Revision as of 03:32, 20 September 2021 edit2601:3c1:4100:36f0:c983:f7bb:1e32:c0e5 (talk) TyposTags: Reverted references removed Mobile edit Mobile web edit← Previous edit | Latest revision as of 19:46, 30 November 2024 edit undoKomonzia (talk | contribs)Extended confirmed users971 edits →External links: {{Wikifunctions|Z10136}} | ||
(30 intermediate revisions by 17 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Cryptographic hash function}} | |||
{{Infobox cryptographic hash function | {{Infobox cryptographic hash function | ||
| name = MD4 | | name = MD4 | ||
Line 5: | Line 6: | ||
<!-- General --> | <!-- General --> | ||
| designers = ] | | designers = ] | ||
| publish date = October 1990<ref>{{cite web|url=http://tools.ietf.org/html/rfc1186 |title=The MD4 Message Digest Algorithm |publisher=Network Working Group |date=October 1990 |access-date=2011-04-29}}</ref> | | publish date = October 1990<ref>{{cite web|url=http://tools.ietf.org/html/rfc1186 |title=The MD4 Message Digest Algorithm |publisher=Network Working Group |date=October 1990 |access-date=2011-04-29 |last1=Rivest |first1=Ronald L. }}</ref> | ||
| series = ], MD4, ], ] | | series = ], MD4, ], ] | ||
| derived from = | | derived from = | ||
Line 17: | Line 18: | ||
| rounds = 3 | | rounds = 3 | ||
| cryptanalysis = | | cryptanalysis = | ||
A collision attack published in 2007 can find collisions | A collision attack published in 2007 can find collisions for full MD4 in less than two hash operations.<ref name=sasaki-2007 /> | ||
}} | |||
The '''MD4 Message-Digest Algorithm''' is a ] developed by ] in 1990.<ref name="drt">{{cite web |url=http://www.rsa.com/rsalabs/node.asp?id=2253 |title=What are MD2, MD4, and MD5? |access-date=2011-04-29 |publisher=RSA Laboratories |work=Public-Key Cryptography Standards (PKCS): PKCS #7: Cryptographic Message Syntax Standard: 3.6 Other Cryptographic Techniques: 3.6.6 What are MD2, MD4, and MD5? |url-status=dead |archive-url=https://web.archive.org/web/20110901034903/http://www.rsa.com/rsalabs/node.asp?id=2253 |archive-date=2011-09-01 }}</ref> The digest length is 128 bits. The algorithm has influenced later designs, such as the ], ] and ] algorithms. The initialism "MD" stands for "Message Digest". | |||
] | |||
The security of MD4 has been severely compromised. The first full ] against MD4 was published in 1995, and several newer attacks have been published since then. As of 2007, an attack can generate collisions in less than two MD4 hash operations.<ref name=sasaki-2007>{{cite journal |author=Yu Sasaki|year=2007 |title=New message difference for MD4 |url=https://www.iacr.org/archive/fse2007/45930331/45930331.pdf|display-authors=etal}}</ref> A theoretical ] also exists. | |||
A variant of MD4 is used in the ] to provide a unique identifier for a file in the popular eDonkey2000 / eMule P2P networks. MD4 was also used by the ] protocol (prior to version 3.0.0). | |||
MD4 is used to compute ] password-derived key digests on Microsoft Windows NT, XP, Vista, 7, 8, 10 and 11.<ref name="ntlm">{{cite web |url=http://msdn.microsoft.com/en-us/library/cc236715(v=PROT.10).aspx |title=5.1 Security Considerations for Implementors |access-date=2011-07-21 |quote=Deriving a key from a password is as specified in and .}}</ref> | |||
==Security== | ==Security== | ||
