Misplaced Pages

Serial communication: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 15:06, 19 May 2023 edit2402:3a80:19f5:4a3e::2 (talk) Many serial communication systems were originally designed to transfer data over relatively large distances through some sort of data cable. Practically all long-distance communication transmits data one bit at a time, rather than in parallel, because it reduces the cost of the cable. The cables that carry this data (other than "the" serial cable) and the computer ports they plug into are usually referred to with a more specific name, to reduce confusion. Keyboard and mouse cables and ports...Tags: Reverted Mobile edit Mobile web edit← Previous edit Latest revision as of 07:31, 3 January 2025 edit undo97.102.205.224 (talk) Examples of architectures: S/PDIF is a moderately familiar example. 
(44 intermediate revisions by 16 users not shown)
Line 1: Line 1:
{{short description|Type of data transfer}} {{short description|Type of data transfer}}
{{more citations needed|date=August 2019}}
{{more citations needed|date=August 2019}}In telecommunication and data transmission, serial communication is the process of sending data one bit at a time, sequentially, over a communication channel or computer bus. This is in contrast to parallel communication, where several bits are sent as a whole, on a link with several parallel channels.
{{Use American English|date=May 2024}}


] |isbn=978-0-201-14460-4 |lccn=77-90165 |pages=247–253 |access-date=2022-12-29 |archive-url=https://web.archive.org/web/20160526172151/https://textfiles.meulie.net/bitsaved/Books/Mackenzie_CodedCharSets.pdf |archive-date=May 26, 2016 |url-status=live |df=mdy-all }}</ref> D<sub>0</sub> is received first via serial transmission. All bits are received simultaneously via parallel transmission.]]

Serial and parallel data transmission of 010010112. Standard bit sequence is least significant bit first (D0 to D7 in acending order). D0 is received first via serial transmission. All bits are received simultaneously via parallel transmission.

Standard character structure for asynchronous data communication consisting of 10 elements for a 7-bit ASCII character.
Serial communication is used for all long-haul communication and most computer networks, where the cost of cable and synchronization difficulties make parallel communication impractical. Serial computer buses are becoming more common even at shorter distances, as improved signal integrity and transmission speeds in newer serial technologies have begun to outweigh the parallel bus's advantage of simplicity (no need for serializer and deserializer, or SerDes) and to outstrip its disadvantages (clock skew, interconnect density). The migration from PCI to PCI Express is an example.

] |isbn=978-0-201-14460-4 |lccn=77-90165 |pages=247–253 |access-date=2022-12-29 |archive-url=https://web.archive.org/web/20160526172151/https://textfiles.meulie.net/bitsaved/Books/Mackenzie_CodedCharSets.pdf |archive-date=May 26, 2016 |url-status=live |df=mdy-all }}</ref> D<sub>0</sub> is received first via serial transmission. All bits are received simultaneously via parallel transmission.]]


In ] and ], '''serial communication''' is the process of sending ] one ] at a time, sequentially, over a ] or ]. This is in contrast to ], where several bits are sent as a whole, on a link with several parallel channels. In ] and ], '''serial communication''' is the process of sending ] one ] at a time, sequentially, over a ] or ]. This is in contrast to ], where several bits are sent as a whole, on a link with several parallel channels.


] ]
Serial communication is used for all ] and most ]s, where the cost of ] and ] difficulties make parallel communication impractical. Serial computer buses are becoming more common even at shorter distances, as improved ] and transmission speeds in newer serial technologies have begun to outweigh the parallel bus's advantage of simplicity (no need for serializer and deserializer, or ]) and to outstrip its disadvantages (], interconnect density). The migration from ] to ] is an example. Serial communication is used for all ] and most ]s, where the cost of ] and ] difficulties make parallel communication impractical. Serial computer buses have become more common even at shorter distances, as improved ] and transmission speeds in newer serial technologies have begun to outweigh the parallel bus's advantage of simplicity (no need for serializer and deserializer, or ]) and to outstrip its disadvantages (], interconnect density). The migration from ] to ] (PCIe) is an example.


