical ones. | |||
=== History of Cellular Automata === | |||
==Overview== | |||
Cellular automata were invented by ] in his study of self-replicating systems. As a simplified model of the physics of our universe, he designed a two-dimensional CA with a small neighborhood (only cells that touch are neighbors), and with 29 states per cell. Within that universe, he designed an initial pattern which acted like a self-replicating machine, and mathematically proved that it would make endless copies of itself. | |||
{{multiple image|align=right | |||
|image1=CA-Moore.svg|caption1=The red cells are the ] for the blue cell. | |||
|image2=CA-von-Neumann.svg|caption2=The red cells are the ] for the blue cell. The range-2 "cross neighborhood" includes the pink cells as well. | |||
}} | |||
One way to simulate a two-dimensional cellular automaton is with an infinite sheet of ] along with a set of rules for the cells to follow. Each square is called a "cell" and each cell has two possible states, black and white. The ''neighborhood'' of a cell is the nearby, usually adjacent, cells. The two most common types of neighborhoods are the '']'' and the '']''.<ref name=kier-seybold-cheng-15>{{Harvnb|Kier, Seybold, Cheng|2005|p=15|ref=kier-seybold-cheng}}</ref> The former, named after the founding cellular automaton theorist, consists of the four ]ly adjacent cells.<ref name=kier-seybold-cheng-15/> The latter includes the von Neumann neighborhood as well as the four diagonally adjacent cells.<ref name=kier-seybold-cheng-15/> For such a cell and its Moore neighborhood, there are 512 (= 2<sup>9</sup>) possible patterns. For each of the 512 possible patterns, the rule table would state whether the center cell will be black or white on the next time interval. ] is a popular version of this model. Another common neighborhood type is the ''extended von Neumann neighborhood'', which includes the two closest cells in each orthogonal direction, for a total of eight.<ref name=kier-seybold-cheng-15/> The general equation for the total number of automata possible is ''k''<sup>''k''<sup>''s''</sup></sup>, where ''k'' is the number of possible states for a cell, and ''s'' is the number of neighboring cells (including the cell to be calculated itself) used to determine the cell's next state.<ref name=bialynick-9>{{Harvnb|Bialynicki-Birula, Bialynicka-Birula|2004|p=9|ref=bialynick}}</ref> Thus, in the two-dimensional system with a Moore neighborhood, the total number of automata possible would be 2<sup>2<sup>9</sup></sup>, or {{val|1.34|e=154}}. | |||
It is usually assumed that every cell in the universe starts in the same state, except for a finite number of cells in other states; the assignment of state values is called a ''configuration''.<ref name=schiff-41>{{Harvnb|Schiff|2011|p=41|ref=schiff}}</ref> More generally, it is sometimes assumed that the universe starts out covered with a periodic pattern, and only a finite number of cells violate that pattern. The latter assumption is common in one-dimensional cellular automata. | |||
Widespread interest in cellular automata started when ] invented the ]. This is a two-dimensional CA, with two states per cell, and where each cell has 8 neighbors. The rule is simple: If a black cell has 2 or 3 black neighbors, it stays black. If a white cell has 3 black neighbors, it becomes black. In all other cases, the cell becomes white. The universe typically starts with only a few black cells. This CA was very simple, yet allowed the construction of patterns that appeared to move themselves across the grid of cells. Life became the most widely-studied CA in history, and research on it continues. See ] for more details. | |||
{universal ]s, and self-replicating machines.} | |||
], a toroidal shape]] | |||
In 2002, ] published the book <i>]</i>. It contains an analysis of one-dimensional cellular automata and proposes the thesis that physics should be modeled by cellular automata rather than by differential equations, on the grounds that cellular automata are simpler, yet still able to exhibit the complex phenomena seen in nature. It doesn't propose any particular cellular automaton for this. | |||
Cellular automata are often simulated on a finite grid rather than an infinite one. In two dimensions, the universe would be a rectangle instead of an infinite plane. The obvious problem with finite grids is how to handle the cells on the edges. How they are handled will affect the values of all the cells in the grid. One possible method is to allow the values in those cells to remain constant. Another method is to define neighborhoods differently for these cells. One could say that they have fewer neighbors, but then one would also have to define new rules for the cells located on the edges. These cells are usually handled with ]s resulting in a ''toroidal'' arrangement: when one goes off the top, one comes in at the corresponding position on the bottom, and when one goes off the left, one comes in on the right. (This essentially simulates an infinite periodic tiling, and in the field of ] is sometimes referred to as ''periodic'' boundary conditions.) This can be visualized as taping the left and right edges of the rectangle to form a tube, then taping the top and bottom edges of the tube to form a ] (doughnut shape). Universes of other ] are handled similarly. This solves boundary problems with neighborhoods, but another advantage is that it is easily programmable using ] functions. For example, in a 1-dimensional cellular automaton like the examples below, the neighborhood of a cell ''x<sub>i</sub><sup>t</sup>'' is {''x''<sub>''i''−1</sub><sup style="margin-left:-2ex;">''t''−1</sup>, ''x''<sub>''i''</sub><sup>''t''−1</sup>, ''x''<sub>''i''+1</sub><sup style="margin-left:-2ex;">''t''−1</sup>}, where ''t'' is the time step (vertical), and ''i'' is the index (horizontal) in one generation. | |||
==History== | |||
=== The Simplest Cellular Automata === | |||
], while working at the ] in the 1940s, studied the growth of crystals, using a simple ] as his model.<ref name=pickover>{{cite book | author=Pickover, Clifford A. | title=The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics | url=https://archive.org/details/mathbookfrompyth00pick | url-access=limited | page= | year=2009| publisher=Sterling Publishing Company, Inc | isbn=978-1402757969}}</ref> At the same time, ], Ulam's colleague at Los Alamos, was working on the problem of ]s.<ref name=schiff-1>{{Harvnb|Schiff|2011|p=1|ref=schiff}}</ref> Von Neumann's initial design was founded upon the notion of one robot building another robot. This design is known as the kinematic model.<ref>John von Neumann, "The general and logical theory of automata," in ], ed., Cerebral Mechanisms in Behavior – The Hixon Symposium, John Wiley & Sons, New York, 1951, pp. 1–31.</ref><ref>{{cite journal | last1 = Kemeny | first1 = John G. | year = 1955 | title = Man viewed as a machine | journal = Sci. Am. | volume = 192 | issue = 4| pages = 58–67 | doi=10.1038/scientificamerican0455-58| bibcode = 1955SciAm.192d..58K}}; ''Sci. Am.'' 1955; 192:6 (errata).</ref> As he developed this design, von Neumann came to realize the great difficulty of building a self-replicating robot, and of the great cost in providing the robot with a "sea of parts" from which to build its replicant. Neumann wrote a paper entitled "The general and logical theory of automata" for the ] in 1948.<ref name=schiff-1/> Ulam was the one who suggested using a ''discrete'' system for creating a reductionist model of self-replication.<ref name=schiff-3>{{Harvnb|Schiff|2011|p=3|ref=schiff}}</ref><ref name=ilachinski-xxix>{{Harvnb|Ilachinski|2001|p=xxix|ref=ilachinski}}</ref> ] performed many of the earliest explorations of these models of ]. | |||
The simplest nontrivial CA would be one-dimensional, with two possible states per cell, and a cell's neighbors defined as the cell on either side of it. A cell and its two neighbors forms a neighborhood of 3 cells, so there are 2<sup>3</sup>=8 possible patterns for a neighborhood. So, there are 2<sup>8</sup>=256 possible rules. These 256 CAs are generally referred to using a standard naming convention invented by Wolfram. The name of a CA is a number which, in binary, gives the rule table. For example, these are tables defining the "rule 30 CA" and the "rule 110 CA" and a graphical representation of them starting from a 1 in the center of the image: | |||
], ] ID badge]] | |||
<center> | |||
]<br> | |||
'''Rule 30 cellular automaton''' | |||
<table border=1> | |||
<tr><td>current pattern</td> | |||
<td>111</td> | |||
<td>110</td> | |||
<td>101</td> | |||
<td>100</td> | |||
<td>011</td> | |||
<td>010</td> | |||
<td>001</td> | |||
<td>000</td></tr> | |||
<tr><td>new state for center cell</td> | |||
<td align=center>0</td> | |||
<td align=center>0</td> | |||
<td align=center>0</td> | |||
<td align=center>1</td> | |||
<td align=center>1</td> | |||
<td align=center>1</td> | |||
<td align=center>1</td> | |||
<td align=center>0</td> | |||
</tr></table> | |||
Ulam and von Neumann created a method for calculating liquid motion in the late 1950s. The driving concept of the method was to consider a liquid as a group of discrete units and calculate the motion of each based on its neighbors' behaviors.<ref name=bialynick-8>{{Harvnb|Bialynicki-Birula, Bialynicka-Birula|2004|p=8|ref=bialynick}}</ref> Thus was born the first system of cellular automata. Like Ulam's lattice network, ] are two-dimensional, with his self-replicator implemented algorithmically. The result was a ] working within a cellular automaton with a small neighborhood (only those cells that touch are neighbors; for von Neumann's cellular automata, only ] cells), and with 29 states per cell.<ref name=wolfram-876>{{Harvnb|Wolfram|2002|p=876|ref=wolfram}}</ref> Von Neumann gave an ] that a particular pattern would make endless copies of itself within the given cellular universe by designing a 200,000 cell configuration that could do so.<ref name=wolfram-876/> This design is known as the ] model, and is called a ].<ref name=TSRA>{{harvnb|von Neumann|1966}}</ref> | |||
]<br> | |||
'''Rule 110 cellular automaton''' | |||
<table border=1> | |||
<tr><td>current pattern</td> | |||
<td>111</td> | |||
<td>110</td> | |||
<td>101</td> | |||
<td>100</td> | |||
<td>011</td> | |||
<td>010</td> | |||
<td>001</td> | |||
<td>000</td></tr> | |||
<tr><td>new state for center cell</td> | |||
<td align=center>0</td> | |||
<td align=center>1</td> | |||
<td align=center>1</td> | |||
<td align=center>0</td> | |||
<td align=center>1</td> | |||
<td align=center>1</td> | |||
<td align=center>1</td> | |||
<td align=center>0</td> | |||
</tr></table> | |||
</center> | |||
Also in the 1940s, ] and ] developed a model of excitable media with some of the characteristics of a cellular automaton.<ref name="Wiener-Rosenblueth">{{cite journal | last1 = Wiener | first1 = N. | last2 = Rosenblueth | first2 = A. | year = 1946 | title = The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle | journal = Arch. Inst. Cardiol. México | volume = 16 | issue = 3| pages = 205–65 | pmid = 20245817 }}</ref> Their specific motivation was the mathematical description of impulse conduction in cardiac systems. However their model is not a cellular automaton because the medium in which signals propagate is continuous, and wave fronts are curves.<ref name="Wiener-Rosenblueth"/><ref name="reshodko">{{Cite journal|last1=Letichevskii|first1=A. A. |last2= Reshodko|first2=L. V.|title=N. Wiener's theory of the activity of excitable media |journal=Cybernetics|volume=8|issue=5 |year=1974|pages=856–864|doi=10.1007/bf01068458|s2cid=121306408 }}</ref> A true cellular automaton model of excitable media was developed and studied by J. M. Greenberg and S. P. Hastings in 1978; see ]. The original work of Wiener and Rosenblueth contains many insights and continues to be cited in modern research publications on ] and excitable systems.<ref>{{cite journal | doi = 10.1038/355349a0 | last1 = Davidenko | first1 = J. M. | last2 = Pertsov | first2 = A. V. | last3 = Salomonsz | first3 = R. | last4 = Baxter | first4 = W. | last5 = Jalife | first5 = J. | year = 1992 | title = Stationary and drifting spiral waves of excitation in isolated cardiac muscle | journal = Nature | volume = 355 | issue = 6358| pages = 349–351 | pmid = 1731248 |bibcode = 1992Natur.355..349D | s2cid = 4348759 }}</ref> | |||
In the 1960s, cellular automata were studied as a particular type of ] and the connection with the mathematical field of ] was established for the first time. In 1969, ] compiled many results following this point of view<ref>{{cite journal | doi = 10.1007/BF01691062 | last1 = Hedlund | first1 = G. A. | author-link = Gustav A. Hedlund | year = 1969 | title = Endomorphisms and automorphisms of the shift dynamical system | journal = Math. Systems Theory | volume = 3 | issue = 4| pages = 320–3751 | s2cid = 21803927 }}</ref> in what is still considered as a seminal paper for the mathematical study of cellular automata. The most fundamental result is the characterization in the ] of the set of global rules of cellular automata as the set of ] ] of ]s. | |||
A table completely defines a CA rule. For example, the rule 30 table says that if three adjacent cells in the CA currently have the pattern 100 (left cell is on, middle and right cells are off), then the middle cell will become 1 (on) on the next time step. The rule 110 CA says the opposite for that particular case. | |||
In 1969, German computer pioneer ] published his book '']'', proposing that the physical laws of the universe are discrete by nature, and that the entire universe is the output of a deterministic computation on a single cellular automaton; "Zuse's Theory" became the foundation of the field of study called '']''.<ref name=schiff-182>{{Harvnb|Schiff|2011|p=182|ref=schiff}}</ref> | |||
The columns must be written in the given order (the reverse order of counting in binary). The bottom line in the first table has the bits 00011110, which is the ] representation of the number 30, so that CA is called the "rule 30 CA". Similarly, the rule 110 CA derives its name from 01101110, which is the binary representation of the decimal number 110. | |||
Also in 1969 computer scientist ] completed a Stanford PhD dissertation on Cellular Automata Theory, the first mathematical treatment of CA as a general class of computers. Many papers came from this dissertation: He showed the equivalence of neighborhoods of various shapes, how to reduce a Moore to a von Neumann neighborhood or how to reduce any neighborhood to a von Neumann neighborhood.<ref>{{cite web|last=Smith|first=Alvy Ray|title=Cellular Automata Complexity Trade-Offs|url=http://alvyray.com/Papers/CA/TradeOff.pdf}}</ref> He ] that two-dimensional CA are computation universal, introduced 1-dimensional CA, and showed that they too are computation universal, even with simple neighborhoods.<ref>{{cite web|last=Smith|first=Alvy Ray|title=Simple Computation-Universal Cellular Spaces|url=http://alvyray.com/Papers/CA/UniversalCA_1D.pdf}}</ref> He showed how to subsume the complex von Neumann proof of construction universality (and hence self-reproducing machines) into a consequence of computation universality in a 1-dimensional CA.<ref>{{cite web|last=Smith|first=Alvy Ray|title=Simple Nontrivial Self-Reproducing Machines|url=http://alvyray.com/Papers/CA/alife2_optimized.pdf}}</ref> Intended as the introduction to the German edition of von Neumann's book on CA, he wrote a survey of the field with dozens of references to papers, by many authors in many countries over a decade or so of work, often overlooked by modern CA researchers.<ref>{{cite web|last=Smith|first=Alvy Ray|title=Introduction to and Survey of Cellular Automata or Polyautomata Theory|url=http://alvyray.com/Papers/CA/PolyCA76.pdf}}</ref> | |||
A number of papers have analyzed and compared these 256 CAs. The rule 30 and rule 110 CAs are particularly interesting. | |||
In the 1970s a two-state, two-dimensional cellular automaton named ] became widely known, particularly among the early computing community. Invented by ] and popularized by ] in a '']'' article,<ref>{{cite journal | last1 = Gardner | first1 =Martin | year = 1970 | title = Mathematical Games: The fantastic combinations of John Conway's new solitaire game "life" | url = http://www.ibiblio.org/lifepatterns/october1970.html | journal = Scientific American | volume =223 | issue = 4 | pages = 120–123 | doi =10.1038/scientificamerican1070-120 }}</ref> its rules are as follows: | |||
Wolfram proposed a ] (PRNG) based on rule 30. Rule 30 is run on a finite universe whose cells have random initial states, and the output is the sequence of states for one particular cell. He argued that since the rule is ''nonlinear'' (the rules cannot be written as equations using just XOR and NOT), the PRNG should be much better than a simple ] (LFSR). The rule 30 PRNG would therefore be more useful for both statistical and cryptographic applications, so he used this generator as the PRNG for ]. Unfortunately, the generator was later proved to be exactly equivalent to an LFSR, which renders it useless for cryptography and no better than an LFSR for statistical uses. | |||
# Any live cell with fewer than two live neighbours dies, as if caused by underpopulation. | |||
# Any live cell with two or three live neighbours lives on to the next generation. | |||
# Any live cell with more than three live neighbours dies, as if by overpopulation. | |||
# Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction. | |||
Despite its simplicity, the system achieves an impressive diversity of behavior, fluctuating between apparent ] and order. One of the most apparent features of the Game of Life is the frequent occurrence of ''gliders'', arrangements of cells that essentially move themselves across the grid. It is possible to arrange the automaton so that the gliders interact to perform computations, and after much effort it has been shown that the Game of Life can emulate a ].<ref>Paul Chapman. Life universal computer. http://www.igblan.free-online.co.uk/igblan/ca/ {{Webarchive|url=https://web.archive.org/web/20090906014935/http://www.igblan.free-online.co.uk/igblan/ca/ |date=6 September 2009 }} November 2002</ref> It was viewed as a largely recreational topic, and little follow-up work was done outside of investigating the particularities of the Game of Life and a few related rules in the early 1970s.<ref name=Wainwright-16>{{Harvnb|Wainwright|2010|p=16}}</ref> | |||
] independently began working on cellular automata in mid-1981 after considering how complex patterns seemed formed in nature in violation of the ].<ref name=wolfram-880/> His investigations were initially spurred by a desire to model systems such as the ] found in brains.<ref name=wolfram-880/> He published his first paper in '']'' investigating '']'' (] in particular) in June 1983.<ref name=reviews/><ref name=wolfram-880>{{Harvnb|Wolfram|2002|p=880|ref=wolfram}}</ref> The unexpected complexity of the behavior of these simple rules led Wolfram to suspect that complexity in nature may be due to similar mechanisms.<ref name=wolfram-880/> His investigations, however, led him to realize that cellular automata were poor at modelling neural networks.<ref name=wolfram-880/> Additionally, during this period Wolfram formulated the concepts of intrinsic ] and ],<ref name=wolfram-881>{{Harvnb|Wolfram|2002|p=881|ref=wolfram}}</ref> and suggested that ] may be ]—a fact proved later by Wolfram's research assistant ] in the 1990s.<ref>{{cite journal | author=Mitchell, Melanie | author-link=Melanie Mitchell | title=Is the Universe a Universal Computer? | journal=] | date=4 October 2002 | volume=298 | issue=5591 | pages=65–68 | doi=10.1126/science.1075073| s2cid=122484855 }}</ref> | |||
The rule 110 cellular automaton has interesting behavior, especially when the initial pattern is carefully chosen. Wolfram was the first to study it, and concluded that it obviously could not be ]. ] later proved it actually is Turing complete, and presented the proof at a ] conference, but Wolfram suppressed its publication with a court order. A general overview of the proof is given in Wolfram's book. This is an interesting result, because it shows that even the simplest cellular automata have all the computational power of a universal ]. It is not known which of these 256 simple CAs are Turing complete, other than rule 110 and the three other CAs trivially equivalent to it. | |||
==Classification== | |||
=== Reversible Cellular Automata === | |||
Wolfram, in '']'' and several papers dating from the mid-1980s, defined four classes into which cellular automata and several other simple computational models can be divided depending on their behavior. While earlier studies in cellular automata tended to try to identify types of patterns for specific rules, Wolfram's classification was the first attempt to classify the rules themselves. In order of complexity the classes are: | |||
*Class 1: Nearly all initial patterns evolve quickly into a stable, homogeneous state. Any randomness in the initial pattern disappears.<ref name=ilachinski-12>{{Harvnb|Ilachinsky|2001|p=12|ref=ilachinski}}</ref> | |||
*Class 2: Nearly all initial patterns evolve quickly into stable or oscillating structures. Some of the randomness in the initial pattern may filter out, but some remains. Local changes to the initial pattern tend to remain local.<ref name=ilachinski-12/> | |||
*Class 3: Nearly all initial patterns evolve in a pseudo-random or chaotic manner. Any stable structures that appear are quickly destroyed by the surrounding noise. Local changes to the initial pattern tend to spread indefinitely.<ref name=ilachinski-12/> | |||
*Class 4: Nearly all initial patterns evolve into structures that interact in complex and interesting ways, with the formation of local structures that are able to survive for long periods of time.<ref name=ilachinski-13>{{Harvnb|Ilachinsky|2001|p=13|ref=ilachinski}}</ref> Class 2 type stable or oscillating structures may be the eventual outcome, but the number of steps required to reach this state may be very large, even when the initial pattern is relatively simple. Local changes to the initial pattern may spread indefinitely. Wolfram has ]d that many class 4 cellular automata, if not all, are capable of ]. This has been proven for Rule 110 and Conway's Game of Life. | |||
These definitions are qualitative in nature and there is some room for interpretation. According to Wolfram, "...with almost any general classification scheme there are inevitably cases which get assigned to one class by one definition and another class by another definition. And so it is with cellular automata: there are occasionally rules...that show some features of one class and some of another."<ref name=wolfram-231>{{Harvnb|Wolfram|2002|p=231|ref=wolfram}}</ref> Wolfram's classification has been empirically matched to a clustering of the compressed lengths of the outputs of cellular automata.<ref>{{cite journal|last=Zenil|first=Hector|title=Compression-based investigation of the dynamical properties of cellular automata and other systems|journal=Complex Systems|year=2010|volume=19|issue=1|pages=1–28|url=http://www.complex-systems.com/pdf/19-1-1.pdf|doi=10.25088/ComplexSystems.19.1.1|arxiv=0910.4042 |s2cid=15364755}}</ref> | |||
Sometimes it is possible to examine the state of a cellular automaton, and deduce the previous state. If the rules ensure that this is always possible, then the CA is called ''reversible''. Given the rules, there is no general way to tell whether the CA is reversible. Jarkko Kari proved that this is ] for CAs with two or more dimensions. For CAs with one dimension, it is decidable. | |||
There have been several attempts to classify cellular automata in formally rigorous classes, inspired by Wolfram's classification. For instance, Culik and Yu proposed three well-defined classes (and a fourth one for the automata not matching any of these), which are sometimes called Culik–Yu classes; membership in these proved ].<ref name="DelormeMazoyer1998">{{cite book|editor1=M. Delorme |editor2=J. Mazoyer |title=Cellular automata: a parallel model|chapter-url=https://books.google.com/books?id=dGs87s5Pft0C&pg=PA239|year=1998|publisher=Springer|isbn=978-0-7923-5493-2|page=239|chapter=Topological chaos and CA|author1=G. Cattaneo |author2=E. Formenti |author3=L. Margara }}</ref><ref name="Voorhees1996">{{cite book|author=Burton H. Voorhees|title=Computational analysis of one-dimensional cellular automata|url=https://books.google.com/books?id=WcZTQHPrG68C&pg=PA8|year=1996|publisher=World Scientific|isbn=978-981-02-2221-5|page=8}}</ref><ref name="Garzon1995">{{cite book|author=Max Garzon|title=Models of massive parallelism: analysis of cellular automata and neural networks |url=https://archive.org/details/modelsmassivepar00garz|url-access=limited| year=1995 | publisher=Springer | isbn=978-3-540-56149-1 | page=}}</ref> | |||
For CAs that aren't reversible, there must exist patterns for which there is no previous state. These patterns are called ''Garden of Eden'' patterns. In other words, no pattern exists which will, in one step, become a Garden of Eden pattern. | |||
Wolfram's class 2 can be partitioned into two subgroups of stable (fixed-point) and oscillating (periodic) rules.<ref name=li-packard>{{cite journal | url=http://www.complex-systems.com/pdf/04-3-3.pdf | author1=Li, Wentian | author-link1=Wentian Li | author2=Packard, Norman | title=The structure of the elementary cellular automata rule space | journal=Complex Systems | pages=281–297 | volume=4 | year=1990 | access-date=25 January 2013}}</ref> | |||
The idea that there are 4 classes of dynamical system came originally from Nobel-prize winning chemist ] who identified these 4 classes of thermodynamical systems: (1) systems in thermodynamic equilibrium, (2) spatially/temporally uniform systems, (3) chaotic systems, and (4) complex far-from-equilibrium systems with dissipative structures (see figure 1 in the 1974 paper of Nicolis, Prigogine's student).<ref name=nicolis>{{cite journal | url=http://www.complex-systems.com/pdf/04-3-3.pdf | author1=Nicolis | title=Dissipative Structures, Catastrophes, and Pattern Formation: A Bifurcation Analysis | journal=PNAS | pages=2748–2751 | volume=71 | number=7 | year=1974 | access-date=25 March 2017 | doi = 10.1073/pnas.71.7.2748| pmid=16592170 | pmc=388547 | bibcode=1974PNAS...71.2748N | doi-access=free }}</ref> | |||
=== Uses in Cryptography === | |||
===Reversible=== | |||
Rule 30 was originally suggested as a possible ] for use in ]. However, it was later broken, as described above. | |||
{{main|Reversible cellular automaton}} | |||
