Misplaced Pages

Semi-Dirac fermion: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 10:45, 13 December 2024 editReyHahn (talk | contribs)Extended confirmed users24,833 edits entry← Previous edit Latest revision as of 13:03, 20 December 2024 edit undoReyHahn (talk | contribs)Extended confirmed users24,833 edits Undid revision 1264099475 by The Anome (talk) per MOS:LAYOUTTag: Undo 
(14 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Class of fermionic quasiparticles}} {{Short description|Class of fermionic quasiparticles}}
In ], '''semi-Dirac fermions''' are a class of ]s that are ]s with the unusual property that their mass changes dependent on their direction of motion.<ref>{{Cite web |title=Particle that only has mass when moving in one direction observed for first time {{!}} Penn State University |url=https://www.psu.edu/news/research/story/particle-only-has-mass-when-moving-one-direction-observed-first-time |access-date=2024-12-12 |website=www.psu.edu}}</ref> Their theoretical properties have been studied for some time.<ref>{{Cite journal |last=Uryszek |first=Mikolaj D. |last2=Christou |first2=Elliot |last3=Jaefari |first3=Akbar |last4=Krüger |first4=Frank |last5=Uchoa |first5=Bruno |date=2019-10-01 |title=Quantum criticality of semi-Dirac fermions in 2 + 1 dimensions |url=https://link.aps.org/doi/10.1103/PhysRevB.100.155101 |journal=Physical Review B |language=en |volume=100 |issue=15 |doi=10.1103/PhysRevB.100.155101 |issn=2469-9950}}</ref><ref>{{Cite journal |last=Mohanta |first=Narayan |last2=Ok |first2=Jong Mok |last3=Zhang |first3=Jie |last4=Miao |first4=Hu |last5=Dagotto |first5=Elbio |last6=Lee |first6=Ho Nyung |last7=Okamoto |first7=Satoshi |date=2021-12-10 |title=Semi-Dirac and Weyl fermions in transition metal oxides |url=https://journals.aps.org/prb/abstract/10.1103/PhysRevB.104.235121 |journal=Physical Review B |language=en |volume=104 |issue=23 |doi=10.1103/PhysRevB.104.235121 |issn=2469-9950}}</ref> In ], '''semi-Dirac fermions''' are a class of ]s that are ] with the unusual property that their energy ] changes from quadratic to linear dependent on their direction of motion.<ref>{{Cite web |title=Particle that only has mass when moving in one direction observed for first time {{!}} Penn State University |url=https://www.psu.edu/news/research/story/particle-only-has-mass-when-moving-one-direction-observed-first-time |access-date=2024-12-12 |website=www.psu.edu}}</ref> Their theoretical properties have been studied for some time.<ref>{{Cite journal |last1=Uryszek |first1=Mikolaj D. |last2=Christou |first2=Elliot |last3=Jaefari |first3=Akbar |last4=Krüger |first4=Frank |last5=Uchoa |first5=Bruno |date=2019-10-01 |title=Quantum criticality of semi-Dirac fermions in 2 + 1 dimensions |url=https://link.aps.org/doi/10.1103/PhysRevB.100.155101 |journal=Physical Review B |language=en |volume=100 |issue=15 |page=155101 |doi=10.1103/PhysRevB.100.155101 |arxiv=1907.11810 |bibcode=2019PhRvB.100o5101U |issn=2469-9950}}</ref><ref>{{Cite journal |last1=Mohanta |first1=Narayan |last2=Ok |first2=Jong Mok |last3=Zhang |first3=Jie |last4=Miao |first4=Hu |last5=Dagotto |first5=Elbio |last6=Lee |first6=Ho Nyung |last7=Okamoto |first7=Satoshi |date=2021-12-10 |title=Semi-Dirac and Weyl fermions in transition metal oxides |url=https://journals.aps.org/prb/abstract/10.1103/PhysRevB.104.235121 |journal=Physical Review B |language=en |volume=104 |issue=23 |page=235121 |doi=10.1103/PhysRevB.104.235121 |arxiv=2106.07793 |bibcode=2021PhRvB.104w5121M |issn=2469-9950}}</ref>


Their first observation in a solid was in ], a ], and was published in 2024.<ref>{{Cite journal |last=Shao |first=Yinming |date=2024 |title=Semi-Dirac Fermions in a Topological Metal |url=https://journals.aps.org/prx/abstract/10.1103/PhysRevX.14.041057 |journal=Physical Review X |volume=14 |issue=4 |doi=10.1103/PhysRevX.14.041057}}</ref> Their first observation in a solid was in ] (ZrSiS), a ], and was published in 2024.<ref>{{Cite journal |last=Shao |first=Yinming |date=2024 |title=Semi-Dirac Fermions in a Topological Metal |url=https://journals.aps.org/prx/abstract/10.1103/PhysRevX.14.041057 |journal=Physical Review X |volume=14 |issue=4 |page=041057 |doi=10.1103/PhysRevX.14.041057|arxiv=2311.03735 |bibcode=2024PhRvX..14d1057S }}</ref>


== See also == == See also ==
Line 11: Line 11:


] ]
]

== External links ==
* David Nield: . ScienceAlert, 14 December 2024.





{{quantum-stub}} {{quantum-stub}}
{{improve categories|date=December 2024}}

Latest revision as of 13:03, 20 December 2024

Class of fermionic quasiparticles

In condensed matter physics, semi-Dirac fermions are a class of quasiparticles that are fermionic with the unusual property that their energy dispersion relation changes from quadratic to linear dependent on their direction of motion. Their theoretical properties have been studied for some time.

Their first observation in a solid was in zirconium silicon sulfide (ZrSiS), a topological semi-metal, and was published in 2024.

See also

References

  1. "Particle that only has mass when moving in one direction observed for first time | Penn State University". www.psu.edu. Retrieved 2024-12-12.
  2. Uryszek, Mikolaj D.; Christou, Elliot; Jaefari, Akbar; Krüger, Frank; Uchoa, Bruno (2019-10-01). "Quantum criticality of semi-Dirac fermions in 2 + 1 dimensions". Physical Review B. 100 (15): 155101. arXiv:1907.11810. Bibcode:2019PhRvB.100o5101U. doi:10.1103/PhysRevB.100.155101. ISSN 2469-9950.
  3. Mohanta, Narayan; Ok, Jong Mok; Zhang, Jie; Miao, Hu; Dagotto, Elbio; Lee, Ho Nyung; Okamoto, Satoshi (2021-12-10). "Semi-Dirac and Weyl fermions in transition metal oxides". Physical Review B. 104 (23): 235121. arXiv:2106.07793. Bibcode:2021PhRvB.104w5121M. doi:10.1103/PhysRevB.104.235121. ISSN 2469-9950.
  4. Shao, Yinming (2024). "Semi-Dirac Fermions in a Topological Metal". Physical Review X. 14 (4): 041057. arXiv:2311.03735. Bibcode:2024PhRvX..14d1057S. doi:10.1103/PhysRevX.14.041057.

External links


Stub icon

This quantum mechanics-related article is a stub. You can help Misplaced Pages by expanding it.

This article needs additional or more specific categories. Please help out by adding categories to it so that it can be listed with similar articles. (December 2024)
Categories: