Misplaced Pages

Silly Putty: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 02:51, 9 November 2007 edit75.163.34.230 (talk) Variations← Previous edit Latest revision as of 17:10, 27 December 2024 edit undoSilverleaf81 (talk | contribs)Extended confirmed users2,302 edits Expanded reference with reFill 2Tag: Visual edit 
Line 1: Line 1:
{{Short description|Toy putty (slime)}}
]
{{redirect|Silly Puddy|the song by Zion I|Mind over Matter (Zion I album)}}
]
{{redirect|Nutty putty|the cave in Utah|Nutty Putty Cave}}
'''Silly Putty''' (originally called '''nutty putty''', and also known as ''Potty Putty'') is a ] ], marketed today as a toy for children, but originally created as a ] during the course of research into potential ] substitutes for use by the ] during ].
]

'''Silly Putty''' is a ] containing ] ]s that have unusual physical properties. It can flow like a liquid, bounce and can be stretched or broken depending on the amount of physical stress to which it is subjected. It contains ] liquid silicones, a type of ], which makes it act as a viscous liquid over a long period of time but as an elastic solid over a short time period. It was originally created during research into a potential ] substitute for use by the United States in ].<ref name="Roberts">{{cite journal|last1=Roberts|first1=Jacob|title=A Successful Failure|journal=Distillations Magazine|date=2015|volume=1|issue=2|pages=8–9|url=https://www.sciencehistory.org/distillations/magazine/a-successful-failure|access-date=21 February 2018}}</ref><ref name="OH">{{cite web|author=Center for Oral History| title= Earl L. Warrick |url=https://oh.sciencehistory.org/oral-histories/warrick-earl-l|website= ] }}</ref><ref name="transcript">{{cite book|first= James J. |last=Bohning |title=Earl L. Warrick, Transcript of an Interview Conducted by James J. Bohning in Midland, Michigan |date=16 January 1986 |url=https://oh.sciencehistory.org/sites/default/files/warrick_el_0045_suppl.pdf|place=Philadelphia, PA|publisher=] }}</ref>

The name ''Silly Putty'' is a ] of ] LLC.<ref name=Trademark>{{cite web|title=Silly Putty – Trademark Details|url=https://trademarks.justia.com/715/94/silly-putty-71594970.html|website=Justia Trademarks|access-date=30 September 2015}}</ref> Other names are used to market similar substances from other manufacturers.


==Description== ==Description==
]
Silly putty is an ] ], noted for its many unusual characteristics: It bounces, but breaks when given a sharp blow. Yet, it can flow like a liquid and will form a puddle given enough time.


As a bouncing ], Silly Putty is noted for its unusual characteristics. It bounces when dropped from a height, but breaks when struck or stretched sharply; it can also float in a liquid and will form a ] given enough time. Silly Putty and most other retail putty products have ] agents added to reduce the flow and enable the putty to hold its shape.<ref name=Thayer>{{cite journal|last1=Thayer|first1=Ann|title=What's That Stuff? Silly Putty|journal=Chemical & Engineering News|date=November 27, 2000|volume=78|issue=48|url=http://pubs.acs.org/cen/whatstuff/stuff/7848scit3.html|access-date=30 September 2015}}</ref>
Silly Putty is composed of 65% Dimethyl Siloxane (hydroxy-terminated polymers with boric acid), 17% ], quartz crystalline, 9% Thixotrol ST, 4% ], 1% Decamethyl cyclopentasiloxane, 1% ], and 1% ].


The original coral-colored Silly Putty is composed of 65% ] (]-terminated polymers with ]), 17% ] (crystalline quartz), 9% Thixatrol ST (] derivative), 4% ], 1% decamethyl ], 1% ], and 1% ].<ref name=Bouncing>{{cite web|title=The Synthesis of Bouncing Putty|url=http://www.wou.edu/las/physci/ch462/BouncingPutty.htm|publisher=]|access-date=27 February 2015|quote=See patent pages}}</ref>
Silly Putty's unusual flow characteristics are due to the ingredient ] (PDMS), a ] liquid. Viscoelasticity is a type of ], characterizing material that acts as a ] ] over a long time period but as an ] ] over a short time period. Silly Putty has sometimes been characterized as a ] fluid. However, according to the science of ], this is not strictly correct and it is more accurate to characterize it as a viscoelastic or ] liquid.