A cellular automaton is ''reversible'' if, for every current configuration of the cellular automaton, there is exactly one past configuration (]).<ref name=kari-379>{{Harvnb|Kari, Jarrko|1991|p=379|ref=gutowitz}}</ref> If one thinks of a cellular automaton as a function mapping configurations to configurations, reversibility implies that this function is ].<ref name=kari-379/> If a cellular automaton is reversible, its time-reversed behavior can also be described as a cellular automaton; this fact is a consequence of the ], a topological characterization of cellular automata.<ref>{{Cite journal|first=D.|last=Richardson|title=Tessellations with local transformations|journal=J. Comput. Syst. Sci.|volume=6|year=1972|pages=373–388|issue=5|doi=10.1016/S0022-0000(72)80009-6|doi-access=free}}</ref><ref>{{Cite book|title=Cellular Automata in Hyperbolic Spaces – Tome I, Volume 1|first=Maurice|last=Margenstern|publisher=Archives contemporaines|year=2007|isbn=978-2-84703-033-4|page=134|url=https://books.google.com/books?id=wGjX1PpFqjAC&pg=PA134}}</ref> For cellular automata in which not every configuration has a preimage, the configurations without preimages are called '']'' patterns.<ref name=schiff-103>{{Harvnb|Schiff|2011|p=103|ref=schiff}}</ref> | |||
For one-dimensional cellular automata there are known algorithms for deciding whether a rule is reversible or irreversible.<ref>{{cite journal | last1 = Amoroso | first1 = Serafino | last2 = Patt | first2 = Yale N. | year = 1972 | title = Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures | journal = J. Comput. Syst. Sci. | volume = 6 | issue = 5| pages = 448–464 | doi=10.1016/s0022-0000(72)80013-8| doi-access = free }}</ref><ref>{{Cite journal|journal=Complex Systems|volume=5|year=1991|pages=19–30|title=De Bruijn Graphs and Linear Cellular Automata|first=Klaus|last=Sutner|url=http://www.complex-systems.com/pdf/05-1-3.pdf}}</ref> However, for cellular automata of two or more dimensions reversibility is ]; that is, there is no algorithm that takes as input an automaton rule and is guaranteed to determine correctly whether the automaton is reversible. The proof by ] is related to the tiling problem by ]s.<ref>{{Cite journal|first=Jarkko|last=Kari|author-link=Jarkko Kari|title=Reversibility of 2D cellular automata is undecidable|journal=Physica D|volume=45|issue=1–3|year=1990|pages=379–385|doi=10.1016/0167-2789(90)90195-U|bibcode = 1990PhyD...45..379K}}</ref> | |||
Cellular automata have been proposed for ]. The ] is the evolution of a finite CA whose inverse is hard to find. Given the rule, anyone can easily calculate future states, but it is very difficult to calculate previous states. However, the designer of the rule can create it in such a way as to be able to easily invert it. Therefore, it is a ], and can be used as a public-key cryptosystem. The security of such systems is not currently known. | |||
Reversible cellular automata are often used to simulate such physical phenomena as gas and fluid dynamics, since they obey the laws of ]. Such cellular automata have rules specially constructed to be reversible. Such systems have been studied by ], ] and others. Several techniques can be used to explicitly construct reversible cellular automata with known inverses. Two common ones are the ] and the ], both of which involve modifying the definition of a cellular automaton in some way. Although such automata do not strictly satisfy the definition given above, it can be shown that they can be emulated by conventional cellular automata with sufficiently large neighborhoods and numbers of states, and can therefore be considered a subset of conventional cellular automata. Conversely, it has been shown that every reversible cellular automaton can be emulated by a block cellular automaton.<ref>{{Cite journal|title=On the circuit depth of structurally reversible cellular automata|first=Jarkko|last=Kari|author-link=Jarkko Kari|journal=Fundamenta Informaticae|volume=38|year=1999|pages=93–107|doi=10.3233/FI-1999-381208}}</ref><ref>{{Cite journal|title=Representing reversible cellular automata with reversible block cellular automata|last=Durand-Lose|first=Jérôme|journal=Discrete Mathematics and Theoretical Computer Science|volume=AA|year=2001|pages=145–154|url=http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/download/264/855|url-status=dead|archive-url=https://web.archive.org/web/20110515134011/http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/download/264/855|archive-date=15 May 2011}}</ref> | |||
=== Related Automata === | |||
===Totalistic=== | |||
There are many possible generalizations of the CA concept. | |||
A special class of cellular automata are ''totalistic'' cellular automata. The state of each cell in a totalistic cellular automaton is represented by a number (usually an integer value drawn from a finite set), and the value of a cell at time ''t'' depends only on the ''sum'' of the values of the cells in its neighborhood (possibly including the cell itself) at time ''t'' − 1.<ref name=wolfram-60>{{Harvnb|Wolfram|2002|p=60|ref=wolfram}}</ref><ref name="cadu">{{Cite book|title=Cellular automata: a discrete universe|first=Andrew|last=Ilachinski|publisher=World Scientific|year=2001|isbn=978-981-238-183-5|pages=44–45|url=https://books.google.com/books?id=3Hx2lx_pEF8C&pg=PA4}}</ref> If the state of the cell at time ''t'' depends on both its own state and the total of its neighbors at time ''t'' − 1 then the cellular automaton is properly called ''outer totalistic''.<ref name="cadu"/> ] is an example of an outer totalistic cellular automaton with cell values 0 and 1; outer totalistic cellular automata with the same ] structure as Life are sometimes called ].<ref>The phrase "{{Not a typo|life-like}} cellular automaton" dates back at least to {{harvtxt|Barral|Chaté|Manneville|1992}}, who used it in a broader sense to refer to outer totalistic automata, not necessarily of two dimensions. The more specific meaning given here was used e.g. in several chapters of {{harvtxt|Adamatzky|2010}}. See: {{Cite journal|title=Collective behaviors in a family of high-dimensional cellular automata|first1=Bernard|last1=Barral|first2=Hugues|last2=Chaté|first3=Paul|last3=Manneville|journal=Physics Letters A|volume=163|issue=4|year=1992|pages=279–285|doi=10.1016/0375-9601(92)91013-H|bibcode = 1992PhLA..163..279B }}</ref><ref name=eppstein-72-73>{{Harvnb|Eppstein|2010|pp=72–73}}</ref> | |||
===Related automata=== | |||
One way is by using something other than a rectangular (cubic, etc.) grid. For example, if a plane is ] with equilateral triangles, those triangles could be used as the cells. | |||
There are many possible generalizations of the cellular automaton concept. | |||
] | |||
Also, the rules can be probabilistic rather than deterministic. The rule then gives, for each pattern at time ''t'', the probability that the central cell will transition to each possible state at time ''t+1''. Sometimes a simpler rule is used, such as, "The rule is the Game of Life, but on each time step there is a 0.001% probability that each cell will transition to the opposite color." | |||
One way is by using something other than a rectangular (cubic, ''etc.'') grid. For example, if a plane is ], those hexagons could be used as cells. In many cases the resulting cellular automata are equivalent to those with rectangular grids with specially designed neighborhoods and rules. Another variation would be to make the grid itself irregular, such as with ].<ref>{{cite web|url=https://www.newscientist.com/article/dn22134-first-gliders-navigate-everchanging-penrose-universe.html|title=First gliders navigate ever-changing Penrose universe|author=Jacob Aron|work=New Scientist}}</ref> | |||
Also, rules can be probabilistic rather than deterministic. Such cellular automata are called ]. A probabilistic rule gives, for each pattern at time ''t'', the probabilities that the central cell will transition to each possible state at time ''t'' + 1. Sometimes a simpler rule is used; for example: "The rule is the Game of Life, but on each time step there is a 0.001% probability that each cell will transition to the opposite color." | |||
The neighborhood or rules could change over time or space. For example, initially the new state of a cell could be determined by the horizontally adjacent cells, but for the next generation the vertical cells would be used. | The neighborhood or rules could change over time or space. For example, initially the new state of a cell could be determined by the horizontally adjacent cells, but for the next generation the vertical cells would be used. | ||
In cellular automata, the new state of a cell is not affected by the new state of other cells. This could be changed so that, for instance, a 2 by 2 block of cells can be determined by itself and the cells adjacent to itself. | |||
The grid can be finite, so that patterns can "fall off" the edge of the universe. | |||
There are '']''. These are like totalistic cellular automata, but instead of the rule and states being discrete (''e.g.'' a table, using states {0,1,2}), continuous functions are used, and the states become continuous (usually values in ]]). The state of a location is a finite number of real numbers. Certain cellular automata can yield diffusion in liquid patterns in this way. | |||
In CA, the new state of a cell is not affected by the new state of other cells. This could be changed so that, for instance, a 2 by 2 block of cells can be determined by itself and the cells adjacent to itself. | |||
] have a continuum of locations. The state of a location is a finite number of real numbers. Time is also continuous, and the state evolves according to differential equations. One important example is ] textures, differential equations proposed by ] to explain how chemical reactions could create the stripes on ]s and spots on leopards.<ref>{{cite book |last1=Murray |first1=J. D. |title=Mathematical biology |date=2003 |publisher=Springer |location=New York |isbn=0-387-95228-4 |edition=3rd}}</ref> When these are approximated by cellular automata, they often yield similar patterns. MacLennan considers continuous spatial automata as a model of computation. | |||
There are known examples of continuous spatial automata, which exhibit propagating phenomena analogous to gliders in the Game of Life.<ref>Pivato, M: "RealLife: The continuum limit of Larger than Life cellular automata", ''Theoretical Computer Science'', 372 (1), March 2007, pp. 46–68</ref> | |||
See also: | |||
''Graph rewriting automata'' are extensions of cellular automata based on ]s.<ref>{{Cite book |doi = 10.1007/978-3-642-01284-6_14|isbn = 978-3-642-01283-9|chapter = Graph-Rewriting Automata as a Natural Extension of Cellular Automata|title = Adaptive Networks|series = Understanding Complex Systems|year = 2009|last1 = Tomita|first1 = Kohji|last2 = Kurokawa|first2 = Haruhisa|last3 = Murata|first3 = Satoshi|pages = 291–309}}</ref> | |||
==Elementary cellular automata== | |||
{{Main|Elementary cellular automaton}} | |||
The simplest nontrivial cellular automaton would be one-dimensional, with two possible states per cell, and a cell's neighbors defined as the adjacent cells on either side of it. A cell and its two neighbors form a neighborhood of 3 cells, so there are 2<sup>3</sup> = 8 possible patterns for a neighborhood. A rule consists of deciding, for each pattern, whether the cell will be a 1 or a 0 in the next generation. There are then 2<sup>8</sup> = 256 possible rules.<ref name=bialynick-9/> | |||
] | |||
These 256 cellular automata are generally referred to by their ], a standard naming convention invented by Wolfram that gives each rule a number from 0 to 255. A number of papers have analyzed and compared the distinct cases among the 256 cellular automata (many are trivially isomorphic). The ], ], ], and ] cellular automata are particularly interesting. The images below show the history of rules 30 and 110 when the starting configuration consists of a 1 (at the top of each image) surrounded by 0s. Each row of pixels represents a generation in the history of the automaton, with ''t''=0 being the top row. Each pixel is colored white for 0 and black for 1. | |||
] | |||
{| class="wikitable" style="text-align: center" | |||
|+ ] cellular automaton<br>(binary 00011110 = decimal 30) | |||
|- | |||
! current pattern | |||
| 111 || 110 || 101 || 100 || 011 || 010 || 001 || 000 | |||
|- | |||
! new state for center cell | |||
| 0 || 0 || 0 || 1 || 1 || 1 || 1 || 0 | |||
|} | |||
Rule 30 exhibits ''class 3'' behavior, meaning even simple input patterns such as that shown lead to chaotic, seemingly random histories. | |||
] | |||
{| class="wikitable" style="text-align: center" | |||
|+ ] cellular automaton<br>(binary 01101110 = decimal 110) | |||
|- | |||
! current pattern | |||
| 111 || 110 || 101 || 100 || 011 || 010 || 001 || 000 | |||
|- | |||
! new state for center cell | |||
| 0 || 1 || 1 || 0 || 1 || 1 || 1 || 0 | |||
|} | |||
Rule 110, like the Game of Life, exhibits what Wolfram calls ''class 4'' behavior, which is neither completely random nor completely repetitive. Localized structures appear and interact in various complicated-looking ways. In the course of the development of '']'', as a research assistant to Wolfram in 1994, ] proved that some of these structures were rich enough to support ]. This result is interesting because rule 110 is an extremely simple one-dimensional system, and difficult to engineer to perform specific behavior. This result therefore provides significant support for Wolfram's view that class 4 systems are inherently likely to be universal. Cook presented his proof at a ] conference on Cellular Automata in 1998, but Wolfram blocked the proof from being included in the conference proceedings, as Wolfram did not want the proof announced before the publication of ''A New Kind of Science''.<ref name=giles>{{cite journal | author=Giles, Jim | title=What Kind of Science is This? | journal=] | volume=417 | issue=6886 | pages=216–218 | year=2002|doi=10.1038/417216a | pmid=12015565 | bibcode=2002Natur.417..216G | s2cid=10636328 | doi-access=free }}</ref> In 2004, Cook's proof was finally published in Wolfram's journal '']'' (Vol. 15, No. 1), over ten years after Cook came up with it. Rule 110 has been the basis for some of the smallest universal Turing machines.<ref>{{cite journal | url=http://www.nybooks.com/articles/archives/2002/oct/24/is-the-universe-a-computer/?pagination=false | author=Weinberg, Steven | title=Is the Universe a Computer? | journal=] | date=24 October 2002 | volume=49 | issue=16 | access-date=12 October 2012}}</ref> | |||
