Revision as of 18:46, 16 December 2024 editMontanaMako (talk | contribs)Extended confirmed users647 edits Created pageTag: Visual edit | Latest revision as of 17:12, 23 December 2024 edit undoHeadbomb (talk | contribs)Edit filter managers, Autopatrolled, Extended confirmed users, Page movers, File movers, New page reviewers, Pending changes reviewers, Rollbackers, Template editors453,933 edits ce | ||
(11 intermediate revisions by 4 users not shown) | |||
Line 4: | Line 4: | ||
== Mathematical background == | == Mathematical background == | ||
An ellipse is defined by two axes: the major axis (the longest diameter, <math>a</math>) and the minor axis (the shortest diameter, <math>b</math>). The exact perimeter <math>P</math> of an ellipse is given by the integral<ref>{{Cite journal | |
An ellipse is defined by two axes: the major axis (the longest diameter, <math>a</math>) and the minor axis (the shortest diameter, <math>b</math>). The exact perimeter <math>P</math> of an ellipse is given by the integral:<ref>{{Cite journal |last1=Chandrupatla |first1=Tirupathi |last2=Osler |first2=Thomas |date=2010 |title=The Perimeter of an Ellipse |url=http://web.tecnico.ulisboa.pt/~mcasquilho/compute/com/,ellips/PerimeterOfEllipse.pdf |journal=The Mathematical Scientist |volume=35 |issue=2 |pages=122–131}}</ref> | ||
<math>P=4a\int_{0}^{\frac{\pi}{2}} \sqrt{1-e^2sin^2\theta}\ d\theta</math> | <math>P=4a\int_{0}^{\frac{\pi}{2}} \sqrt{1-e^2sin^2\theta}\ d\theta</math> | ||
where <math>e</math> is the eccentricity of the ellipse, defined as <math>e=\sqrt{1-\frac{b^2}{a^2}}</math><ref>{{Cite journal |last=Abbott |first=Paul |title=On the Perimeter of an Ellipse |url=https://content.wolfram.com/sites/19/2009/11/Abbott.pdf |journal=The |
where <math>e</math> is the eccentricity of the ellipse, defined as <math>e=\sqrt{1-\frac{b^2}{a^2}}</math><ref>{{Cite journal |last=Abbott |first=Paul |year=2009 |title=On the Perimeter of an Ellipse |url=https://content.wolfram.com/sites/19/2009/11/Abbott.pdf |journal=The Mathematica Journal |volume=11 |issue=2 |pages=2|doi=10.3888/tmj.11.2-4 }}</ref> | ||
The integral used to find the area does not have a closed-form solution in terms of elementary functions. Another solution for the perimeter, this time using infinite sums, is: | The integral used to find the area does not have a closed-form solution in terms of elementary functions. Another solution for the perimeter, this time using infinite sums, is: | ||
Line 24: | Line 24: | ||
=== Ramanujan's approximations === | === Ramanujan's approximations === | ||
Indian mathematician ] proposed multiple approximations<ref>{{Cite |
Indian mathematician ] proposed multiple approximations:<ref>{{Cite arXiv |last=Villarino |first=Mark B. |date=February 1, 2008 |title=Ramanujan's Perimeter of an Ellipse |eprint=math.CA/0506384 }}</ref> | ||
'''First Approximation:''' | '''First Approximation:''' | ||
Line 74: | Line 74: | ||
* ] | * ] | ||
* ] | * ] | ||
] |
Latest revision as of 17:12, 23 December 2024
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Perimeter of an ellipse" – news · newspapers · books · scholar · JSTOR (December 2024) (Learn how and when to remove this message) |
Unlike most other elementary shapes, such as the circle and square, there is no algebraic equation to determine the perimeter of an ellipse. Throughout history, a large number of equations for approximations and estimates have been made for the perimeter of an ellipse.
Mathematical background
An ellipse is defined by two axes: the major axis (the longest diameter, ) and the minor axis (the shortest diameter, ). The exact perimeter of an ellipse is given by the integral:
where is the eccentricity of the ellipse, defined as
The integral used to find the area does not have a closed-form solution in terms of elementary functions. Another solution for the perimeter, this time using infinite sums, is:
Approximations
Because the exact computation involves elliptic integrals, several approximations have been developed over time.
Ramanujan's approximations
Indian mathematician Srinivasa Ramanujan proposed multiple approximations:
First Approximation:
Second Approximation:
where
Simple arithmetic-geometric mean approximation
This formula is simpler than most perimeter formulas but less accurate for highly eccentric ellipses.
Approximations made from programs
In more recent years, computer programs have been used to find and calculate more precise approximations of the perimeter of an ellipse. In an online video about the perimeter of an ellipse, recreational mathematician and YouTuber Matt Parker, using a computer program, calculated numerous approximations for the perimeter of an ellipse. Approximations Parker found include:
References
- Chandrupatla, Tirupathi; Osler, Thomas (2010). "The Perimeter of an Ellipse" (PDF). The Mathematical Scientist. 35 (2): 122–131.
- Abbott, Paul (2009). "On the Perimeter of an Ellipse" (PDF). The Mathematica Journal. 11 (2): 2. doi:10.3888/tmj.11.2-4.
- Villarino, Mark B. (February 1, 2008). "Ramanujan's Perimeter of an Ellipse". arXiv:math.CA/0506384.
- Stand-up Maths (2020-09-05). Why is there no equation for the perimeter of an ellipse‽. Retrieved 2024-12-16 – via YouTube.