Weaknesses in MD4 were demonstrated by Den Boer and Bosselaers in a paper published in 1991.<ref>{{cite journal |author=Bert den Boer, Antoon Bosselaers |year=1991 |title=An Attack on the Last Two Rounds of MD4 |url=http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/C91/194.PDF |url-status=dead |archive-url=https://web.archive.org/web/20030523231212/http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/C91/194.PDF |archive-date=2003-05-23 }}</ref> The first full-round MD4 ] was found by ] in 1995, which took only seconds to carry out at that time.<ref>{{cite journal |author=Hans Dobbertin |date=1995-10-23 |title=Cryptanalysis of MD4 |journal=Journal of Cryptology |volume=11 |issue=4 |pages=253–271 |doi=10.1007/s001459900047 |s2cid=7462235 }}</ref> In August 2004, ] et al. found a very efficient collision attack, alongside attacks on later hash function designs in the MD4/MD5/SHA-1/RIPEMD family. This result was improved later by Sasaki et al., and generating a collision is now as cheap as verifying it (a few microseconds).<ref name=sasaki-2007 /> | Weaknesses in MD4 were demonstrated by Den Boer and Bosselaers in a paper published in 1991.<ref>{{cite journal |author=Bert den Boer, Antoon Bosselaers |year=1991 |title=An Attack on the Last Two Rounds of MD4 |url=http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/C91/194.PDF |url-status=dead |archive-url=https://web.archive.org/web/20030523231212/http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/C91/194.PDF |archive-date=2003-05-23 }}</ref> The first full-round MD4 ] was found by ] in 1995, which took only seconds to carry out at that time.<ref>{{cite journal |author=Hans Dobbertin |date=1995-10-23 |title=Cryptanalysis of MD4 |journal=Journal of Cryptology |volume=11 |issue=4 |pages=253–271 |doi=10.1007/s001459900047 |s2cid=7462235 |doi-access=free }}</ref> In August 2004, ] et al. found a very efficient collision attack, alongside attacks on later hash function designs in the MD4/MD5/SHA-1/RIPEMD family. This result was improved later by Sasaki et al., and generating a collision is now as cheap as verifying it (a few microseconds).<ref name=sasaki-2007 /> | ||
In 2008, the ] of MD4 was also broken by Gaëtan Leurent, with a 2<sup>102</sup> attack.<ref>{{cite journal |author=Gaëtan Leurent |date=2008-02-10 |title=MD4 is Not One-Way |publisher=FSE 2008 |url=https://www.di.ens.fr/~leurent/files/MD4_FSE08.pdf }}</ref> In 2010 Guo et al published a 2<sup>99.7</sup> attack.<ref>https://www.academia.edu/20987202 |
In 2008, the ] of MD4 was also broken by Gaëtan Leurent, with a 2<sup>102</sup> attack.<ref>{{cite journal |author=Gaëtan Leurent |date=2008-02-10 |title=MD4 is Not One-Way |publisher=FSE 2008 |url=https://www.di.ens.fr/~leurent/files/MD4_FSE08.pdf }}</ref> In 2010 Guo et al published a 2<sup>99.7</sup> attack.<ref>{{Cite book|chapter-url=https://www.academia.edu/20987202|pages=56–75|last1=Guo|first1=Jian|last2=Ling|first2=San|last3=Rechberger|first3=Christian|last4=Wang|first4=Huaxiong|title=Advances in Cryptology - ASIACRYPT 2010 |chapter=Advanced Meet-in-the-Middle Preimage Attacks: First Results on Full Tiger, and Improved Results on MD4 and SHA-2 |series=Lecture Notes in Computer Science |year=2010 |volume=6477 |doi=10.1007/978-3-642-17373-8_4 |isbn=978-3-642-17372-1 |doi-access=free|hdl=10356/94168|hdl-access=free}}</ref> | ||
In 2011, RFC 6150 stated that RFC 1320 (MD4) is '''historic''' (obsolete). | In 2011, RFC 6150 stated that RFC 1320 (MD4) is '''historic''' (obsolete). | ||
Line 57: | Line 69: | ||
k2 = 839c7a4d7a92cb{{red|d}}678a5d5{{red|2}}9eea5a7573c8a74deb366c3dc20a083b69f5d2a3bb3719dc69891e9f95e809fd7e8b23ba6318ed{{red|c}}45e51fe39708bf9427e9c3e8b9 | k2 = 839c7a4d7a92cb{{red|d}}678a5d5{{red|2}}9eea5a7573c8a74deb366c3dc20a083b69f5d2a3bb3719dc69891e9f95e809fd7e8b23ba6318ed{{red|c}}45e51fe39708bf9427e9c3e8b9 | ||
MD4(k1) = MD4(k2) = 4d7e6a1defa93d2dde05b45d864c429b | |||
Note that two hex-digits of k1 and k2 define one byte of the input string, whose length is 64 bytes . | Note that two hex-digits of k1 and k2 define one byte of the input string, whose length is 64 bytes . | ||
Line 78: | Line 90: | ||
==External links== | ==External links== | ||
{{Wikifunctions|Z10136}} | |||
* {{IETF RFC|1320|link=no}} - Description of MD4 by Ron Rivest | * {{IETF RFC|1320|link=no}} - Description of MD4 by Ron Rivest | ||
* {{IETF RFC|6150|link=no}} - MD4 to Historic Status | * {{IETF RFC|6150|link=no}} - MD4 to Historic Status | ||
* {{cite book |doi=10.1007/3-540-38424-3_22 |chapter=The MD4 Message Digest Algorithm |publisher=Springer Berlin / Heidelberg |
* {{cite book |doi=10.1007/3-540-38424-3_22 |chapter=The MD4 Message Digest Algorithm |publisher=Springer Berlin / Heidelberg |volume=537 |pages=303–311 |author=Rivest, Ronald |title=Advances in Cryptology-CRYPT0' 90 |year=1991|series=Lecture Notes in Computer Science |isbn=978-3-540-54508-8 }} | ||
===Collision attacks=== | ===Collision attacks=== | ||
* | * | ||
* | * | ||
* | |||
{{Cryptography navbox | hash}} | {{Cryptography navbox | hash}} |
Latest revision as of 19:46, 30 November 2024
Cryptographic hash functionGeneral | |
---|---|
Designers | Ronald Rivest |
First published | October 1990 |
Series | MD2, MD4, MD5, MD6 |
Cipher detail | |
Digest sizes | 128 bits |
Block sizes | 512 bits |
Rounds | 3 |
Best public cryptanalysis | |
A collision attack published in 2007 can find collisions for full MD4 in less than two hash operations. |
The MD4 Message-Digest Algorithm is a cryptographic hash function developed by Ronald Rivest in 1990. The digest length is 128 bits. The algorithm has influenced later designs, such as the MD5, SHA-1 and RIPEMD algorithms. The initialism "MD" stands for "Message Digest".
The security of MD4 has been severely compromised. The first full collision attack against MD4 was published in 1995, and several newer attacks have been published since then. As of 2007, an attack can generate collisions in less than two MD4 hash operations. A theoretical preimage attack also exists.
A variant of MD4 is used in the ed2k URI scheme to provide a unique identifier for a file in the popular eDonkey2000 / eMule P2P networks. MD4 was also used by the rsync protocol (prior to version 3.0.0).
MD4 is used to compute NTLM password-derived key digests on Microsoft Windows NT, XP, Vista, 7, 8, 10 and 11.
Security
Weaknesses in MD4 were demonstrated by Den Boer and Bosselaers in a paper published in 1991. The first full-round MD4 collision attack was found by Hans Dobbertin in 1995, which took only seconds to carry out at that time. In August 2004, Wang et al. found a very efficient collision attack, alongside attacks on later hash function designs in the MD4/MD5/SHA-1/RIPEMD family. This result was improved later by Sasaki et al., and generating a collision is now as cheap as verifying it (a few microseconds).
In 2008, the preimage resistance of MD4 was also broken by Gaëtan Leurent, with a 2 attack. In 2010 Guo et al published a 2 attack.
In 2011, RFC 6150 stated that RFC 1320 (MD4) is historic (obsolete).