==Rule space== | |||
An elementary cellular automaton rule is specified by 8 bits, and all elementary cellular automaton rules can be considered to sit on the ] of the 8-dimensional unit ]. This unit hypercube is the cellular automaton rule space. For next-nearest-neighbor cellular automata, a rule is specified by 2<sup>5</sup> = 32 bits, and the cellular automaton rule space is a 32-dimensional unit hypercube. A distance between two rules can be defined by the number of steps required to move from one vertex, which represents the first rule, and another vertex, representing another rule, along the ] of the hypercube. This rule-to-rule distance is also called the ]. | |||
Cellular automaton rule space allows us to ask the question concerning whether rules with similar dynamical behavior are "close" to each other. Graphically drawing a high dimensional hypercube on the 2-dimensional plane remains a difficult task, and one crude locator of a rule in the hypercube is the number of bit-1 in the 8-bit string for elementary rules (or 32-bit string for the next-nearest-neighbor rules). Drawing the rules in different Wolfram classes in these slices of the rule space show that class 1 rules tend to have lower number of bit-1s, thus located in one region of the space, whereas class 3 rules tend to have higher proportion (50%) of bit-1s.<ref name=li-packard /> | |||
For larger cellular automaton rule space, it is shown that class 4 rules are located between the class 1 and class 3 rules.<ref>{{cite journal|journal=Physica D|volume=45|issue=1–3|year=1990|pages=77–94|title= Transition phenomena in cellular automata rule space |author1=Wentian Li |author2=Norman Packard |author3=Chris G Langton |doi=10.1016/0167-2789(90)90175-O|bibcode = 1990PhyD...45...77L |citeseerx=10.1.1.15.2786}}</ref> This observation is the foundation for the phrase ], and is reminiscent of the ] in ]. | |||
==Applications== | |||
===Biology=== | |||
]'' exhibits a cellular automaton pattern on its shell.<ref name=coombs/>]] | |||
{{further|Patterns in nature}} | |||
Several biological processes occur—or can be simulated—by cellular automata. | |||
Some examples of biological phenomena modeled by cellular automata with a simple state space are: | |||
* Patterns of some ]s, like the ones in the genera '']'' and '']'', are generated by natural cellular automata. The ] cells reside in a narrow band along the shell's lip. Each cell ] pigments according to the activating and inhibiting activity of its neighbor pigment cells, obeying a natural version of a mathematical rule.<ref name="coombs">{{citation|last=Coombs|first=Stephen|title=The Geometry and Pigmentation of Seashells|date=15 February 2009|url=http://www.maths.nott.ac.uk/personal/sc/pdfs/Seashells09.pdf|pages=3–4|archive-url=https://web.archive.org/web/20130107235922/http://www.maths.nott.ac.uk/personal/sc/pdfs/Seashells09.pdf|access-date=2 September 2012|archive-date=7 January 2013|url-status=dead}}</ref> The cell band leaves the colored pattern on the shell as it grows slowly. For example, the widespread species '']'' bears a pattern resembling Wolfram's ] cellular automaton.<ref name="coombs" /> | |||
* Plants regulate their intake and loss of gases via a cellular automaton mechanism. Each ] on the leaf acts as a cell.<ref>{{cite journal | doi = 10.1073/pnas.0307811100 | last1 = Peak | first1 = West | last2 = Messinger | first2 = Mott | year = 2004 | title = Evidence for complex, collective dynamics and emergent, distributed computation in plants | journal = Proceedings of the National Academy of Sciences | volume = 101 | issue = 4| pages = 918–922 |bibcode = 2004PNAS..101..918P | pmid=14732685 | pmc=327117| doi-access = free }}</ref> | |||
* Moving wave patterns on the skin of ]s can be simulated with a two-state, two-dimensional cellular automata, each state corresponding to either an expanded or retracted ].<ref>{{Cite web|title=Archived copy|url=http://gilly.stanford.edu/past_research_files/APackardneuralnet.pdf|url-status=dead|archive-url=https://web.archive.org/web/20100725123926/http://gilly.stanford.edu/past_research_files/APackardneuralnet.pdf|archive-date=25 July 2010|access-date=14 September 2008}}</ref> | |||
* Threshold automata have been invented to simulate ]s, and complex behaviors such as recognition and learning can be simulated.<ref name="ilachinski-275">{{Harvnb|Ilachinsky|2001|p=275|ref=ilachinski}}</ref> | |||
* ]s bear similarities to cellular automata, as each fibroblast only interacts with its neighbors.<ref>{{cite book|title=Disordered Systems and Biological Organization|year=1986|pages=374–375|author=Yves Bouligand|chapter=Fibroblasts, Morphogenesis and Cellular Automata}}</ref> | |||
Additionally, biological phenomena which require explicit modeling of the agents' velocities (for example, those involved in ]) may be modeled by cellular automata with a more complex state space and rules, such as ]. These include phenomena of great medical importance, such as: | |||
* Characterization of different modes of ] invasion.<ref>{{Cite journal|last1=Ilina|first1=Olga|last2=Gritsenko|first2=Pavlo G.|last3=Syga|first3=Simon|last4=Lippoldt|first4=Jürgen|last5=La Porta|first5=Caterina A. M.|last6=Chepizhko|first6=Oleksandr|last7=Grosser|first7=Steffen|last8=Vullings|first8=Manon|last9=Bakker|first9=Gert-Jan|last10=Starruß|first10=Jörn|last11=Bult|first11=Peter|date=September 2020|title=Cell–cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion|journal=Nature Cell Biology|language=en|volume=22|issue=9|pages=1103–1115|doi=10.1038/s41556-020-0552-6|issn=1465-7392|pmc=7502685|pmid=32839548}}</ref> | |||
* The role of ] in the development of aggressive carcinomas.<ref>{{Cite journal|last1=Reher|first1=David|last2=Klink|first2=Barbara|last3=Deutsch|first3=Andreas|last4=Voss-Böhme|first4=Anja|date=2017-08-11|title=Cell adhesion heterogeneity reinforces tumour cell dissemination: novel insights from a mathematical model|journal=Biology Direct|volume=12|issue=1|pages=18|doi=10.1186/s13062-017-0188-z|issn=1745-6150|pmc=5553611|pmid=28800767 |doi-access=free }}</ref> | |||
* ] during tumor proliferation.<ref>{{Cite journal|last1=Hatzikirou|first1=H.|last2=Basanta|first2=D.|last3=Simon|first3=M.|last4=Schaller|first4=K.|last5=Deutsch|first5=A.|date=2012-03-01|title='Go or Grow': the key to the emergence of invasion in tumour progression?|url=https://academic.oup.com/imammb/article-lookup/doi/10.1093/imammb/dqq011|journal=Mathematical Medicine and Biology|language=en|volume=29|issue=1|pages=49–65|doi=10.1093/imammb/dqq011|pmid=20610469|issn=1477-8599}}</ref> | |||
===Chemistry=== | |||
The ] is a spatio-temporal ] that can be simulated by means of a cellular automaton. In the 1950s ] (extending the work of ]) discovered that when a thin, homogenous layer of a mixture of ], acidified bromate, and a ceric salt were mixed together and left undisturbed, fascinating geometric patterns such as concentric circles and spirals propagate across the medium. In the "Computer Recreations" section of the August 1988 issue of '']'',<ref>A. K. Dewdney, The hodgepodge machine makes waves, Scientific American, p. 104, August 1988.</ref> ] discussed a cellular automaton<ref>{{cite journal | last1 = Gerhardt | first1 = M. | last2 = Schuster | first2 = H. | year = 1989 | title = A cellular automaton describing the formation of spatially ordered structures in chemical systems | journal = Physica D | volume = 36 | issue = 3| pages = 209–221 | doi=10.1016/0167-2789(89)90081-x| bibcode = 1989PhyD...36..209G }}</ref> developed by Martin Gerhardt and Heike Schuster of the University of Bielefeld (Germany). This automaton produces wave patterns that resemble those in the Belousov-Zhabotinsky reaction. | |||
===Physics=== | |||
] | |||
Probabilistic cellular automata are used in ] and ] to study phenomena like fluid dynamics and phase transitions. The ] is a prototypical example, in which each cell can be in either of two states called "up" and "down", making an idealized representation of a ]. By adjusting the parameters of the model, the proportion of cells being in the same state can be varied, in ways that help explicate how ]s become demagnetized when heated. Moreover, results from studying the demagnetization phase transition can be transferred to other phase transitions, like the evaporation of a liquid into a gas; this convenient cross-applicability is known as ].<ref>{{cite book|last=Sethna |first=James P. |title=Statistical Mechanics: Entropy, Order Parameters, and Complexity |year=2008 |publisher=] |url=http://pages.physics.cornell.edu/~sethna/StatMech/ |isbn=978-0-198-56677-9 |oclc=845714772}}</ref><ref>{{cite book|first=Mehran |last=Kardar |author-link=Mehran Kardar |title=Statistical Physics of Fields |title-link=Statistical Physics of Particles |year=2007 |publisher=] |isbn=978-0-521-87341-3 |oclc=920137477}}</ref> The phase transition in the ] and other systems in its ] has been of particular interest, as it requires ] to understand in depth.<ref>{{cite journal|first1=Andrea |last1=Cappelli |first2=Jean-Bernard |last2=Zuber |author-link2=Jean-Bernard Zuber |year=2010 |title=A-D-E Classification of Conformal Field Theories |journal=] |volume=5 |number=4 |pages=10314 |arxiv=0911.3242 |doi=10.4249/scholarpedia.10314 |bibcode=2010SchpJ...510314C|s2cid=18207779 |doi-access=free }}</ref> Other cellular automata that have been of significance in physics include ], which simulate fluid flows. | |||
===Computer science, coding, and communication=== | |||
Cellular automaton processors are physical implementations of CA concepts, which can process information computationally. Processing elements are arranged in a regular grid of identical cells. The grid is usually a square tiling, or ], of two or three dimensions; other tilings are possible, but not yet used. Cell states are determined only by interactions with adjacent neighbor cells. No means exists to communicate directly with cells farther away.<ref>{{cite book | author=Muhtaroglu, Ali | title=Cellular Automaton Processor Based Systems for Genetic Sequence Comparison/Database Searching | chapter=4.1 Cellular Automaton Processor (CAP) | pages=62–74 | publisher=Cornell University |date=August 1996}}</ref> One such cellular automaton processor array configuration is the ]. Cell interaction can be via electric charge, magnetism, vibration (] at quantum scales), or any other physically useful means. This can be done in several ways so that no wires are needed between any elements. This is very unlike processors used in most computers today (]) which are divided into sections with elements that can communicate with distant elements over wires. | |||
] was originally suggested as a possible ] for use in ]. Two-dimensional cellular automata can be used for constructing a ].<ref>{{cite journal | first1=M. | last1=Tomassini | first2=M. | last2=Sipper | first3=M. | last3=Perrenoud | title=On the generation of high-quality random numbers by two-dimensional cellular automata | journal=IEEE Transactions on Computers | volume=49 | issue=10 | pages=1146–1151 | year=2000 | doi=10.1109/12.888056| s2cid=10139169 }}</ref> | |||
Cellular automata have been proposed for ]. The ] is the evolution of a finite CA whose inverse is believed to be hard to find. Given the rule, anyone can easily calculate future states, but it appears to be very difficult to calculate previous states. <!-- However, the designer of the rule can create it in such a way as to easily invert it. Therefore, it is apparently a ], and can be used as a public-key cryptosystem. The security of such systems is not currently known. --> Cellular automata have also been applied to design ].<ref>{{cite journal | title=Design of CAECC - cellular automata based error correcting code | first1=D. Roy | last1=Chowdhury | first2=S. | last2=Basu | first3=I. Sen | last3=Gupta | first4=P. Pal | last4=Chaudhuri | journal=] | volume=43 | issue=6 | date=June 1994 | doi=10.1109/12.286310 | pages=759–764}}</ref> | |||
Other problems that can be solved with cellular automata include: | |||
* ] | |||
* ] | |||
===Generative art and music=== | |||
{{see|Generative art}} | |||
Cellular automata have been used in ]<ref>Burraston, Dave, and Ernest Edmonds. "." Digital Creativity 16.3 (2005): 165-185.</ref> and ] composition<ref>Miranda, Eduardo Reck. "." Proceedings of 2001 Workshop on Artificial Life Models for Musical Applications. 2001.</ref> and ] generation in video games.<ref>{{Cite book|chapter-url=https://link.springer.com/chapter/10.1007/978-3-030-14687-0_2|doi = 10.1007/978-3-030-14687-0_2|chapter = Evolving Diverse Cellular Automata Based Level Maps|title = Proceedings of 6th International Conference in Software Engineering for Defence Applications|series = Advances in Intelligent Systems and Computing|year = 2020|last1 = Ashlock|first1 = Daniel|last2 = Kreitzer|first2 = Matthew|volume = 925|pages = 10–23|isbn = 978-3-030-14686-3| s2cid=85562837 }}</ref> | |||
===Maze generation=== | |||
{{excerpt|Maze generation algorithm|Cellular automaton algorithms}} | |||
==Specific rules== | |||
Specific cellular automata rules include: | |||
{{cols}} | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
* ] | * ] | ||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
{{colend}} | |||
==See also== | |||