Modern high speed serial interfaces such as PCIe<ref>{{cite web |url=https://www.theregister.com/2022/01/12/final_pcie_60_specs_released/ |title=Final PCIe 6.0 specs unleashed: 64 GTps link speed incoming... with products to follow in 2023 |first=Dan |last=Robinson |date=12 January 2022 |website=]}}</ref><ref>{{cite web | url=https://www.anandtech.com/show/21335/full-draft-of-pcie-70-spec-available-512-gbs-over-pcie-x16-incoming | title=PCIe 7.0 Draft 0.5 Spec Available: 512 GB/S over PCIe x16 on Track for 2025 }}</ref><ref>{{cite web | url=https://arstechnica.com/gadgets/2022/01/pci-express-6-0-spec-is-finalized-doubling-bandwidth-for-ssds-gpus-and-more/ | title=PCIe 5.0 is just beginning to come to new PCS, but version 6.0 is already here | date=12 January 2022 }}</ref> send data several bits at a time using modulation/encoding techniques such as ] which groups 2 bits at a time into a single symbol, and several symbols are still sent one at the time. This replaces PAM2 or non return to zero (NRZ) which only sends one bit at a time, or in other words one bit per symbol.<ref>{{cite book | url=https://books.google.com/books?id=wnGDBAAAQBAJ&dq=serial+pam4+signals&pg=PA9 | isbn=978-0-12-800671-9 | title=Handbook of Serial Communications Interfaces: A Comprehensive Compendium of Serial Digital Input/Output (I/O) Standards | date=21 August 2015 | publisher=Newnes }}</ref><ref>{{cite web | url=https://www.signalintegrityjournal.com/articles/1151-pam4-for-better-and-worse | title=PAM4: For Better and Worse &#124; 2019-02-26 &#124; Signal Integrity Journal }}</ref><ref>{{cite web | url=https://semiengineering.com/knowledge_centers/communications-io/off-chip-communications/pam-4-signaling/ | title=PAM-4 Signaling }}</ref><ref>{{cite conference |url=https://www.xilinx.com/publications/events/designcon/2016/slides-pam4signalingfor56gserial-zhang-designcon.pdf |title=PAM4 Signaling for 56G Serial Link Applications − A Tutorial |first1=Hongtao |last1=Zhang |first2=Brandon |last2=Jiao |first3=Yu |last3=Liao |first4=Geoff |last4=Zhang |conference=DesignCon 2016}}</ref><ref>{{cite web |url=https://download.tek.com/document/PAM4-Signaling-in-High-Speed-Serial-Technology_55W-60273.pdf |title=PAM4 Signaling in High-Speed Serial Technology: Test, Analysis, and Debug |type=application note |publisher=]}}</ref><ref>{{cite book | url=https://books.google.com/books?id=JljBDwAAQBAJ&dq=pam4+symbol&pg=PA54 | isbn=978-3-03921-792-2 | title=Advanced DSP Techniques for High-Capacity and Energy-Efficient Optical Fiber Communications | date=3 December 2019 | last1=Pan | first1=Zhongqi | last2=Yue | first2=Yang }}</ref><ref>{{cite book | url=https://books.google.com/books?id=MlruDwAAQBAJ&dq=pam4+symbol&pg=PA944 | isbn=978-1-119-52149-5 | title=Essentials of Modern Communications | date=4 August 2020 | publisher=John Wiley & Sons }}</ref><ref>{{cite journal |url=https://www.researchgate.net/figure/Eye-diagrams-of-PAM-2-4-8-with-normalized-vertical-full-swing-level-Peak-to-peak-swings_fig2_361960252 |title=Design Space Exploration of Single-Lane OFDM-Based Serial Links for High-Speed Wireline Communications |first=Gain |last=Kim |at=Figure 2 |journal=IEEE Open Journal of Circuits and Systems |issn=2644-1225 |volume=3 |issue=1 |date=January 2022 |doi=10.1109/OJCAS.2022.3189550|doi-access=free }}</ref> The symbols are sent at a speed known as the symbol rate or the baud rate.<ref>{{cite web | url=https://www.edn.com/eye-diagrams-the-tool-for-serial-data-analysis/ | title=Eye diagrams: The tool for serial data analysis | date=4 June 2019 }}</ref><ref>{{cite web | url=https://www.rfwireless-world.com/Terminology/Advantages-and-disadvantages-of-PAM4-modulation.html | title=Advantages of PAM4 modulation &#124; Disadvantages PAM4 signaling }}</ref><ref>{{cite web | url=https://www.edn.com/generate-pam4-signals-for-receiver-compliance-testing/ | title=Generate PAM4 signals for receiver compliance testing | date=20 September 2016 }}</ref><ref>{{cite book | url=https://books.google.com/books?id=L1YIEQAAQBAJ&dq=pam4+symbol+rate&pg=PA16 | isbn=978-1-040-01179-9 | title=Complex Digital Hardware Design | date=9 May 2024 | publisher=CRC Press }}</ref>
==Cables==Many serial communication systems were originally designed to transfer data over relatively large distances through some sort of data cable.