]
Silly Putty is also a fairly good ]. When ] ink was easier to rub off, Silly Putty could be used to transfer newspaper images to other surfaces, possibly after introducing distortion. Newer papers are more resistant to this activity.


Silly Putty's unusual flow characteristics are due to the ingredient ] (PDMS), a ] substance. Viscoelasticity is a type of ], characterizing a material that acts as a ] ] over a long time period but as an ] ] over a short time period.<ref name=Clegg>{{cite journal|last1=Clegg|first1=Brian|title=Polydimethylsiloxane|journal=Chemistry World|date=22 July 2015 |url=http://www.rsc.org/chemistryworld/2015/07/polydimethylsiloxane-pdms-silly-putty-podcast|access-date=30 September 2015}}</ref> Because its apparent viscosity increases directly with respect to the amount of force applied, Silly Putty can be characterized as a ] fluid.<ref name=Thayer/>
Silly Putty is sold as a 0.47 ] (13 ]) piece of plastic clay inside an egg-shaped plastic container. It is available in various colors, including ] and metallic. The brand is owned by the ] company, which also owns ] crayons. Today, twenty thousand eggs of Silly Putty are produced daily. Since 1950, more than 300 million eggs of Silly Putty have been sold, or approximately 4500 tons.


Silly ] is also a fairly good ]. When ] ink was petroleum based, Silly Putty could be used to transfer newspaper images to other surfaces, providing amusement by distorting the transferred image afterwards. Newer papers with soy-based inks are more resistant to this process.<ref name=Holmes>{{cite news|last1=Holmes|first1=Owen|title=Silly Putty Doesn't Work Anymore|url=http://www.altweeklies.com/aan/silly-putty-doesnt-work-anymore/Story?oid=168408|access-date=30 September 2015|work=Folio Weekly|date=August 1, 2006}}</ref>
==Origins of Silly Putty==
Silly Putty was invented in 1943 by Carson Spung of ] when he dropped ] into ] oil. He was looking for a substitute for ]. GE supplied the newly discovered dilatant compound to researchers around the world. None found a use for it, but they all loved playing with it.


Generally, Silly Putty is difficult to remove from textured items such as dirt and clothing. Hand sanitizers containing alcohol are often helpful. Silly Putty will dissolve when in contact with an alcohol; after the alcohol evaporates, the material will not exhibit its original properties.<ref name=HowStuffWorks>{{cite web|title=How to Get Silly Putty Out Of Clothes|url=http://home.howstuffworks.com/how-to-get-silly-putty-out-of-clothes.htm|access-date=30 September 2015|website=HowStuffWorks.com|date=2011-06-28}}</ref>
In ], Dr. Madison Kocks left the ] to join the newly formed ]. His research was refocused: help the war effort by developing a synthetic rubber substitute. Although he failed to produce a suitable rubber before the end of the war, one result of his experiments was a silicone bouncing putty. (“Forty Years of Firsts: The Recollections of a Dow Corning Pioneer," by Dr. Earl L. Warrick,
McGraw-Hill Publishing Company, New York, 1990, pp. 27-28.)


If Silly Putty is submerged in warm or hot water, it will become softer and thus "melt" much faster. It also becomes harder to remove small amounts of it from surfaces. After a long period of time, it will return to its original viscosity.<ref name=Bouncing/>
The product was then commercialized by MJ and Duke in ] after the marketing expert attended an informal "nutty putty" party where chemists were playing with the substance after hours. Renamed "Silly Putty" because of its main ingredient, silicone, the product was a smash hit.


Silly Putty is sold as a {{Convert|13|g|oz|adj=on|abbr=on}} piece of clay inside an egg-shaped plastic container. The Silly Putty brand is owned by Crayola LLC (formerly the Binney & Smith company). {{As of|July 2009}}, twenty thousand eggs of Silly Putty are sold daily. Since 1950, more than 300 million eggs of Silly Putty (approximately {{Convert|4500|ST|t|disp=or}}) have been sold.<ref name=history>{{cite web|title=Silly Putty History|url=http://www2.crayola.com/mediacenter/index.cfm?display=press_release&news_id=164|archive-url=https://web.archive.org/web/20080603053016/http://www.crayola.com/mediacenter/index.cfm?display=press_release&news_id=164|url-status=dead|archive-date=June 3, 2008|publisher=Crayola LLC|access-date=March 28, 2013}}</ref> It is available in various colors, including ] and metallic. Other brands offer similar materials, sometimes in larger-sized containers, and in a similarly wide variety of colors or with different properties, such as magnetism and ].{{cn|date=October 2024}}
Raw Silly Putty polymer is available as ''] 3179 Dilatant Compound''. There are recipes for homemade silly putty using ] and ]. These produce a compound which is similar in chemical structure but is different in the elements which form that structure.


]]
According to an ] webpage on inventions:
:Ironically, it was only after its success as a toy that practical uses were found for Silly Putty. It picks up dirt, lint and pet hair, and can stabilize wobbly furniture; but it has also been used in stress-reduction and physical therapy, and in medical and scientific simulations. The crew of ] even used it to secure tools in zero-gravity.


==History==
Although Silly Putty is fundamentally the product of combining boric acid and silicone oil, one of the main ingredients in name-brand Silly Putty is elemental silicon (silicon binds to the silicone and allows the material to bounce 20% higher).
During World War II, ] invaded rubber-producing countries as it expanded its ] in the ]. Rubber was vital for the production of ]s, ]s, ] and ] parts, ]s, and ]s. In the US, all rubber products were rationed; citizens were encouraged to make their rubber products last until the end of the war and to donate spare tires, boots, and coats. Meanwhile, the government funded research into synthetic rubber compounds to attempt to solve this shortage.<ref name="official history">{{cite web| url=http://www.sillyputty.com/history_101/timeline/timeline.htm|title=Silly Putty Timeline|publisher=Binney & Smith |access-date= 2009-10-21 |archive-url= https://web.archive.org/web/20090422021613/http://www.sillyputty.com/history_101/timeline/timeline.htm |archive-date=2009-04-22}}</ref>


Credit for the invention of Silly Putty is disputed<ref name=Glater>{{cite news|last1=Glater|first1=Jonathan D.|title=Earl L. Warrick, 91, a Dow Corning Creator of Silly Putty|url=https://www.nytimes.com/2002/11/22/business/earl-l-warrick-91-a-dow-corning-creator-of-silly-putty.html|access-date=30 September 2015|work=The New York Times|date=November 22, 2002}}</ref> and has been attributed variously to ]<ref name="transcript"/> of the then newly formed ]; Harvey Chin; and ], a ]-born inventor working for ] in ], ].<ref>''The Big Book of Boy Stuff'', p. 88. {{ISBN|1-58685-333-3}}</ref> Throughout his life, Warrick insisted that he and his colleague, Rob Roy McGregor, received the patent for Silly Putty before Wright did;<ref name= else>{{cite web|last1=Coopee|first1=Todd|title=Nothing Else is Silly Putty!|url=https://toytales.ca/silly-putty-crayola/|website=ToyTales.ca|date=2017-02-27}}</ref> but Crayola's history of Silly Putty states that Wright first invented it in 1943.<ref name="official history" /><ref>{{US patent|2431878}} – ''Treating dimethyl silicon polymer with boric acid''</ref><ref>{{US patent|2541851}} – ''Process for making puttylike elastic plastic, siloxane derivative composition containing zinc hydroxide''</ref> Both researchers independently discovered that reacting ] with ] would produce a gooey, bouncy material with several unique properties. The non-toxic putty would bounce when dropped, could stretch farther than regular rubber, would not go moldy, and had a very high melting temperature. However, the substance did not have all the properties needed to replace rubber.<ref name=Roberts/>
Silly Putty was invented in 1943 by James Wrightof General when he dropped boric acid into silicone oil. He was looking for a substitute for rubber. GE supplied the newly discovered dilatant compound to researchers around the world. None found a use for it, but they all loved playing with it.


In 1949, toy store owner Ruth Fallgatter came across the putty. She contacted marketing consultant Peter C. L. Hodgson (1912–1976).<ref>{{Cite web|url=http://sillyputtyhistory.blogspot.com/2011/01/blog-post.html|title=Silly Putty - Early History - This is What I Know: Peter C.L. Hodgson Obituary (New York Times)|first=Carol|last=Haynes|date=January 1, 2011}}</ref> The two decided to market the bouncing putty by selling it in a clear case. Although it sold well, Fallgatter did not pursue it further. However, Hodgson saw its potential.<ref name=Roberts/><ref name= Thayer />
In 1943, Dr. Madison Kocks left the Mellon Institute of Industrial Research to join the newly formed Dow Corning Corporation. His research was refocused: help the war effort by developing a synthetic rubber substitute. Although he failed to produce a suitable rubber before the end of the war, one result of his experiments was a silicone bouncing putty. (“Forty Years of Firsts: The Recollections of a Dow Corning Pioneer," by Dr. Earl L. Warrick, McGraw-Hill Publishing Company, New York, 1990, pp. 27-28.)


Already US$12,000 in debt, Hodgson borrowed $147 to buy a batch of the putty to pack {{Convert|1|oz|g|adj=on|abbr=on}} portions into plastic eggs for $1, calling it Silly Putty. Initial sales were poor, but after a ''New Yorker'' article mentioned it, Hodgson sold over 250,000 eggs of silly putty in three days.<ref name=Thayer/> However, Hodgson was almost put out of business in 1951 by the ]. Silicone, the main ingredient in silly putty, was put on ration, harming his business. A year later, the restriction on silicone was lifted and the production of Silly Putty resumed.<ref name=history/><ref name=Nowak>{{cite book|last1=Nowak|first1=Peter|title=Sex, bombs, and burgers : how war, pornography, and fast food have shaped modern technology| date= 2011| publisher=Lyons Press|location=Guilford, Connecticut|isbn=978-0762772742|pages=115–16|url=https://books.google.com/books?id=h9uRQzJRRcEC&pg=PA115|archive-url=https://web.archive.org/web/20160603121954/https://books.google.com/books?id=h9uRQzJRRcEC&pg=PA115|url-status=dead|archive-date=2016-06-03|access-date=30 September 2015}}</ref> Initially, it was primarily targeted towards adults. However, by 1955, the majority of its customers were aged six to twelve. In 1957, Hodgson produced the first televised commercial for Silly Putty, which aired during the '']''.<ref name=Sunshine>{{cite book|last1=Sunshine|first1=Linda|title=101 uses for Silly Putty|date=1990|publisher=Andrews and McMeel|location=Kansas City|isbn=978-0836218633|url-access=registration|url=https://archive.org/details/101usesforsillyp00lind}}</ref>
The product was then commercialized by MJ and Duke in 1949 after the marketing expert attended an informal "nutty putty" party where chemists were playing with the substance after hours. Renamed "Silly Putty" because of its main ingredient, silicone, the product was a smash hit.


In 1961, Silly Putty went worldwide, becoming a hit in the ] and Europe. In 1968, it was taken into ] by the ] astronauts.<ref name=Nowak/>
Raw Silly Putty polymer is available as Dow Corning 3179 Dilatant Compound. There are recipes for homemade silly putty using Elmer's Glue and boric acid. These produce a compound which is similar in chemical structure but is different in the elements which form that structure.


Peter Hodgson died in 1976. A year later, Binney & Smith, the makers of Crayola products, acquired the rights to Silly Putty. {{As of|2005}}, annual Silly Putty sales exceeded six million eggs.<ref name=Sterngass>{{cite book |last1 =Sterngass| first1= Jon| last2= Kachur| first2= Matthew |title= Plastics|date=2005|publisher=World Almanac Library|location=Milwaukee, Wisconsin |isbn= 978-0836858785| pages= 33–34| url=https://books.google.com/books?id=HYkfVfNXIGIC&pg=PA34}}</ref>
According to an MIT webpage on inventions:


Silly Putty was inducted into the ] on May 28, 2001.<ref name=Scott>{{cite book|last1=Scott|first1=Sharon M.|title=Toys and American culture : an encyclopedia|date=2010|publisher=Greenwood|location=Santa Barbara, California |isbn= 978-0313347986| page= 288| url= https://books.google.com/books?id=mbTUorcuXkoC&pg=PA288}}</ref>
Ironically, it was only after its success as a toy that practical uses were found for Silly Putty. It picks up dirt, lint and pet hair, and can stabilize wobbly furniture; but it has also been used in stress-reduction and physical therapy, and in medical and scientific simulations. The crew of Apollo 8 even used it to secure tools in zero-gravity.
Although Silly Putty is fundamentally the product of combining boric acid and silicone oil, one of the main ingredients in name-brand Silly Putty is elemental silicon (silicon binds to the silicone and allows the material to bounce 20% higher).


==Removal== ==Other uses==
In addition to its success as a toy, other uses for the putty have been found. In the home, it can be used to remove substances such as dirt, lint, pet hair, or ink from various surfaces. The material's unique properties have found niche use in medical and scientific applications. ] use it for rehabilitative therapy of hand injuries.<ref name=Escape>{{cite web|title=17 Surprisingly Practical Uses for Silly Putty |url= http://escapeadulthood.com/blog/2012-12-03/17-surprisingly-practical-uses-for-silly-putty.html|website=Escape Adulthood|access-date=30 September 2015}}</ref> A number of other brands (such as ''Power Putty'' and ''TheraPutty'') alter the material's properties, offering different levels of resistance. The material is also used as a tool to help reduce stress, and exists in various viscosities based on the user's preference.{{cn|date=October 2024}}
Silly Putty will stick to soft plastics, rugs, and clothing, but can be removed using ], ], or ].One can also use hot saltwater to remove putty.

Because of its ] characteristics, it was used by Apollo ]s to secure their tools in zero gravity.<ref name=Walsh>{{cite book| last1= Walsh| first1= Tim| title= Timeless toys: classic toys and the playmakers who created them|date=2005|publisher=Andrews McMeel Pub.|location=Kansas City, Missouri |isbn= 978-0740755712|page=92}}</ref> Scale model building hobbyists use the putty as a masking medium when spray-painting model assemblies.<ref name=masking>{{cite web |title=Silly Putty masking |url=https://butterfingeredmodelbuilder.wordpress.com/2015/06/24/silly-putty-masking/ |website=The Butterfingered Modelbuilder's Adventures |access-date=30 September 2015|date=2015-06-24 }}</ref><ref>'']'', various issues</ref> The ] uses a Silly-Putty backed ] to polish astronomical telescope mirrors.<ref>{{Cite journal |title=How do you build a mirror for one of the world's biggest telescopes? |first1=Buddy |last1=Martin |first2=Dae Wook |last2=Kim |date=January 15, 2016 |journal= ] |url=https://theconversation.com/how-do-you-build-a-mirror-for-one-of-the-worlds-biggest-telescopes-49927}}</ref><ref>{{Cite journal |title=Rigid conformal polishing tool using non-linear visco-elastic effect |first1=Dae Wook |last1=Kim |first2=James H. |last2=Burge |journal=Optics Express |date=1 February 2010 |volume=18 |issue=3 |pages=2242–57 |doi=10.1364/OE.18.002242 |pmid=20174053 |bibcode = 2010OExpr..18.2242K |s2cid=43886693 |doi-access=free }}</ref>

Researchers from ] School of Physics (Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centers) have discovered nano composite mixtures of ] and Silly Putty behave as sensitive pressure sensors, claiming the ability to measure the footsteps of a spider crawling on it.<ref>{{cite journal |last=Coleman |first=Jonathan N. |date=December 9, 2016 |title=Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites |url=http://sro.sussex.ac.uk/id/eprint/84703/1/__smbhome.uscs.susx.ac.uk_akj23_Documents_SRO%200%2007%2024.pdf |journal=Science |language=en |volume=354 |pages=1257–60 |bibcode=2016Sci...354.1257B |doi=10.1126/science.aag2879 |pmid=27940866 |archive-url=https://web.archive.org/web/20200226220324/http://sro.sussex.ac.uk/id/eprint/84703/1/__smbhome.uscs.susx.ac.uk_akj23_Documents_SRO%200%2007%2024.pdf |archive-date=26 February 2020 |number=6317 |hdl=2262/82344 |s2cid=23162303 |access-date=21 August 2019 |url-status=bot: unknown }}</ref>


==See also== ==See also==
* ] * ]
* ] * ]
* ]

==References==
{{Reflist|30em}}


==External links== ==External links==
{{commonscat|Silly Putty}} {{commons category|Silly Putty}}
* {{cite web|title=Silly Putty|url=http://shop.crayola.com/brands/silly-putty/|website=Crayola|access-date=22 February 2018}}
*{{US patent|2431878}} - ''Treating dimethyl silicon polymer with boric acid''
* {{cite web|author=Center for Oral History| title= Earl L. Warrick |url=https://oh.sciencehistory.org/oral-histories/warrick-earl-l|website= ] }}
*{{US patent|2541851}} - ''Process for making puttylike elastic plastic, siloxane derivative composition containing zinc hydroxide''
* {{cite book|first= James J. |last=Bohning |title=Earl L. Warrick, Transcript of an Interview Conducted by James J. Bohning in Midland, Michigan on 16 January 1986 |date=16 January 1986 |url=https://oh.sciencehistory.org/sites/default/files/warrick_el_0045_suppl.pdf|place=Philadelphia, PA|publisher=] }}
*
*
*
*
*
*
*


]
]
]
]
]
]
]
]
] ]
] ]
]
] ]
]
] ]
] ]
]

]
]

Latest revision as of 17:10, 27 December 2024

Toy putty (slime) "Silly Puddy" redirects here. For the song by Zion I, see Mind over Matter (Zion I album). "Nutty putty" redirects here. For the cave in Utah, see Nutty Putty Cave.
Silver-colored Silly Putty

Silly Putty is a toy containing silicone polymers that have unusual physical properties. It can flow like a liquid, bounce and can be stretched or broken depending on the amount of physical stress to which it is subjected. It contains viscoelastic liquid silicones, a type of non-Newtonian fluid, which makes it act as a viscous liquid over a long period of time but as an elastic solid over a short time period. It was originally created during research into a potential rubber substitute for use by the United States in World War II.

The name Silly Putty is a trademark of Crayola LLC. Other names are used to market similar substances from other manufacturers.

Description

Video showing Silly Putty bouncing

As a bouncing putty, Silly Putty is noted for its unusual characteristics. It bounces when dropped from a height, but breaks when struck or stretched sharply; it can also float in a liquid and will form a puddle given enough time. Silly Putty and most other retail putty products have viscoelastic agents added to reduce the flow and enable the putty to hold its shape.

The original coral-colored Silly Putty is composed of 65% dimethylsiloxane (hydroxy-terminated polymers with boric acid), 17% silica (crystalline quartz), 9% Thixatrol ST (castor oil derivative), 4% polydimethylsiloxane, 1% decamethyl cyclopentasiloxane, 1% glycerine, and 1% titanium dioxide.

Silly Putty flowing through a hole

Silly Putty's unusual flow characteristics are due to the ingredient polydimethylsiloxane (PDMS), a viscoelastic substance. Viscoelasticity is a type of non-Newtonian flow, characterizing a material that acts as a viscous liquid over a long time period but as an elastic solid over a short time period. Because its apparent viscosity increases directly with respect to the amount of force applied, Silly Putty can be characterized as a dilatant fluid.

Silly Putty is also a fairly good adhesive. When newspaper ink was petroleum based, Silly Putty could be used to transfer newspaper images to other surfaces, providing amusement by distorting the transferred image afterwards. Newer papers with soy-based inks are more resistant to this process.

Generally, Silly Putty is difficult to remove from textured items such as dirt and clothing. Hand sanitizers containing alcohol are often helpful. Silly Putty will dissolve when in contact with an alcohol; after the alcohol evaporates, the material will not exhibit its original properties.

If Silly Putty is submerged in warm or hot water, it will become softer and thus "melt" much faster. It also becomes harder to remove small amounts of it from surfaces. After a long period of time, it will return to its original viscosity.

Silly Putty is sold as a 13 g (0.46 oz) piece of clay inside an egg-shaped plastic container. The Silly Putty brand is owned by Crayola LLC (formerly the Binney & Smith company). As of July 2009, twenty thousand eggs of Silly Putty are sold daily. Since 1950, more than 300 million eggs of Silly Putty (approximately 4,500 short tons or 4,100 tonnes) have been sold. It is available in various colors, including glow-in-the-dark and metallic. Other brands offer similar materials, sometimes in larger-sized containers, and in a similarly wide variety of colors or with different properties, such as magnetism and iridescence.