{{cols|colwidth=26em}} | |||
* {{annotated link|Agent-based model}} | |||
* {{annotated link|Automata theory}} | |||
* {{annotated link|Cyclic cellular automaton}} | |||
* {{annotated link|Discrete calculus}} | |||
* {{annotated link|Excitable medium}} | |||
* {{annotated link|Golly (program)|Golly}} | |||
* {{annotated link|Iterative Stencil Loops}} | |||
* {{annotated link|Lattice model (physics)|Lattice model}} | |||
* {{annotated link|Movable cellular automaton}} | |||
* {{annotated link|Quantum cellular automaton}} | |||
* {{annotated link|Spatial decision support system}} | |||
* {{annotated link|Unconventional computing}} | |||
{{colend}} | |||
==References== | |||
===Citations=== | |||
{{Reflist|30em}} | |||
===Works cited=== | |||
{{Refbegin|30em}} | |||
*{{cite book | title=Game of Life Cellular Automata|editor-first=Andrew | editor-last=Adamatzky | editor-link=Andrew Adamatzky | publisher=Springer | year=2010 | isbn=978-1-84996-216-2 }} | |||
*{{cite book | first1=Iwo | last1=Bialynicki-Birula | first2=Iwona | last2=Bialynicka-Birula | title=Modeling Reality: How Computers Mirror Life | year=2004 | publisher=] | isbn=978-0-19-853100-5| ref=bialynick}} | |||
*{{cite book | first1=Bastien | last1=Chopard | first2=Michel | last2=Droz | title=Cellular Automata Modeling of Physical Systems | year=2005 | publisher=] | isbn=978-0-521-46168-9 | ref=chopard-droz}} | |||
* {{Harvc|last=Eppstein|first=David|year=2010|contribution=Growth and decay in life-like cellular autometa|in= Adamatzky}} | |||
*{{cite book | editor=Gutowitz, Howard | title=Cellular Automata: Theory and Experiment | year=1991 | publisher=] | isbn=978-0-262-57086-2 | ref=gutowitz}} | |||
*{{cite book | author=Ilachinski, Andrew | title=Cellular Automata: A Discrete Universe | year=2001 | publisher=] | isbn=978-981-238-183-5 | ref=ilachinski}} | |||
*{{cite book | first1=Lemont B. | last1=Kier | first2=Paul G. | last2=Seybold | first3=Chao-Kun | last3=Cheng | title=Modeling Chemical Systems using Cellular Automata | year=2005 | publisher=Springer | isbn=978-1-4020-3657-6 | ref=kier-seybold-cheng}} | |||
* {{cite book | last=von Neumann |first=John |editor-last=Burks |editor-first=Arthur W. | title=Theory of Self-Reproducing Automata | url=https://archive.org/details/theoryofselfrepr00vonn_0 |url-access=registration | year=1966 | publisher=] |place=Urbana}} | |||
* {{Harvc|last=Wainwright|first=Robert|year=2010|contribution=Conway's game of life: early personal recollections|in= Adamatzky}} | |||
*{{cite book | author=Wolfram, Stephen | author-link=Stephen Wolfram | title=A New Kind of Science | year=2002 | publisher=] | isbn=978-1-57955-008-0 | ref=wolfram | url=https://archive.org/details/newkindofscience00wolf }} | |||
{{refend}} | |||
==Further reading== | |||
{{refbegin|30em}} | |||
*{{cite SEP |url-id=cellular-automata |title=Cellular Automata |first=Francesco |last=Berto |first2=Jacopo |last2=Tagliabue |ref=none}} | |||
*{{cite book |chapter=The Evolutionary Design of Collective Computation in Cellular Automata |first1=James P. |last1=Crutchfeld |first2=Melanie |last2=Mitchell |first3=Rajarshi |last3=Das |editor1-first=J. P. |editor1-last=Crutchfield |editor2-first=P. K. |editor2-last=Schuster |title=Evolutionary Dynamics: Exploring the Interplay of Selection, Neutrality, Accident, and Function |place=New York |publisher=Oxford University Press |year=2002 |ref=none}} | |||
*{{cite journal |last1=Kroc |first1=Jiří |last2=Jiménez-Morales |first2=Francisco |last3=Guisado |first3=José Luis |last4=Lemos |first4=María Carmen |last5=Tkáč |first5=Jakub |title=Building Efficient Computational Cellular Automata Models of Complex Systems: Background, Applications, Results, Software, and Pathologies |date=December 2019 |url=https://www.researchgate.net/publication/338019707 |journal=Advances in Complex Systems |volume=22 |issue=5 |pages=1950013 (38 pages) |doi=10.1142/S0219525919500139 |s2cid=212988726 |ref=none}} | |||
*{{cite conference |title=Evolving Cellular Automata with Genetic Algorithms: A Review of Recent Work |first1=Melanie |last1=Mitchell |first2=James P. |last2=Crutchfeld |first3=Rajarshi |last3=Das |conference=Proceedings of the First International Conference on Evolutionary Computation and Its Applications (EvCA'96) |place=Moscow, Russia |publisher=Russian Academy of Sciences |year=1996 |ref=none}} | |||
*{{cite journal |first=A. M. |last=Turing |year=1952 |title=The Chemical Basis of Morphogenesis |journal= Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences|volume=B237 |issue=641 |pages=37–72 |doi=10.1098/rstb.1952.0012 |bibcode=1952RSPTB.237...37T |ref=none}} Proposes reaction-diffusion, a type of continuous automaton. | |||
{{refend}} | |||
==External links== | |||
{{Commons category|Cellular automata}} | |||
{{Wikibooks|Cellular Automata}} | |||
* – Home to free MCell and MJCell cellular automata explorer software and rule libraries. The software supports a large number of 1D and 2D rules. The site provides both an extensive rules lexicon and many image galleries loaded with examples of rules. MCell is a Windows application, while MJCell is a Java applet. Source code is available. | |||
* supports von Neumann, Nobili, GOL, and a great many other systems of cellular automata. Developed by Tomas Rokicki and Andrew Trevorrow. This is the only simulator currently available that can demonstrate von Neumann type self-replication. | |||
* – An atlas of various types of one-dimensional cellular automata. | |||
* | |||
* from the newsgroup comp.theory.cell-automata | |||
* (includes discussion on triangular grids, and larger neighborhood CAs) | |||
* contains an extensive list of academic and professional reference material. | |||
{{Authority control}} | |||
=== References === | |||
] | |||
* from the newsgroup comp.theory.cell-automata | |||
] | |||
* von Neumann, John, 1966, ''The Theory of Self-reproducing Automata'', A. Burks, ed., Univ. of Illinois Press, Urbana, IL. | |||
] | |||
* Wolfram, Stephen, 1985, '''', CRYPTO'85. | |||
] | |||
* | |||
* | |||
* A.M. Turing. 1952. The Chemical Basis of Morphogenesis. ''Phil. Trans. Royal Society'', vol. B237, pp. 37--72. (proposes reaction-diffusion, a type of continuous automaton). | |||
* Jim Giles. 2002. What kind of science is this? ''Nature'' 417, 216 - 218. (discusses the court order that suppressed publication of the rule 110 proof). |
Latest revision as of 17:24, 19 December 2024
Discrete model studied in computer science
A cellular automaton (pl. cellular automata, abbrev. CA) is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays. Cellular automata have found application in various areas, including physics, theoretical biology and microstructure modeling.
A cellular automaton consists of a regular grid of cells, each in one of a finite number of states, such as on and off (in contrast to a coupled map lattice). The grid can be in any finite number of dimensions. For each cell, a set of cells called its neighborhood is defined relative to the specified cell. An initial state (time t = 0) is selected by assigning a state for each cell. A new generation is created (advancing t by 1), according to some fixed rule (generally, a mathematical function) that determines the new state of each cell in terms of the current state of the cell and the states of the cells in its neighborhood. Typically, the rule for updating the state of cells is the same for each cell and does not change over time, and is applied to the whole grid simultaneously, though exceptions are known, such as the stochastic cellular automaton and asynchronous cellular automaton.
The concept was originally discovered in the 1940s by Stanislaw Ulam and John von Neumann while they were contemporaries at Los Alamos National Laboratory. While studied by some throughout the 1950s and 1960s, it was not until the 1970s and Conway's Game of Life, a two-dimensional cellular automaton, that interest in the subject expanded beyond academia. In the 1980s, Stephen Wolfram engaged in a systematic study of one-dimensional cellular automata, or what he calls elementary cellular automata; his research assistant Matthew Cook showed that one of these rules is Turing-complete.
The primary classifications of cellular automata, as outlined by Wolfram, are numbered one to four. They are, in order, automata in which patterns generally stabilize into homogeneity, automata in which patterns evolve into mostly stable or oscillating structures, automata in which patterns evolve in a seemingly chaotic fashion, and automata in which patterns become extremely complex and may last for a long time, with stable local structures. This last class is thought to be computationally universal, or capable of simulating a Turing machine. Special types of cellular automata are reversible, where only a single configuration leads directly to a subsequent one, and totalistic, in which the future value of individual cells only depends on the total value of a group of neighboring cells. Cellular automata can simulate a variety of real-world systems, including biological and chemical ones.
Overview
The red cells are the Moore neighborhood for the blue cell.The red cells are the von Neumann neighborhood for the blue cell. The range-2 "cross neighborhood" includes the pink cells as well.One way to simulate a two-dimensional cellular automaton is with an infinite sheet of graph paper along with a set of rules for the cells to follow. Each square is called a "cell" and each cell has two possible states, black and white. The neighborhood of a cell is the nearby, usually adjacent, cells. The two most common types of neighborhoods are the von Neumann neighborhood and the Moore neighborhood. The former, named after the founding cellular automaton theorist, consists of the four orthogonally adjacent cells. The latter includes the von Neumann neighborhood as well as the four diagonally adjacent cells. For such a cell and its Moore neighborhood, there are 512 (= 2) possible patterns. For each of the 512 possible patterns, the rule table would state whether the center cell will be black or white on the next time interval. Conway's Game of Life is a popular version of this model. Another common neighborhood type is the extended von Neumann neighborhood, which includes the two closest cells in each orthogonal direction, for a total of eight. The general equation for the total number of automata possible is k, where k is the number of possible states for a cell, and s is the number of neighboring cells (including the cell to be calculated itself) used to determine the cell's next state. Thus, in the two-dimensional system with a Moore neighborhood, the total number of automata possible would be 2, or 1.34×10.
It is usually assumed that every cell in the universe starts in the same state, except for a finite number of cells in other states; the assignment of state values is called a configuration. More generally, it is sometimes assumed that the universe starts out covered with a periodic pattern, and only a finite number of cells violate that pattern. The latter assumption is common in one-dimensional cellular automata.
Cellular automata are often simulated on a finite grid rather than an infinite one. In two dimensions, the universe would be a rectangle instead of an infinite plane. The obvious problem with finite grids is how to handle the cells on the edges. How they are handled will affect the values of all the cells in the grid. One possible method is to allow the values in those cells to remain constant. Another method is to define neighborhoods differently for these cells. One could say that they have fewer neighbors, but then one would also have to define new rules for the cells located on the edges. These cells are usually handled with periodic boundary conditions resulting in a toroidal arrangement: when one goes off the top, one comes in at the corresponding position on the bottom, and when one goes off the left, one comes in on the right. (This essentially simulates an infinite periodic tiling, and in the field of partial differential equations is sometimes referred to as periodic boundary conditions.) This can be visualized as taping the left and right edges of the rectangle to form a tube, then taping the top and bottom edges of the tube to form a torus (doughnut shape). Universes of other dimensions are handled similarly. This solves boundary problems with neighborhoods, but another advantage is that it is easily programmable using modular arithmetic functions. For example, in a 1-dimensional cellular automaton like the examples below, the neighborhood of a cell xi is {xi−1, xi, xi+1}, where t is the time step (vertical), and i is the index (horizontal) in one generation.
History
Stanislaw Ulam, while working at the Los Alamos National Laboratory in the 1940s, studied the growth of crystals, using a simple lattice network as his model. At the same time, John von Neumann, Ulam's colleague at Los Alamos, was working on the problem of self-replicating systems. Von Neumann's initial design was founded upon the notion of one robot building another robot. This design is known as the kinematic model. As he developed this design, von Neumann came to realize the great difficulty of building a self-replicating robot, and of the great cost in providing the robot with a "sea of parts" from which to build its replicant. Neumann wrote a paper entitled "The general and logical theory of automata" for the Hixon Symposium in 1948. Ulam was the one who suggested using a discrete system for creating a reductionist model of self-replication. Nils Aall Barricelli performed many of the earliest explorations of these models of artificial life.