==Cables==
Practically all long-distance communication transmits data one bit at a time, rather than in parallel, because it reduces the cost of the cable. The cables that carry this data (other than "the" serial cable) and the computer ports they plug into are usually referred to with a more specific name, to reduce confusion.

Keyboard and mouse cables and ports are almost invariably serial—such as PS/2 port, Apple Desktop Bus and USB.

The cables that carry digital video are also mostly serial—such as coax cable plugged into a HD-SDI port, a webcam plugged into a USB port or FireWire port, Ethernet cable connecting an IP camera to a Power over Ethernet port, FPD-Link, digital telephone lines (ex. ISDN), etc.

Other such cables and ports, transmitting data one bit at a time, include Serial ATA, Serial SCSI, Ethernet cable plugged into Ethernet ports, the Display Data Channel using previously reserved pins of the VGA connector or the DVI port or the HDMI port.
{{main| data cable}}
Many serial communication systems were originally designed to transfer data over relatively large distances through some sort of ]. Many serial communication systems were originally designed to transfer data over relatively large distances through some sort of ].


Line 31: Line 19:
Keyboard and mouse cables and ports are almost invariably serial—such as ], ] and ]. Keyboard and mouse cables and ports are almost invariably serial—such as ], ] and ].


The cables that carry digital video are also mostly serial—such as ] plugged into a ] port, a ] plugged into a USB port or ], ] connecting an ] to a ] port, ], digital telephone lines (ex. ]), etc. The cables that carry digital video are also mostly serial—such as ] plugged into a ] port, a ] plugged into a USB port or ], ] connecting an ] to a ] port, ], digital telephone lines (ex. ]), etc.


Other such cables and ports, transmitting data one bit at a time, include ], ], Ethernet cable plugged into ]s, the ] using previously reserved pins of the ] or the ] or the ] port. Other such cables and ports, transmitting data one bit at a time, include ], ], Ethernet cable plugged into ]s, the ] using previously reserved pins of the ] or the ] or the ] port.


==Serial buses== ==Serial buses==
] connector (] DB-25 variant)]] ] connector (] DB-25 variant)]]
Many communication systems were generally designed to connect two integrated circuits on the same ], connected by ]s on that board (rather than external cables). Many communication systems were generally designed to connect two integrated circuits on the same ], connected by ]s on that board (rather than external cables).


]s are more expensive when they have more pins. To reduce the number of pins in a package, many ICs use a serial bus to transfer data when speed is not important. Some examples of such low-cost serial buses include ], ], ], ], ] and ]. ]s are more expensive when they have more pins. To reduce the number of pins in a package, many ICs use a serial bus to transfer data when speed is not important. Some examples of such low-cost lower-speed serial buses include ], ], ], ], ], ], and ]. Higher-speed serial buses include ], ] and ].


==Serial versus parallel== ==Serial versus parallel==
The communication links, across which computers (or parts of computers) talk to one another, may be either serial or parallel. A parallel link transmits several streams of data simultaneously along multiple channels (e.g., wires, printed circuit tracks, or optical fibers); whereas, a serial link transmits only a single stream of data. The communication links, across which computers (or parts of computers) talk to one another, may be either serial or parallel. A parallel link transmits several streams of data simultaneously along multiple channels (e.g., wires, printed circuit tracks, or optical fibers); whereas, a serial link transmits only a single stream of data. The rationale for parallel communication was the added benefit of having ] to the 8-bit or 16-bit registry addresses at a time where mapping direct data lanes was more convenient and faster than synchronizing data serially.{{cn|date=May 2024}}