MD4 hashes
The 128-bit (16-byte) MD4 hashes (also termed message digests) are typically represented as 32-digit hexadecimal numbers. The following demonstrates a 43-byte ASCII input and the corresponding MD4 hash:
MD4("The quick brown fox jumps over the lazy dog") = 1bee69a46ba811185c194762abaeae90
Even a small change in the message will (with overwhelming probability) result in a completely different hash, e.g. changing d
to c
:
MD4("The quick brown fox jumps over the lazy cog") = b86e130ce7028da59e672d56ad0113df
The hash of the zero-length string is:
MD4("") = 31d6cfe0d16ae931b73c59d7e0c089c0
MD4 test vectors
The following test vectors are defined in RFC 1320 (The MD4 Message-Digest Algorithm)
MD4 ("") = 31d6cfe0d16ae931b73c59d7e0c089c0 MD4 ("a") = bde52cb31de33e46245e05fbdbd6fb24 MD4 ("abc") = a448017aaf21d8525fc10ae87aa6729d MD4 ("message digest") = d9130a8164549fe818874806e1c7014b MD4 ("abcdefghijklmnopqrstuvwxyz") = d79e1c308aa5bbcdeea8ed63df412da9 MD4 ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789") = 043f8582f241db351ce627e153e7f0e4 MD4 ("12345678901234567890123456789012345678901234567890123456789012345678901234567890") = e33b4ddc9c38f2199c3e7b164fcc0536
MD4 collision example
Let:
k1 = 839c7a4d7a92cb5678a5d5b9eea5a7573c8a74deb366c3dc20a083b69f5d2a3bb3719dc69891e9f95e809fd7e8b23ba6318edd45e51fe39708bf9427e9c3e8b9 k2 = 839c7a4d7a92cbd678a5d529eea5a7573c8a74deb366c3dc20a083b69f5d2a3bb3719dc69891e9f95e809fd7e8b23ba6318edc45e51fe39708bf9427e9c3e8b9
MD4(k1) = MD4(k2) = 4d7e6a1defa93d2dde05b45d864c429b
Note that two hex-digits of k1 and k2 define one byte of the input string, whose length is 64 bytes .
See also
References
- Bert den Boer, Antoon Bosselaers: An Attack on the Last Two Rounds of MD4. Crypto 1991: 194–203
- Hans Dobbertin: Cryptanalysis of MD4. Fast Software Encryption 1996: 53–69
- Hans Dobbertin, 1998. Cryptanalysis of MD4. J. Cryptology 11(4): 253–271
- Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, Xiuyuan Yu: Cryptanalysis of the Hash Functions MD4 and RIPEMD. Eurocrypt 2005: 1–18
- Yu Sasaki, Lei Wang, Kazuo Ohta, Noboru Kunihiro: New Message Difference for MD4. Fast Software Encryption 2007: 329–348
- Rivest, Ronald L. (October 1990). "The MD4 Message Digest Algorithm". Network Working Group. Retrieved 2011-04-29.
- ^ Yu Sasaki; et al. (2007). "New message difference for MD4" (PDF).
{{cite journal}}
: Cite journal requires|journal=
(help) - "What are MD2, MD4, and MD5?". Public-Key Cryptography Standards (PKCS): PKCS #7: Cryptographic Message Syntax Standard: 3.6 Other Cryptographic Techniques: 3.6.6 What are MD2, MD4, and MD5?. RSA Laboratories. Archived from the original on 2011-09-01. Retrieved 2011-04-29.
- "5.1 Security Considerations for Implementors". Retrieved 2011-07-21.
Deriving a key from a password is as specified in and .
- Bert den Boer, Antoon Bosselaers (1991). "An Attack on the Last Two Rounds of MD4" (PDF). Archived from the original (PDF) on 2003-05-23.
{{cite journal}}
: Cite journal requires|journal=
(help) - Hans Dobbertin (1995-10-23). "Cryptanalysis of MD4". Journal of Cryptology. 11 (4): 253–271. doi:10.1007/s001459900047. S2CID 7462235.
- Gaëtan Leurent (2008-02-10). "MD4 is Not One-Way" (PDF). FSE 2008.
{{cite journal}}
: Cite journal requires|journal=
(help) - Guo, Jian; Ling, San; Rechberger, Christian; Wang, Huaxiong (2010). "Advanced Meet-in-the-Middle Preimage Attacks: First Results on Full Tiger, and Improved Results on MD4 and SHA-2". Advances in Cryptology - ASIACRYPT 2010. Lecture Notes in Computer Science. Vol. 6477. pp. 56–75. doi:10.1007/978-3-642-17373-8_4. hdl:10356/94168. ISBN 978-3-642-17372-1.
External links
- RFC 1320 - Description of MD4 by Ron Rivest
- RFC 6150 - MD4 to Historic Status
- Rivest, Ronald (1991). "The MD4 Message Digest Algorithm". Advances in Cryptology-CRYPT0' 90. Lecture Notes in Computer Science. Vol. 537. Springer Berlin / Heidelberg. pp. 303–311. doi:10.1007/3-540-38424-3_22. ISBN 978-3-540-54508-8.