Silly Putty in the form of a solid cube
Magnetic thinking putty

History

During World War II, Japan invaded rubber-producing countries as it expanded its sphere of influence in the Pacific Rim. Rubber was vital for the production of rafts, tires, vehicle and aircraft parts, gas masks, and boots. In the US, all rubber products were rationed; citizens were encouraged to make their rubber products last until the end of the war and to donate spare tires, boots, and coats. Meanwhile, the government funded research into synthetic rubber compounds to attempt to solve this shortage.

Credit for the invention of Silly Putty is disputed and has been attributed variously to Earl Warrick of the then newly formed Dow Corning; Harvey Chin; and James Wright, a Scottish-born inventor working for General Electric in New Haven, Connecticut. Throughout his life, Warrick insisted that he and his colleague, Rob Roy McGregor, received the patent for Silly Putty before Wright did; but Crayola's history of Silly Putty states that Wright first invented it in 1943. Both researchers independently discovered that reacting boric acid with silicone oil would produce a gooey, bouncy material with several unique properties. The non-toxic putty would bounce when dropped, could stretch farther than regular rubber, would not go moldy, and had a very high melting temperature. However, the substance did not have all the properties needed to replace rubber.

In 1949, toy store owner Ruth Fallgatter came across the putty. She contacted marketing consultant Peter C. L. Hodgson (1912–1976). The two decided to market the bouncing putty by selling it in a clear case. Although it sold well, Fallgatter did not pursue it further. However, Hodgson saw its potential.

Already US$12,000 in debt, Hodgson borrowed $147 to buy a batch of the putty to pack 1 oz (28 g) portions into plastic eggs for $1, calling it Silly Putty. Initial sales were poor, but after a New Yorker article mentioned it, Hodgson sold over 250,000 eggs of silly putty in three days. However, Hodgson was almost put out of business in 1951 by the Korean War. Silicone, the main ingredient in silly putty, was put on ration, harming his business. A year later, the restriction on silicone was lifted and the production of Silly Putty resumed. Initially, it was primarily targeted towards adults. However, by 1955, the majority of its customers were aged six to twelve. In 1957, Hodgson produced the first televised commercial for Silly Putty, which aired during the Howdy Doody Show.

In 1961, Silly Putty went worldwide, becoming a hit in the Soviet Union and Europe. In 1968, it was taken into lunar orbit by the Apollo 8 astronauts.

Peter Hodgson died in 1976. A year later, Binney & Smith, the makers of Crayola products, acquired the rights to Silly Putty. As of 2005, annual Silly Putty sales exceeded six million eggs.

Silly Putty was inducted into the National Toy Hall of Fame on May 28, 2001.

Other uses

In addition to its success as a toy, other uses for the putty have been found. In the home, it can be used to remove substances such as dirt, lint, pet hair, or ink from various surfaces. The material's unique properties have found niche use in medical and scientific applications. Occupational therapists use it for rehabilitative therapy of hand injuries. A number of other brands (such as Power Putty and TheraPutty) alter the material's properties, offering different levels of resistance. The material is also used as a tool to help reduce stress, and exists in various viscosities based on the user's preference.

Because of its adhesive characteristics, it was used by Apollo astronauts to secure their tools in zero gravity. Scale model building hobbyists use the putty as a masking medium when spray-painting model assemblies. The Steward Observatory uses a Silly-Putty backed lap to polish astronomical telescope mirrors.

Researchers from Trinity College Dublin School of Physics (Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centers) have discovered nano composite mixtures of graphene and Silly Putty behave as sensitive pressure sensors, claiming the ability to measure the footsteps of a spider crawling on it.

See also

References

  1. ^ Roberts, Jacob (2015). "A Successful Failure". Distillations Magazine. 1 (2): 8–9. Retrieved 21 February 2018.
  2. Center for Oral History. "Earl L. Warrick". Science History Institute.
  3. ^ Bohning, James J. (16 January 1986). Earl L. Warrick, Transcript of an Interview Conducted by James J. Bohning in Midland, Michigan (PDF). Philadelphia, PA: Beckman Center for the History of Chemistry.
  4. "Silly Putty – Trademark Details". Justia Trademarks. Retrieved 30 September 2015.
  5. ^ Thayer, Ann (November 27, 2000). "What's That Stuff? Silly Putty". Chemical & Engineering News. 78 (48). Retrieved 30 September 2015.
  6. ^ "The Synthesis of Bouncing Putty". Western Oregon University. Retrieved 27 February 2015. See patent pages
  7. Clegg, Brian (22 July 2015). "Polydimethylsiloxane". Chemistry World. Retrieved 30 September 2015.
  8. Holmes, Owen (August 1, 2006). "Silly Putty Doesn't Work Anymore". Folio Weekly. Retrieved 30 September 2015.
  9. "How to Get Silly Putty Out Of Clothes". HowStuffWorks.com. 2011-06-28. Retrieved 30 September 2015.
  10. ^ "Silly Putty History". Crayola LLC. Archived from the original on June 3, 2008. Retrieved March 28, 2013.
  11. ^ "Silly Putty Timeline". Binney & Smith. Archived from the original on 2009-04-22. Retrieved 2009-10-21.
  12. Glater, Jonathan D. (November 22, 2002). "Earl L. Warrick, 91, a Dow Corning Creator of Silly Putty". The New York Times. Retrieved 30 September 2015.
  13. The Big Book of Boy Stuff, p. 88. ISBN 1-58685-333-3
  14. Coopee, Todd (2017-02-27). "Nothing Else is Silly Putty!". ToyTales.ca.
  15. U.S. patent 2,431,878Treating dimethyl silicon polymer with boric acid
  16. U.S. patent 2,541,851Process for making puttylike elastic plastic, siloxane derivative composition containing zinc hydroxide
  17. Haynes, Carol (January 1, 2011). "Silly Putty - Early History - This is What I Know: Peter C.L. Hodgson Obituary (New York Times)".
  18. ^ Nowak, Peter (2011). Sex, bombs, and burgers : how war, pornography, and fast food have shaped modern technology. Guilford, Connecticut: Lyons Press. pp. 115–16. ISBN 978-0762772742. Archived from the original on 2016-06-03. Retrieved 30 September 2015.
  19. Sunshine, Linda (1990). 101 uses for Silly Putty. Kansas City: Andrews and McMeel. ISBN 978-0836218633.
  20. Sterngass, Jon; Kachur, Matthew (2005). Plastics. Milwaukee, Wisconsin: World Almanac Library. pp. 33–34. ISBN 978-0836858785.
  21. Scott, Sharon M. (2010). Toys and American culture : an encyclopedia. Santa Barbara, California: Greenwood. p. 288. ISBN 978-0313347986.
  22. "17 Surprisingly Practical Uses for Silly Putty". Escape Adulthood. Retrieved 30 September 2015.
  23. Walsh, Tim (2005). Timeless toys: classic toys and the playmakers who created them. Kansas City, Missouri: Andrews McMeel Pub. p. 92. ISBN 978-0740755712.
  24. "Silly Putty masking". The Butterfingered Modelbuilder's Adventures. 2015-06-24. Retrieved 30 September 2015.
  25. Scale Auto Magazine, various issues
  26. Martin, Buddy; Kim, Dae Wook (January 15, 2016). "How do you build a mirror for one of the world's biggest telescopes?". The Conversation US.
  27. Kim, Dae Wook; Burge, James H. (1 February 2010). "Rigid conformal polishing tool using non-linear visco-elastic effect". Optics Express. 18 (3): 2242–57. Bibcode:2010OExpr..18.2242K. doi:10.1364/OE.18.002242. PMID 20174053. S2CID 43886693.
  28. Coleman, Jonathan N. (December 9, 2016). "Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites" (PDF). Science. 354 (6317): 1257–60. Bibcode:2016Sci...354.1257B. doi:10.1126/science.aag2879. hdl:2262/82344. PMID 27940866. S2CID 23162303. Archived from the original on 26 February 2020. Retrieved 21 August 2019.{{cite journal}}: CS1 maint: bot: original URL status unknown (link)

External links

Categories:
Silly Putty: Difference between revisions Add topic