Although a serial link may seem inferior to a parallel one, since it can transmit less data per clock cycle, it is often the case that serial links can be clocked considerably faster than parallel links in order to achieve a higher data rate. Several factors allow serial to be clocked at a higher rate: Although a serial link may seem inferior to a parallel one, since it can transmit less data per clock cycle, it is often the case that serial links can be clocked considerably faster than parallel links in order to achieve a higher data rate. Several factors allow serial to be clocked at a higher rate:
*] between different channels is not an issue (for unclocked ] links). This can be caused by mismatched wire or conductor lengths.<ref name="cse378-lecture-24">{{cite web |url=https://courses.cs.washington.edu/courses/cse378/11wi/lectures/lec24.pdf |title=Lecture 24 |work=CSE378: Machine Organization & Assembly Language}}</ref><ref>{{cite book | url=https://books.google.com/books?id=BxptEAAAQBAJ | title=Modern Computer Architecture and Organization: Learn x86, ARM, and RISC-V architectures and the design of smartphones, PCS, and cloud servers | isbn=978-1-80323-823-4 | last1=Ledin | first1=Jim | last2=Farley | first2=Dave | date=4 May 2022 | publisher=Packt Publishing }}</ref>
*] between different channels is not an issue (for unclocked ] links).
*A serial connection requires fewer interconnecting cables (e.g., wires/fibers) and hence occupies less space. The extra space allows for better isolation of the channel from its surroundings. *A serial connection requires fewer interconnecting cables (e.g., wires/fibers) and hence occupies less space. The extra space allows for better isolation of the channel from its surroundings.
*] is less of an issue, because there are fewer conductors in proximity. *] is less of an issue, because there are fewer conductors in proximity.<ref name="cse378-lecture-24" />
*Budgets for power use, power dissipation, cable cost, component cost, IC die area, PC board area, ESD protection, etc. can be focused on a single link. *Budgets for power use, power dissipation, cable cost, component cost, IC die area, PC board area, ESD protection, etc. can be focused on a single link.

The transition from parallel to serial buses was allowed by ] which allowed for the incorporation of SerDes in integrated circuits.<ref>{{cite book | url=https://books.google.com/books?id=aUCgNOpyUbgC&dq=parallel++serial++serdes+moore%27s+law&pg=PA275 | isbn=978-1-4020-7496-7 | title=The Boundary — Scan Handbook | date=30 June 2003 | publisher=Springer }}</ref>
An electrical serial link only requires a pair of wires, whereas a parallel link requires several. Thus serial links can save on costs (also known as the ]). ] uses length-matched wires or conductors and are used in high speed serial links.<ref>{{cite book | url=https://books.google.com/books?id=BxptEAAAQBAJ | title=Modern Computer Architecture and Organization: Learn x86, ARM, and RISC-V architectures and the design of smartphones, PCS, and cloud servers | isbn=978-1-80323-823-4 | last1=Ledin | first1=Jim | last2=Farley | first2=Dave | date=4 May 2022 | publisher=Packt Publishing }}</ref> Length-matching is easier to perform on serial links as they require fewer conductors.


In many cases, serial is cheaper to implement than parallel. Many ]s have serial interfaces, as opposed to parallel ones, so that they have fewer pins and are therefore less expensive. In many cases, serial is cheaper to implement than parallel. Many ]s have serial interfaces, as opposed to parallel ones, so that they have fewer pins and are therefore less expensive.
Line 62: Line 53:
*] control of theatrical lighting *] control of theatrical lighting
*] *]
*]
*] (high-speed, for connecting computers to mass storage devices) *] (high-speed, for connecting computers to mass storage devices)
*] *]
Line 70: Line 62:
*] control of electronic musical instruments *] control of electronic musical instruments
*] *]
*] ] *] ]<!--The granddaddy of them all!-->
*] *]
*] *]
Line 82: Line 74:
*] *]
*] with serial-in and serial-out configuration *] with serial-in and serial-out configuration
*] and ] (high speed telecommunication over optical fibers) *] and ] (high speed telecommunication over optical fibers)
*] Spacecraft communication network *] Spacecraft communication network
*] and ] audio communication protocols
*] *]
*], ] and variants (high speed telecommunication over copper pairs) *], ] and variants (high speed telecommunication over copper pairs)
Line 98: Line 91:
* ] * ]
* ] * ]
* ]
* ] * ]
* ] (HDLC) * ] (HDLC)
Line 115: Line 109:
* *
* *
* * {{Webarchive|url=https://web.archive.org/web/20160308185505/http://byteparadigm.com/kb/article/aa-00255 |date=2016-03-08 }}
* *
* * {{Webarchive|url=https://web.archive.org/web/20180702014758/http://training-kits.appspot.com/serial-linux.html |date=2018-07-02 }}