Ulam and von Neumann created a method for calculating liquid motion in the late 1950s. The driving concept of the method was to consider a liquid as a group of discrete units and calculate the motion of each based on its neighbors' behaviors. Thus was born the first system of cellular automata. Like Ulam's lattice network, von Neumann's cellular automata are two-dimensional, with his self-replicator implemented algorithmically. The result was a universal copier and constructor working within a cellular automaton with a small neighborhood (only those cells that touch are neighbors; for von Neumann's cellular automata, only orthogonal cells), and with 29 states per cell. Von Neumann gave an existence proof that a particular pattern would make endless copies of itself within the given cellular universe by designing a 200,000 cell configuration that could do so. This design is known as the tessellation model, and is called a von Neumann universal constructor.
Also in the 1940s, Norbert Wiener and Arturo Rosenblueth developed a model of excitable media with some of the characteristics of a cellular automaton. Their specific motivation was the mathematical description of impulse conduction in cardiac systems. However their model is not a cellular automaton because the medium in which signals propagate is continuous, and wave fronts are curves. A true cellular automaton model of excitable media was developed and studied by J. M. Greenberg and S. P. Hastings in 1978; see Greenberg-Hastings cellular automaton. The original work of Wiener and Rosenblueth contains many insights and continues to be cited in modern research publications on cardiac arrhythmia and excitable systems.
In the 1960s, cellular automata were studied as a particular type of dynamical system and the connection with the mathematical field of symbolic dynamics was established for the first time. In 1969, Gustav A. Hedlund compiled many results following this point of view in what is still considered as a seminal paper for the mathematical study of cellular automata. The most fundamental result is the characterization in the Curtis–Hedlund–Lyndon theorem of the set of global rules of cellular automata as the set of continuous endomorphisms of shift spaces.
In 1969, German computer pioneer Konrad Zuse published his book Calculating Space, proposing that the physical laws of the universe are discrete by nature, and that the entire universe is the output of a deterministic computation on a single cellular automaton; "Zuse's Theory" became the foundation of the field of study called digital physics.
Also in 1969 computer scientist Alvy Ray Smith completed a Stanford PhD dissertation on Cellular Automata Theory, the first mathematical treatment of CA as a general class of computers. Many papers came from this dissertation: He showed the equivalence of neighborhoods of various shapes, how to reduce a Moore to a von Neumann neighborhood or how to reduce any neighborhood to a von Neumann neighborhood. He proved that two-dimensional CA are computation universal, introduced 1-dimensional CA, and showed that they too are computation universal, even with simple neighborhoods. He showed how to subsume the complex von Neumann proof of construction universality (and hence self-reproducing machines) into a consequence of computation universality in a 1-dimensional CA. Intended as the introduction to the German edition of von Neumann's book on CA, he wrote a survey of the field with dozens of references to papers, by many authors in many countries over a decade or so of work, often overlooked by modern CA researchers.
In the 1970s a two-state, two-dimensional cellular automaton named Game of Life became widely known, particularly among the early computing community. Invented by John Conway and popularized by Martin Gardner in a Scientific American article, its rules are as follows:
- Any live cell with fewer than two live neighbours dies, as if caused by underpopulation.
- Any live cell with two or three live neighbours lives on to the next generation.
- Any live cell with more than three live neighbours dies, as if by overpopulation.
- Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.
Despite its simplicity, the system achieves an impressive diversity of behavior, fluctuating between apparent randomness and order. One of the most apparent features of the Game of Life is the frequent occurrence of gliders, arrangements of cells that essentially move themselves across the grid. It is possible to arrange the automaton so that the gliders interact to perform computations, and after much effort it has been shown that the Game of Life can emulate a universal Turing machine. It was viewed as a largely recreational topic, and little follow-up work was done outside of investigating the particularities of the Game of Life and a few related rules in the early 1970s.
Stephen Wolfram independently began working on cellular automata in mid-1981 after considering how complex patterns seemed formed in nature in violation of the second law of thermodynamics. His investigations were initially spurred by a desire to model systems such as the neural networks found in brains. He published his first paper in Reviews of Modern Physics investigating elementary cellular automata (Rule 30 in particular) in June 1983. The unexpected complexity of the behavior of these simple rules led Wolfram to suspect that complexity in nature may be due to similar mechanisms. His investigations, however, led him to realize that cellular automata were poor at modelling neural networks. Additionally, during this period Wolfram formulated the concepts of intrinsic randomness and computational irreducibility, and suggested that rule 110 may be universal—a fact proved later by Wolfram's research assistant Matthew Cook in the 1990s.
Classification
Wolfram, in A New Kind of Science and several papers dating from the mid-1980s, defined four classes into which cellular automata and several other simple computational models can be divided depending on their behavior. While earlier studies in cellular automata tended to try to identify types of patterns for specific rules, Wolfram's classification was the first attempt to classify the rules themselves. In order of complexity the classes are:
- Class 1: Nearly all initial patterns evolve quickly into a stable, homogeneous state. Any randomness in the initial pattern disappears.
- Class 2: Nearly all initial patterns evolve quickly into stable or oscillating structures. Some of the randomness in the initial pattern may filter out, but some remains. Local changes to the initial pattern tend to remain local.
- Class 3: Nearly all initial patterns evolve in a pseudo-random or chaotic manner. Any stable structures that appear are quickly destroyed by the surrounding noise. Local changes to the initial pattern tend to spread indefinitely.
- Class 4: Nearly all initial patterns evolve into structures that interact in complex and interesting ways, with the formation of local structures that are able to survive for long periods of time. Class 2 type stable or oscillating structures may be the eventual outcome, but the number of steps required to reach this state may be very large, even when the initial pattern is relatively simple. Local changes to the initial pattern may spread indefinitely. Wolfram has conjectured that many class 4 cellular automata, if not all, are capable of universal computation. This has been proven for Rule 110 and Conway's Game of Life.
These definitions are qualitative in nature and there is some room for interpretation. According to Wolfram, "...with almost any general classification scheme there are inevitably cases which get assigned to one class by one definition and another class by another definition. And so it is with cellular automata: there are occasionally rules...that show some features of one class and some of another." Wolfram's classification has been empirically matched to a clustering of the compressed lengths of the outputs of cellular automata.
There have been several attempts to classify cellular automata in formally rigorous classes, inspired by Wolfram's classification. For instance, Culik and Yu proposed three well-defined classes (and a fourth one for the automata not matching any of these), which are sometimes called Culik–Yu classes; membership in these proved undecidable. Wolfram's class 2 can be partitioned into two subgroups of stable (fixed-point) and oscillating (periodic) rules.
The idea that there are 4 classes of dynamical system came originally from Nobel-prize winning chemist Ilya Prigogine who identified these 4 classes of thermodynamical systems: (1) systems in thermodynamic equilibrium, (2) spatially/temporally uniform systems, (3) chaotic systems, and (4) complex far-from-equilibrium systems with dissipative structures (see figure 1 in the 1974 paper of Nicolis, Prigogine's student).
Reversible
Main article: Reversible cellular automatonA cellular automaton is reversible if, for every current configuration of the cellular automaton, there is exactly one past configuration (preimage). If one thinks of a cellular automaton as a function mapping configurations to configurations, reversibility implies that this function is bijective. If a cellular automaton is reversible, its time-reversed behavior can also be described as a cellular automaton; this fact is a consequence of the Curtis–Hedlund–Lyndon theorem, a topological characterization of cellular automata. For cellular automata in which not every configuration has a preimage, the configurations without preimages are called Garden of Eden patterns.
For one-dimensional cellular automata there are known algorithms for deciding whether a rule is reversible or irreversible. However, for cellular automata of two or more dimensions reversibility is undecidable; that is, there is no algorithm that takes as input an automaton rule and is guaranteed to determine correctly whether the automaton is reversible. The proof by Jarkko Kari is related to the tiling problem by Wang tiles.
Reversible cellular automata are often used to simulate such physical phenomena as gas and fluid dynamics, since they obey the laws of thermodynamics. Such cellular automata have rules specially constructed to be reversible. Such systems have been studied by Tommaso Toffoli, Norman Margolus and others. Several techniques can be used to explicitly construct reversible cellular automata with known inverses. Two common ones are the second-order cellular automaton and the block cellular automaton, both of which involve modifying the definition of a cellular automaton in some way. Although such automata do not strictly satisfy the definition given above, it can be shown that they can be emulated by conventional cellular automata with sufficiently large neighborhoods and numbers of states, and can therefore be considered a subset of conventional cellular automata. Conversely, it has been shown that every reversible cellular automaton can be emulated by a block cellular automaton.
Totalistic
A special class of cellular automata are totalistic cellular automata. The state of each cell in a totalistic cellular automaton is represented by a number (usually an integer value drawn from a finite set), and the value of a cell at time t depends only on the sum of the values of the cells in its neighborhood (possibly including the cell itself) at time t − 1. If the state of the cell at time t depends on both its own state and the total of its neighbors at time t − 1 then the cellular automaton is properly called outer totalistic. Conway's Game of Life is an example of an outer totalistic cellular automaton with cell values 0 and 1; outer totalistic cellular automata with the same Moore neighborhood structure as Life are sometimes called life-like cellular automata.
Related automata
There are many possible generalizations of the cellular automaton concept.
One way is by using something other than a rectangular (cubic, etc.) grid. For example, if a plane is tiled with regular hexagons, those hexagons could be used as cells. In many cases the resulting cellular automata are equivalent to those with rectangular grids with specially designed neighborhoods and rules. Another variation would be to make the grid itself irregular, such as with Penrose tiles.
Also, rules can be probabilistic rather than deterministic. Such cellular automata are called probabilistic cellular automata. A probabilistic rule gives, for each pattern at time t, the probabilities that the central cell will transition to each possible state at time t + 1. Sometimes a simpler rule is used; for example: "The rule is the Game of Life, but on each time step there is a 0.001% probability that each cell will transition to the opposite color."
The neighborhood or rules could change over time or space. For example, initially the new state of a cell could be determined by the horizontally adjacent cells, but for the next generation the vertical cells would be used.
In cellular automata, the new state of a cell is not affected by the new state of other cells. This could be changed so that, for instance, a 2 by 2 block of cells can be determined by itself and the cells adjacent to itself.
There are continuous automata. These are like totalistic cellular automata, but instead of the rule and states being discrete (e.g. a table, using states {0,1,2}), continuous functions are used, and the states become continuous (usually values in ). The state of a location is a finite number of real numbers. Certain cellular automata can yield diffusion in liquid patterns in this way.
Continuous spatial automata have a continuum of locations. The state of a location is a finite number of real numbers. Time is also continuous, and the state evolves according to differential equations. One important example is reaction–diffusion textures, differential equations proposed by Alan Turing to explain how chemical reactions could create the stripes on zebras and spots on leopards. When these are approximated by cellular automata, they often yield similar patterns. MacLennan considers continuous spatial automata as a model of computation.
There are known examples of continuous spatial automata, which exhibit propagating phenomena analogous to gliders in the Game of Life.
Graph rewriting automata are extensions of cellular automata based on graph rewriting systems.
Elementary cellular automata
Main article: Elementary cellular automatonThe simplest nontrivial cellular automaton would be one-dimensional, with two possible states per cell, and a cell's neighbors defined as the adjacent cells on either side of it. A cell and its two neighbors form a neighborhood of 3 cells, so there are 2 = 8 possible patterns for a neighborhood. A rule consists of deciding, for each pattern, whether the cell will be a 1 or a 0 in the next generation. There are then 2 = 256 possible rules.
These 256 cellular automata are generally referred to by their Wolfram code, a standard naming convention invented by Wolfram that gives each rule a number from 0 to 255. A number of papers have analyzed and compared the distinct cases among the 256 cellular automata (many are trivially isomorphic). The rule 30, rule 90, rule 110, and rule 184 cellular automata are particularly interesting. The images below show the history of rules 30 and 110 when the starting configuration consists of a 1 (at the top of each image) surrounded by 0s. Each row of pixels represents a generation in the history of the automaton, with t=0 being the top row. Each pixel is colored white for 0 and black for 1.
current pattern | 111 | 110 | 101 | 100 | 011 | 010 | 001 | 000 |
---|---|---|---|---|---|---|---|---|
new state for center cell | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
Rule 30 exhibits class 3 behavior, meaning even simple input patterns such as that shown lead to chaotic, seemingly random histories.
current pattern | 111 | 110 | 101 | 100 | 011 | 010 | 001 | 000 |
---|---|---|---|---|---|---|---|---|
new state for center cell | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
Rule 110, like the Game of Life, exhibits what Wolfram calls class 4 behavior, which is neither completely random nor completely repetitive. Localized structures appear and interact in various complicated-looking ways. In the course of the development of A New Kind of Science, as a research assistant to Wolfram in 1994, Matthew Cook proved that some of these structures were rich enough to support universality. This result is interesting because rule 110 is an extremely simple one-dimensional system, and difficult to engineer to perform specific behavior. This result therefore provides significant support for Wolfram's view that class 4 systems are inherently likely to be universal. Cook presented his proof at a Santa Fe Institute conference on Cellular Automata in 1998, but Wolfram blocked the proof from being included in the conference proceedings, as Wolfram did not want the proof announced before the publication of A New Kind of Science. In 2004, Cook's proof was finally published in Wolfram's journal Complex Systems (Vol. 15, No. 1), over ten years after Cook came up with it. Rule 110 has been the basis for some of the smallest universal Turing machines.
Rule space
An elementary cellular automaton rule is specified by 8 bits, and all elementary cellular automaton rules can be considered to sit on the vertices of the 8-dimensional unit hypercube. This unit hypercube is the cellular automaton rule space. For next-nearest-neighbor cellular automata, a rule is specified by 2 = 32 bits, and the cellular automaton rule space is a 32-dimensional unit hypercube. A distance between two rules can be defined by the number of steps required to move from one vertex, which represents the first rule, and another vertex, representing another rule, along the edge of the hypercube. This rule-to-rule distance is also called the Hamming distance.
Cellular automaton rule space allows us to ask the question concerning whether rules with similar dynamical behavior are "close" to each other. Graphically drawing a high dimensional hypercube on the 2-dimensional plane remains a difficult task, and one crude locator of a rule in the hypercube is the number of bit-1 in the 8-bit string for elementary rules (or 32-bit string for the next-nearest-neighbor rules). Drawing the rules in different Wolfram classes in these slices of the rule space show that class 1 rules tend to have lower number of bit-1s, thus located in one region of the space, whereas class 3 rules tend to have higher proportion (50%) of bit-1s.
For larger cellular automaton rule space, it is shown that class 4 rules are located between the class 1 and class 3 rules. This observation is the foundation for the phrase edge of chaos, and is reminiscent of the phase transition in thermodynamics.
Applications
Biology
Further information: Patterns in natureSeveral biological processes occur—or can be simulated—by cellular automata.
Some examples of biological phenomena modeled by cellular automata with a simple state space are:
- Patterns of some seashells, like the ones in the genera Conus and Cymbiola, are generated by natural cellular automata. The pigment cells reside in a narrow band along the shell's lip. Each cell secretes pigments according to the activating and inhibiting activity of its neighbor pigment cells, obeying a natural version of a mathematical rule. The cell band leaves the colored pattern on the shell as it grows slowly. For example, the widespread species Conus textile bears a pattern resembling Wolfram's rule 30 cellular automaton.
- Plants regulate their intake and loss of gases via a cellular automaton mechanism. Each stoma on the leaf acts as a cell.
- Moving wave patterns on the skin of cephalopods can be simulated with a two-state, two-dimensional cellular automata, each state corresponding to either an expanded or retracted chromatophore.
- Threshold automata have been invented to simulate neurons, and complex behaviors such as recognition and learning can be simulated.
- Fibroblasts bear similarities to cellular automata, as each fibroblast only interacts with its neighbors.
Additionally, biological phenomena which require explicit modeling of the agents' velocities (for example, those involved in collective cell migration) may be modeled by cellular automata with a more complex state space and rules, such as biological lattice-gas cellular automata. These include phenomena of great medical importance, such as:
- Characterization of different modes of metastatic invasion.
- The role of heterogeneity in the development of aggressive carcinomas.
- Phenotypic switching during tumor proliferation.
Chemistry
The Belousov–Zhabotinsky reaction is a spatio-temporal chemical oscillator that can be simulated by means of a cellular automaton. In the 1950s A. M. Zhabotinsky (extending the work of B. P. Belousov) discovered that when a thin, homogenous layer of a mixture of malonic acid, acidified bromate, and a ceric salt were mixed together and left undisturbed, fascinating geometric patterns such as concentric circles and spirals propagate across the medium. In the "Computer Recreations" section of the August 1988 issue of Scientific American, A. K. Dewdney discussed a cellular automaton developed by Martin Gerhardt and Heike Schuster of the University of Bielefeld (Germany). This automaton produces wave patterns that resemble those in the Belousov-Zhabotinsky reaction.
Physics
Probabilistic cellular automata are used in statistical and condensed matter physics to study phenomena like fluid dynamics and phase transitions. The Ising model is a prototypical example, in which each cell can be in either of two states called "up" and "down", making an idealized representation of a magnet. By adjusting the parameters of the model, the proportion of cells being in the same state can be varied, in ways that help explicate how ferromagnets become demagnetized when heated. Moreover, results from studying the demagnetization phase transition can be transferred to other phase transitions, like the evaporation of a liquid into a gas; this convenient cross-applicability is known as universality. The phase transition in the two-dimensional Ising model and other systems in its universality class has been of particular interest, as it requires conformal field theory to understand in depth. Other cellular automata that have been of significance in physics include lattice gas automata, which simulate fluid flows.
Computer science, coding, and communication
Cellular automaton processors are physical implementations of CA concepts, which can process information computationally. Processing elements are arranged in a regular grid of identical cells. The grid is usually a square tiling, or tessellation, of two or three dimensions; other tilings are possible, but not yet used. Cell states are determined only by interactions with adjacent neighbor cells. No means exists to communicate directly with cells farther away. One such cellular automaton processor array configuration is the systolic array. Cell interaction can be via electric charge, magnetism, vibration (phonons at quantum scales), or any other physically useful means. This can be done in several ways so that no wires are needed between any elements. This is very unlike processors used in most computers today (von Neumann designs) which are divided into sections with elements that can communicate with distant elements over wires.
Rule 30 was originally suggested as a possible block cipher for use in cryptography. Two-dimensional cellular automata can be used for constructing a pseudorandom number generator.
Cellular automata have been proposed for public-key cryptography. The one-way function is the evolution of a finite CA whose inverse is believed to be hard to find. Given the rule, anyone can easily calculate future states, but it appears to be very difficult to calculate previous states. Cellular automata have also been applied to design error correction codes.
Other problems that can be solved with cellular automata include:
Generative art and music
Further information: Generative artCellular automata have been used in generative music and evolutionary music composition and procedural terrain generation in video games.
Maze generation
This section is an excerpt from Maze generation algorithm § Cellular automaton algorithms.Certain types of cellular automata can be used to generate mazes. Two well-known such cellular automata, Maze and Mazectric, have rulestrings B3/S12345 and B3/S1234. In the former, this means that cells survive from one generation to the next if they have at least one and at most five neighbours. In the latter, this means that cells survive if they have one to four neighbours. If a cell has exactly three neighbours, it is born. It is similar to Conway's Game of Life in that patterns that do not have a living cell adjacent to 1, 4, or 5 other living cells in any generation will behave identically to it. However, for large patterns, it behaves very differently from Life.
For a random starting pattern, these maze-generating cellular automata will evolve into complex mazes with well-defined walls outlining corridors. Mazecetric, which has the rule B3/S1234 has a tendency to generate longer and straighter corridors compared with Maze, with the rule B3/S12345. Since these cellular automaton rules are deterministic, each maze generated is uniquely determined by its random starting pattern. This is a significant drawback since the mazes tend to be relatively predictable.
Like some of the graph-theory based methods described above, these cellular automata typically generate mazes from a single starting pattern; hence it will usually be relatively easy to find the way to the starting cell, but harder to find the way anywhere else.Specific rules
Specific cellular automata rules include:
- Brian's Brain
- Codd's cellular automaton
- CoDi
- Conway's game of life
- Day and Night
- Langton's ant
- Langton's loops
- Lenia
- Nobili cellular automata
- Rule 90
- Rule 184
- Seeds
- Turmite
- Von Neumann cellular automaton
- Wireworld
See also
- Agent-based model – Type of computational models
- Automata theory – Study of abstract machines and automata
- Cyclic cellular automaton
- Discrete calculus – Discrete (i.e., incremental) version of infinitesimal calculus
- Excitable medium – Nonlinear dynamical system
- Golly – Tool for simulating cellular automata
- Iterative Stencil Loops – class of algorithmsPages displaying wikidata descriptions as a fallback
- Lattice model – a physical model that is defined on a lattice, as opposed to the continuum of space or spacetimePages displaying wikidata descriptions as a fallback
- Movable cellular automaton – Method in computational solid mechanics based on the discrete concept
- Quantum cellular automaton – Abstract model of quantum computation
- Spatial decision support system – Computerised aid to land use decisions
- Unconventional computing – Computing by new or unusual methods
References
Citations
- Daniel Dennett (1995), Darwin's Dangerous Idea, Penguin Books, London, ISBN 978-0-14-016734-4, ISBN 0-14-016734-X
- ^ Wolfram, Stephen (1983). "Statistical Mechanics of Cellular Automata". Reviews of Modern Physics. 55 (3): 601–644. Bibcode:1983RvMP...55..601W. doi:10.1103/RevModPhys.55.601. Archived from the original on 21 September 2013. Retrieved 28 February 2011.
- Toffoli, Tommaso; Margolus, Norman (1987). Cellular Automata Machines: A New Environment for Modeling. MIT Press. p. 27. ISBN 9780262200608.
- Schiff, Joel L. (2011). Cellular Automata: A Discrete View of the World. Wiley & Sons, Inc. p. 40. ISBN 9781118030639.
- ^ Kier, Seybold, Cheng 2005, p. 15
- ^ Bialynicki-Birula, Bialynicka-Birula 2004, p. 9
- Schiff 2011, p. 41
- Pickover, Clifford A. (2009). The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics. Sterling Publishing Company, Inc. p. 406. ISBN 978-1402757969.
- ^ Schiff 2011, p. 1
- John von Neumann, "The general and logical theory of automata," in L.A. Jeffress, ed., Cerebral Mechanisms in Behavior – The Hixon Symposium, John Wiley & Sons, New York, 1951, pp. 1–31.
- Kemeny, John G. (1955). "Man viewed as a machine". Sci. Am. 192 (4): 58–67. Bibcode:1955SciAm.192d..58K. doi:10.1038/scientificamerican0455-58.; Sci. Am. 1955; 192:6 (errata).
- Schiff 2011, p. 3
- Ilachinski 2001, p. xxix
- Bialynicki-Birula, Bialynicka-Birula 2004, p. 8
- ^ Wolfram 2002, p. 876
- von Neumann 1966
- ^ Wiener, N.; Rosenblueth, A. (1946). "The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle". Arch. Inst. Cardiol. México. 16 (3): 205–65. PMID 20245817.
- Letichevskii, A. A.; Reshodko, L. V. (1974). "N. Wiener's theory of the activity of excitable media". Cybernetics. 8 (5): 856–864. doi:10.1007/bf01068458. S2CID 121306408.
- Davidenko, J. M.; Pertsov, A. V.; Salomonsz, R.; Baxter, W.; Jalife, J. (1992). "Stationary and drifting spiral waves of excitation in isolated cardiac muscle". Nature. 355 (6358): 349–351. Bibcode:1992Natur.355..349D. doi:10.1038/355349a0. PMID 1731248. S2CID 4348759.
- Hedlund, G. A. (1969). "Endomorphisms and automorphisms of the shift dynamical system". Math. Systems Theory. 3 (4): 320–3751. doi:10.1007/BF01691062. S2CID 21803927.
- Schiff 2011, p. 182
- Smith, Alvy Ray. "Cellular Automata Complexity Trade-Offs" (PDF).
- Smith, Alvy Ray. "Simple Computation-Universal Cellular Spaces" (PDF).
- Smith, Alvy Ray. "Simple Nontrivial Self-Reproducing Machines" (PDF).
- Smith, Alvy Ray. "Introduction to and Survey of Cellular Automata or Polyautomata Theory" (PDF).
- Gardner, Martin (1970). "Mathematical Games: The fantastic combinations of John Conway's new solitaire game "life"". Scientific American. 223 (4): 120–123. doi:10.1038/scientificamerican1070-120.
- Paul Chapman. Life universal computer. http://www.igblan.free-online.co.uk/igblan/ca/ Archived 6 September 2009 at the Wayback Machine November 2002
- Wainwright 2010, p. 16
- ^ Wolfram 2002, p. 880
- Wolfram 2002, p. 881
- Mitchell, Melanie (4 October 2002). "Is the Universe a Universal Computer?". Science. 298 (5591): 65–68. doi:10.1126/science.1075073. S2CID 122484855.
- ^ Ilachinsky 2001, p. 12
- Ilachinsky 2001, p. 13
- Wolfram 2002, p. 231
- Zenil, Hector (2010). "Compression-based investigation of the dynamical properties of cellular automata and other systems" (PDF). Complex Systems. 19 (1): 1–28. arXiv:0910.4042. doi:10.25088/ComplexSystems.19.1.1. S2CID 15364755.
- G. Cattaneo; E. Formenti; L. Margara (1998). "Topological chaos and CA". In M. Delorme; J. Mazoyer (eds.). Cellular automata: a parallel model. Springer. p. 239. ISBN 978-0-7923-5493-2.
- Burton H. Voorhees (1996). Computational analysis of one-dimensional cellular automata. World Scientific. p. 8. ISBN 978-981-02-2221-5.
- Max Garzon (1995). Models of massive parallelism: analysis of cellular automata and neural networks. Springer. p. 149. ISBN 978-3-540-56149-1.
- ^ Li, Wentian; Packard, Norman (1990). "The structure of the elementary cellular automata rule space" (PDF). Complex Systems. 4: 281–297. Retrieved 25 January 2013.
- Nicolis (1974). "Dissipative Structures, Catastrophes, and Pattern Formation: A Bifurcation Analysis" (PDF). PNAS. 71 (7): 2748–2751. Bibcode:1974PNAS...71.2748N. doi:10.1073/pnas.71.7.2748. PMC 388547. PMID 16592170. Retrieved 25 March 2017.
- ^ Kari, Jarrko 1991, p. 379
- Richardson, D. (1972). "Tessellations with local transformations". J. Comput. Syst. Sci. 6 (5): 373–388. doi:10.1016/S0022-0000(72)80009-6.
- Margenstern, Maurice (2007). Cellular Automata in Hyperbolic Spaces – Tome I, Volume 1. Archives contemporaines. p. 134. ISBN 978-2-84703-033-4.
- Schiff 2011, p. 103
- Amoroso, Serafino; Patt, Yale N. (1972). "Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures". J. Comput. Syst. Sci. 6 (5): 448–464. doi:10.1016/s0022-0000(72)80013-8.
- Sutner, Klaus (1991). "De Bruijn Graphs and Linear Cellular Automata" (PDF). Complex Systems. 5: 19–30.
- Kari, Jarkko (1990). "Reversibility of 2D cellular automata is undecidable". Physica D. 45 (1–3): 379–385. Bibcode:1990PhyD...45..379K. doi:10.1016/0167-2789(90)90195-U.
- Kari, Jarkko (1999). "On the circuit depth of structurally reversible cellular automata". Fundamenta Informaticae. 38: 93–107. doi:10.3233/FI-1999-381208.
- Durand-Lose, Jérôme (2001). "Representing reversible cellular automata with reversible block cellular automata". Discrete Mathematics and Theoretical Computer Science. AA: 145–154. Archived from the original on 15 May 2011.
- Wolfram 2002, p. 60
- ^ Ilachinski, Andrew (2001). Cellular automata: a discrete universe. World Scientific. pp. 44–45. ISBN 978-981-238-183-5.
- The phrase "life-like cellular automaton" dates back at least to Barral, Chaté & Manneville (1992), who used it in a broader sense to refer to outer totalistic automata, not necessarily of two dimensions. The more specific meaning given here was used e.g. in several chapters of Adamatzky (2010). See: Barral, Bernard; Chaté, Hugues; Manneville, Paul (1992). "Collective behaviors in a family of high-dimensional cellular automata". Physics Letters A. 163 (4): 279–285. Bibcode:1992PhLA..163..279B. doi:10.1016/0375-9601(92)91013-H.
- Eppstein 2010, pp. 72–73
- Jacob Aron. "First gliders navigate ever-changing Penrose universe". New Scientist.
- Murray, J. D. (2003). Mathematical biology (3rd ed.). New York: Springer. ISBN 0-387-95228-4.
- Pivato, M: "RealLife: The continuum limit of Larger than Life cellular automata", Theoretical Computer Science, 372 (1), March 2007, pp. 46–68
- Tomita, Kohji; Kurokawa, Haruhisa; Murata, Satoshi (2009). "Graph-Rewriting Automata as a Natural Extension of Cellular Automata". Adaptive Networks. Understanding Complex Systems. pp. 291–309. doi:10.1007/978-3-642-01284-6_14. ISBN 978-3-642-01283-9.
- Giles, Jim (2002). "What Kind of Science is This?". Nature. 417 (6886): 216–218. Bibcode:2002Natur.417..216G. doi:10.1038/417216a. PMID 12015565. S2CID 10636328.
- Weinberg, Steven (24 October 2002). "Is the Universe a Computer?". The New York Review of Books. 49 (16). Retrieved 12 October 2012.
- Wentian Li; Norman Packard; Chris G Langton (1990). "Transition phenomena in cellular automata rule space". Physica D. 45 (1–3): 77–94. Bibcode:1990PhyD...45...77L. CiteSeerX 10.1.1.15.2786. doi:10.1016/0167-2789(90)90175-O.
- ^ Coombs, Stephen (15 February 2009), The Geometry and Pigmentation of Seashells (PDF), pp. 3–4, archived from the original (PDF) on 7 January 2013, retrieved 2 September 2012
- Peak, West; Messinger, Mott (2004). "Evidence for complex, collective dynamics and emergent, distributed computation in plants". Proceedings of the National Academy of Sciences. 101 (4): 918–922. Bibcode:2004PNAS..101..918P. doi:10.1073/pnas.0307811100. PMC 327117. PMID 14732685.
- "Archived copy" (PDF). Archived from the original (PDF) on 25 July 2010. Retrieved 14 September 2008.
{{cite web}}
: CS1 maint: archived copy as title (link) - Ilachinsky 2001, p. 275
- Yves Bouligand (1986). "Fibroblasts, Morphogenesis and Cellular Automata". Disordered Systems and Biological Organization. pp. 374–375.
- Ilina, Olga; Gritsenko, Pavlo G.; Syga, Simon; Lippoldt, Jürgen; La Porta, Caterina A. M.; Chepizhko, Oleksandr; Grosser, Steffen; Vullings, Manon; Bakker, Gert-Jan; Starruß, Jörn; Bult, Peter (September 2020). "Cell–cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion". Nature Cell Biology. 22 (9): 1103–1115. doi:10.1038/s41556-020-0552-6. ISSN 1465-7392. PMC 7502685. PMID 32839548.
- Reher, David; Klink, Barbara; Deutsch, Andreas; Voss-Böhme, Anja (11 August 2017). "Cell adhesion heterogeneity reinforces tumour cell dissemination: novel insights from a mathematical model". Biology Direct. 12 (1): 18. doi:10.1186/s13062-017-0188-z. ISSN 1745-6150. PMC 5553611. PMID 28800767.
- Hatzikirou, H.; Basanta, D.; Simon, M.; Schaller, K.; Deutsch, A. (1 March 2012). "'Go or Grow': the key to the emergence of invasion in tumour progression?". Mathematical Medicine and Biology. 29 (1): 49–65. doi:10.1093/imammb/dqq011. ISSN 1477-8599. PMID 20610469.
- A. K. Dewdney, The hodgepodge machine makes waves, Scientific American, p. 104, August 1988.
- Gerhardt, M.; Schuster, H. (1989). "A cellular automaton describing the formation of spatially ordered structures in chemical systems". Physica D. 36 (3): 209–221. Bibcode:1989PhyD...36..209G. doi:10.1016/0167-2789(89)90081-x.
- Sethna, James P. (2008). Statistical Mechanics: Entropy, Order Parameters, and Complexity. Oxford University Press. ISBN 978-0-198-56677-9. OCLC 845714772.
- Kardar, Mehran (2007). Statistical Physics of Fields. Cambridge University Press. ISBN 978-0-521-87341-3. OCLC 920137477.
- Cappelli, Andrea; Zuber, Jean-Bernard (2010). "A-D-E Classification of Conformal Field Theories". Scholarpedia. 5 (4): 10314. arXiv:0911.3242. Bibcode:2010SchpJ...510314C. doi:10.4249/scholarpedia.10314. S2CID 18207779.
- Muhtaroglu, Ali (August 1996). "4.1 Cellular Automaton Processor (CAP)". Cellular Automaton Processor Based Systems for Genetic Sequence Comparison/Database Searching. Cornell University. pp. 62–74.
- Tomassini, M.; Sipper, M.; Perrenoud, M. (2000). "On the generation of high-quality random numbers by two-dimensional cellular automata". IEEE Transactions on Computers. 49 (10): 1146–1151. doi:10.1109/12.888056. S2CID 10139169.
- Chowdhury, D. Roy; Basu, S.; Gupta, I. Sen; Chaudhuri, P. Pal (June 1994). "Design of CAECC - cellular automata based error correcting code". IEEE Transactions on Computers. 43 (6): 759–764. doi:10.1109/12.286310.
- Burraston, Dave, and Ernest Edmonds. "Cellular automata in generative electronic music and sonic art: a historical and technical review." Digital Creativity 16.3 (2005): 165-185.
- Miranda, Eduardo Reck. "Evolving cellular automata music: From sound synthesis to composition." Proceedings of 2001 Workshop on Artificial Life Models for Musical Applications. 2001.
- Ashlock, Daniel; Kreitzer, Matthew (2020). "Evolving Diverse Cellular Automata Based Level Maps". Proceedings of 6th International Conference in Software Engineering for Defence Applications. Advances in Intelligent Systems and Computing. Vol. 925. pp. 10–23. doi:10.1007/978-3-030-14687-0_2. ISBN 978-3-030-14686-3. S2CID 85562837.
- ^ Nathaniel Johnston; et al. (21 August 2010). "Maze - LifeWiki". LifeWiki. Retrieved 1 March 2011.
Works cited
- Adamatzky, Andrew, ed. (2010). Game of Life Cellular Automata. Springer. ISBN 978-1-84996-216-2.
- Bialynicki-Birula, Iwo; Bialynicka-Birula, Iwona (2004). Modeling Reality: How Computers Mirror Life. Oxford University Press. ISBN 978-0-19-853100-5.
- Chopard, Bastien; Droz, Michel (2005). Cellular Automata Modeling of Physical Systems. Cambridge University Press. ISBN 978-0-521-46168-9.
- Eppstein, David. "Growth and decay in life-like cellular autometa". In Adamatzky (2010).
- Gutowitz, Howard, ed. (1991). Cellular Automata: Theory and Experiment. MIT Press. ISBN 978-0-262-57086-2.
- Ilachinski, Andrew (2001). Cellular Automata: A Discrete Universe. World Scientific. ISBN 978-981-238-183-5.
- Kier, Lemont B.; Seybold, Paul G.; Cheng, Chao-Kun (2005). Modeling Chemical Systems using Cellular Automata. Springer. ISBN 978-1-4020-3657-6.
- von Neumann, John (1966). Burks, Arthur W. (ed.). Theory of Self-Reproducing Automata. Urbana: University of Illinois Press.
- Wainwright, Robert. "Conway's game of life: early personal recollections". In Adamatzky (2010).
- Wolfram, Stephen (2002). A New Kind of Science. Wolfram Media. ISBN 978-1-57955-008-0.
Further reading
- Berto, Francesco; Tagliabue, Jacopo. "Cellular Automata". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy.
- Crutchfeld, James P.; Mitchell, Melanie; Das, Rajarshi (2002). "The Evolutionary Design of Collective Computation in Cellular Automata". In Crutchfield, J. P.; Schuster, P. K. (eds.). Evolutionary Dynamics: Exploring the Interplay of Selection, Neutrality, Accident, and Function. New York: Oxford University Press.
- Kroc, Jiří; Jiménez-Morales, Francisco; Guisado, José Luis; Lemos, María Carmen; Tkáč, Jakub (December 2019). "Building Efficient Computational Cellular Automata Models of Complex Systems: Background, Applications, Results, Software, and Pathologies". Advances in Complex Systems. 22 (5): 1950013 (38 pages). doi:10.1142/S0219525919500139. S2CID 212988726.
- Mitchell, Melanie; Crutchfeld, James P.; Das, Rajarshi (1996). Evolving Cellular Automata with Genetic Algorithms: A Review of Recent Work. Proceedings of the First International Conference on Evolutionary Computation and Its Applications (EvCA'96). Moscow, Russia: Russian Academy of Sciences.
- Turing, A. M. (1952). "The Chemical Basis of Morphogenesis". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. B237 (641): 37–72. Bibcode:1952RSPTB.237...37T. doi:10.1098/rstb.1952.0012. Proposes reaction-diffusion, a type of continuous automaton.
External links
- Mirek's Cellebration – Home to free MCell and MJCell cellular automata explorer software and rule libraries. The software supports a large number of 1D and 2D rules. The site provides both an extensive rules lexicon and many image galleries loaded with examples of rules. MCell is a Windows application, while MJCell is a Java applet. Source code is available.
- Golly supports von Neumann, Nobili, GOL, and a great many other systems of cellular automata. Developed by Tomas Rokicki and Andrew Trevorrow. This is the only simulator currently available that can demonstrate von Neumann type self-replication.
- Wolfram Atlas – An atlas of various types of one-dimensional cellular automata.
- Conway Life
- Cellular automaton FAQ from the newsgroup comp.theory.cell-automata
- "Neighbourhood Survey" (includes discussion on triangular grids, and larger neighborhood CAs)
- Cosma Shalizi's Cellular Automata Notebook contains an extensive list of academic and professional reference material.