{{Computer-bus}} {{Computer-bus}}

Latest revision as of 07:31, 3 January 2025

Type of data transfer
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Serial communication" – news · newspapers · books · scholar · JSTOR (August 2019) (Learn how and when to remove this message)

Serial and parallel data transmission of 010010112. Standard bit sequence is least-significant-bit-first (D0 to D7 in ascending order). D0 is received first via serial transmission. All bits are received simultaneously via parallel transmission.

In telecommunication and data transmission, serial communication is the process of sending data one bit at a time, sequentially, over a communication channel or computer bus. This is in contrast to parallel communication, where several bits are sent as a whole, on a link with several parallel channels.

Standard character structure for asynchronous data communication consisting of 10 elements for a 7-bit ASCII character

Serial communication is used for all long-haul communication and most computer networks, where the cost of cable and synchronization difficulties make parallel communication impractical. Serial computer buses have become more common even at shorter distances, as improved signal integrity and transmission speeds in newer serial technologies have begun to outweigh the parallel bus's advantage of simplicity (no need for serializer and deserializer, or SerDes) and to outstrip its disadvantages (clock skew, interconnect density). The migration from PCI to PCI Express (PCIe) is an example.

Modern high speed serial interfaces such as PCIe send data several bits at a time using modulation/encoding techniques such as PAM4 which groups 2 bits at a time into a single symbol, and several symbols are still sent one at the time. This replaces PAM2 or non return to zero (NRZ) which only sends one bit at a time, or in other words one bit per symbol. The symbols are sent at a speed known as the symbol rate or the baud rate.

Cables

Many serial communication systems were originally designed to transfer data over relatively large distances through some sort of data cable.

Practically all long-distance communication transmits data one bit at a time, rather than in parallel, because it reduces the cost of the cable. The cables that carry this data (other than "the" serial cable) and the computer ports they plug into are usually referred to with a more specific name, to reduce confusion.

Keyboard and mouse cables and ports are almost invariably serial—such as PS/2 port, Apple Desktop Bus and USB.

The cables that carry digital video are also mostly serial—such as coax cable plugged into a HD-SDI port, a webcam plugged into a USB port or FireWire port, Ethernet cable connecting an IP camera to a Power over Ethernet port, FPD-Link, digital telephone lines (ex. ISDN), etc.

Other such cables and ports, transmitting data one bit at a time, include Serial ATA, Serial SCSI, Ethernet cable plugged into Ethernet ports, the Display Data Channel using previously reserved pins of the VGA connector or the DVI port or the HDMI port.

Serial buses

RS-232 connector (D-Sub DB-25 variant)

Many communication systems were generally designed to connect two integrated circuits on the same printed circuit board, connected by signal traces on that board (rather than external cables).

Integrated circuits are more expensive when they have more pins. To reduce the number of pins in a package, many ICs use a serial bus to transfer data when speed is not important. Some examples of such low-cost lower-speed serial buses include RS-232, DALI, SPI, CAN bus, I²C, UNI/O, and 1-Wire. Higher-speed serial buses include USB, SATA and PCI Express.

Serial versus parallel

The communication links, across which computers (or parts of computers) talk to one another, may be either serial or parallel. A parallel link transmits several streams of data simultaneously along multiple channels (e.g., wires, printed circuit tracks, or optical fibers); whereas, a serial link transmits only a single stream of data. The rationale for parallel communication was the added benefit of having Direct Memory Access to the 8-bit or 16-bit registry addresses at a time where mapping direct data lanes was more convenient and faster than synchronizing data serially.

Although a serial link may seem inferior to a parallel one, since it can transmit less data per clock cycle, it is often the case that serial links can be clocked considerably faster than parallel links in order to achieve a higher data rate. Several factors allow serial to be clocked at a higher rate:

  • Clock skew between different channels is not an issue (for unclocked asynchronous serial communication links). This can be caused by mismatched wire or conductor lengths.
  • A serial connection requires fewer interconnecting cables (e.g., wires/fibers) and hence occupies less space. The extra space allows for better isolation of the channel from its surroundings.
  • Crosstalk is less of an issue, because there are fewer conductors in proximity.
  • Budgets for power use, power dissipation, cable cost, component cost, IC die area, PC board area, ESD protection, etc. can be focused on a single link.

The transition from parallel to serial buses was allowed by Moore's law which allowed for the incorporation of SerDes in integrated circuits. An electrical serial link only requires a pair of wires, whereas a parallel link requires several. Thus serial links can save on costs (also known as the Bill of Materials). Differential signalling uses length-matched wires or conductors and are used in high speed serial links. Length-matching is easier to perform on serial links as they require fewer conductors.

In many cases, serial is cheaper to implement than parallel. Many ICs have serial interfaces, as opposed to parallel ones, so that they have fewer pins and are therefore less expensive.

Examples of architectures

See also

References

  1. Mackenzie, Charles E. (1980). Coded Character Sets, History and Development (PDF). The Systems Programming Series (1 ed.). Addison-Wesley Publishing Company, Inc. pp. 247–253. ISBN 978-0-201-14460-4. LCCN 77-90165. Archived (PDF) from the original on May 26, 2016. Retrieved December 29, 2022.
  2. Robinson, Dan (12 January 2022). "Final PCIe 6.0 specs unleashed: 64 GTps link speed incoming... with products to follow in 2023". The Register.
  3. "PCIe 7.0 Draft 0.5 Spec Available: 512 GB/S over PCIe x16 on Track for 2025".
  4. "PCIe 5.0 is just beginning to come to new PCS, but version 6.0 is already here". 12 January 2022.
  5. Handbook of Serial Communications Interfaces: A Comprehensive Compendium of Serial Digital Input/Output (I/O) Standards. Newnes. 21 August 2015. ISBN 978-0-12-800671-9.
  6. "PAM4: For Better and Worse | 2019-02-26 | Signal Integrity Journal".
  7. "PAM-4 Signaling".
  8. Zhang, Hongtao; Jiao, Brandon; Liao, Yu; Zhang, Geoff. PAM4 Signaling for 56G Serial Link Applications − A Tutorial (PDF). DesignCon 2016.
  9. "PAM4 Signaling in High-Speed Serial Technology: Test, Analysis, and Debug" (PDF) (application note). Tektronix.
  10. Pan, Zhongqi; Yue, Yang (3 December 2019). Advanced DSP Techniques for High-Capacity and Energy-Efficient Optical Fiber Communications. ISBN 978-3-03921-792-2.
  11. Essentials of Modern Communications. John Wiley & Sons. 4 August 2020. ISBN 978-1-119-52149-5.
  12. Kim, Gain (January 2022). "Design Space Exploration of Single-Lane OFDM-Based Serial Links for High-Speed Wireline Communications". IEEE Open Journal of Circuits and Systems. 3 (1). Figure 2. doi:10.1109/OJCAS.2022.3189550. ISSN 2644-1225.
  13. "Eye diagrams: The tool for serial data analysis". 4 June 2019.
  14. "Advantages of PAM4 modulation | Disadvantages PAM4 signaling".
  15. "Generate PAM4 signals for receiver compliance testing". 20 September 2016.
  16. Complex Digital Hardware Design. CRC Press. 9 May 2024. ISBN 978-1-040-01179-9.
  17. ^ "Lecture 24" (PDF). CSE378: Machine Organization & Assembly Language.
  18. Ledin, Jim; Farley, Dave (4 May 2022). Modern Computer Architecture and Organization: Learn x86, ARM, and RISC-V architectures and the design of smartphones, PCS, and cloud servers. Packt Publishing. ISBN 978-1-80323-823-4.
  19. The Boundary — Scan Handbook. Springer. 30 June 2003. ISBN 978-1-4020-7496-7.
  20. Ledin, Jim; Farley, Dave (4 May 2022). Modern Computer Architecture and Organization: Learn x86, ARM, and RISC-V architectures and the design of smartphones, PCS, and cloud servers. Packt Publishing. ISBN 978-1-80323-823-4.

External links

Technical and de facto standards for wired computer buses
General
Standards
Storage
Peripheral
Audio
Portable
Embedded
Interfaces are listed by their speed in the (roughly) ascending order, so the interface at the end of each section should be the fastest.
Category
Line coding (digital baseband transmission)
Main articles
Basic line codes
Extended line codes
Optical line codes
Categories: