Misplaced Pages

History of trams: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 09:06, 17 July 2008 editFram (talk | contribs)Autopatrolled, Extended confirmed users, Page movers, New page reviewers, Pending changes reviewers, Rollbackers, Template editors246,742 edits Technical developments: Removed spam← Previous edit Latest revision as of 04:59, 27 December 2024 edit undo2db (talk | contribs)392 edits ceTag: Visual edit 
(416 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{short description|History of trams, streetcars or trolleys from the early 19th century}}
'''Tram'''(also called tranvia) systems were common throughout the industrialized world in the late 19th and early 20th centuries, but they disappeared from many cities in the mid-20th century. In recent years, they have made a comeback. Many newer ] systems share features with trams, although a distinction is usually drawn between the two, especially if the line has significant off-street running.
{{Use dmy dates|date=November 2013}}
{{Trainstopics}}]The history of '''trams, streetcars, or trolleys''' began in the early nineteenth century. It can be divided up into several discrete periods defined by the principal means of motive power used.<ref>{{cite book |last1=Haupt |first1=Herman |title=Street railway motors |date=1893 |publisher=H.C. Baird & Company |url=https://www.google.com/books/edition/Street_railway_motors/lP1IAAAAIAAJ?hl=en&gbpv=1&pg=PR6&printsec=frontcover |language=en |quote=The subjects here considered are horse railroads steam motors cable traction electric roads com pressed air motors ammonia motors hot water motors gas motors and carbonic acid motors}}</ref> Eventually the so-called US "street railways" were deemed advantageous auxiliaries of the new elevated and/or tunneled metropolitan steam railways.<ref>{{cite book |title=The Technologist: Especially Devoted to Engineering, Manufacturing and Building |date=1870 |publisher=Industrial publishing Company |page=48 |url=https://www.google.com/books/edition/The_Technologist/CplAAQAAMAAJ?hl=en&gbpv=1&dq=%22Street%20railways%22&pg=RA1-PA48&printsec=frontcover |language=en |quote=treet railways can not compete with Metropolitan steam railways Street railways will certainly be able to effect certain advantages can not be attained by Metropolitan railways but where such judiciously introduced the horse railways become at once auxiliaries This condition of the subject we believe is not fully comprehended their introduction into London For the absence of any means of street transit in London except by stages called there omnibuses or hacks cabs and other vehicular and limited means on the introduction of the splendid system of Metropolitan railways both tunnel and overhead Whereas in New York the apparent comprehensiveness of the street railway system demand for a through steam track is unceasing and universal Albany will this session be the battle ground upon which may prob ably rest the decision for an underground railroad under Broadway So great is the popular and monetary influence brought to bear the New York Arcade Railway that its speedy introduction may be looked for.}}</ref><ref>{{cite web |title=Proposed ‘arcade railway’ below Broadway would aid 1860s gridlock {{!}} 6sqft |url=https://www.6sqft.com/proposed-arcade-railway-above-and-below-broadway-would-aid-1860s-gridlock/}}</ref>
]


== History - Horse-drawn tramways == ==Horse-drawn==
{{Main|Horsecar}}
The very first passenger tram (streetcar) was the ], in Wales, UK. The Mumbles Railway Act was passed by the British Parliament in 1804, and this first horse-drawn passenger tramway (which acted like streetcars in the US some 30 years later) started operating in 1807. It was worked by steam from 1877, and then, from 1929, by very large (106-seater) electric tramcars, until closure in 1960.
] ran the world's first passenger tram service in 1807]]
], USA, 1870s|left]]
The modern ] follows the route of the even older 1803 ], a horsedrawn freight tramway sanctioned by Parliament in 1801, between Mitcham and Croydon. This gives Croydon Tramlink a claim to be one of the world's oldest tramways. (''Tramway Path'' beside Mitcham tram stop had its name long before Tramlink was built). The Surrey Iron Railway was engineered by ], who had invented L-section iron rails in 1790, as an improvement on the wooden-railed wagonways which had been used in mines for centuries. These fish-bellied iron rails were manufactured by his assistant ] and it has been suggested that the word "Tramway" is a contraction of Outram's surname ("Outram Way"), but the term is much older and probably comes from the Low German word "traam" which means a "beam". (The first recorded surface-running horse-drawn wagonway was the 2-mile ] built in 1603-4 to carry coal from mines at Strelley down to to the River Trent at Wollaton, near ], England).
], ] horse tram and employees at the depot (probably ]) about 1910]]
] was still operating as of 2017|left]]


The world's first passenger tram was the ], in ], UK. The Mumbles Railway Act was passed by the British Parliament in 1804, and this first horse-drawn passenger tramway started operating in 1807.<ref>{{cite web |url=http://www.welshwales.co.uk/mumbles_railway_swansea.htm |title=The Swansea and Mumbles Railway – the world's first railway service |publisher=Welshwales.co.uk |access-date=2015-03-08 |url-status=live |archive-url=https://web.archive.org/web/20070626140319/http://www.welshwales.co.uk/mumbles_railway_swansea.htm |archive-date=26 June 2007 |df=dmy-all }}</ref> It was worked by steam from 1877, and then, from 1929, by very large (106-seater) electric tramcars, until closure in 1961.
], ] (late 19th century)]]
The first streetcar in America began service in the year 1832. This, the ]'s ] ran along ] and ] in ]. These streetcars, also known as ]s in North America, were developed from city ] lines and ] lines that picked up and dropped off passengers on a regular route and without the need to be pre-hired. These trams were an ], usually using ]s and sometimes ]s to haul the cars, usually two as a team. Rarely other animals were tried, including humans in emergencies. It was followed in 1835 by ], which is the oldest continuously operating street railway system in the world, according to the American Society of Mechanical Engineers.<!--what line?--><ref>{{cite web|last = Bellis|first = Mary|title = History of Streetcars and Cable Cars|url = http://inventors.about.com/library/inventors/blstreetcars.htm|accessdate = 2007-01-10}}</ref> At first the ] protruded above street level, causing accidents and major trouble for pedestrians. They were supplanted in 1852 by ] or ], invented by ].


The first streetcar in America, developed by ], began service in the year 1832.<ref>. Retrieved 25 February 2009.</ref> This was the ]'s ] which ran along the ] and ] in ]. These trams were an animal railway, usually using ]s and sometimes ]s to haul the cars, usually two as a team. Rarely, other animals were tried, including humans in emergency circumstances. It was followed in 1835 by ], which is the oldest continuously operating street railway system in the world, according to the American Society of Mechanical Engineers.<!--what line?--><ref name="Bellis">{{cite web|last = Bellis|first = Mary|title = History of Streetcars and Cable Cars|url = http://inventors.about.com/library/inventors/blstreetcars.htm|archive-url = https://archive.today/20120724120835/http://inventors.about.com/library/inventors/blstreetcars.htm|url-status = dead|archive-date = 24 July 2012|access-date = 2007-01-10}}</ref>
The first tram in France was inaugurated in 1853 for the upcoming ], where a test line was presented along the ], in the ]. The first street trams in Britain were built in 1860 in ] by the eccentric American entrepreneur ], who later introduced street trams to London.


The first tram in Continental Europe opened in France in 1839 between ] and ], on the streets inside the towns, and on the roadside outside town. It had permission for steam traction but was entirely run with horse traction. In 1848, it was closed down after repeated economic failure. The tram developed in numerous cities of Europe (some of the most extensive systems were found in ], ], ], ], ], ], ], ]).
One of the advantages over earlier forms of transit was the low ] of metal wheels on ] rails, allowing the animals to haul a greater load for a given effort. Problems included the fact that any given animal could only work so many hours on a given day, had to be housed, groomed, fed and cared for day in and day out, and produced prodigious amounts of ], which the streetcar company was charged with disposing of. Since a typical horse pulled a car for perhaps a dozen miles a day and worked for four or five hours, many systems needed ten or more horses in stable for each horsecar. Electric trams largely replaced animal power in the late 19th and early 20th century. New York City had closed its last horsecar line in ]. The last regular mule drawn streetcar in the U.S.A., in ], closed in 1926. However during ] some old horse cars were temporarily returned to service to help conserve fuel. A mule-powered line in ], ], operated until 1956.


The first tram in South America opened on 10 June 1858 in ]. The first trams in Australia opened in 1860 in ]. Africa's first tram service started in ] on 8 January 1863. The first trams in Asia opened in 1869 in ].
The last example of a horse drawn tram to be withdrawn from public service in the UK took passengers from ] railway station to Fintona Junction one mile away on the main Omagh to Enniskillen railway in Northern Ireland. The tram made its last journey on 30 September 1957 when the Omagh to Enniskillen line closed. The "van" now lies at the Ulster Transport Museum, but a silhouette of the old horse tram is still displayed on the signs at the entrance to the village.


Problems with horsecars included the fact that any given animal could only work so many hours on a given day, had to be housed, groomed, fed and cared for day in and day out, and produced prodigious amounts of manure, which the streetcar company was charged with storing and then disposing of. Since a typical horse pulled a streetcar for about a dozen miles a day and worked for four or five hours, many systems needed ten or more horses in stable for each horse car.
Horse-drawn trams still operate on the 1876-built ] in the ], and at the 1894 ], in Adelaide, South Australia. New horse-drawn systems have been established at the ] Museum in Japan and also in ].


Beginning in the late 19th century, horse cars were largely replaced by electric-powered trams. Several inventors and companies were involved in the transition. Werner von Siemens pioneered electric traction in the early 1880s in Berlin. In the USA, ]'s groundbreaking work collecting power from ]s using trolleys kickstarted the transition. His spring-loaded ] used a wheel to travel along the wire. In late 1887 and early 1888, using his trolley system, Sprague installed the first successful large electric street railway system in ]. Within a year, the economy of electric power had replaced more costly horse cars in many cities. By 1889, 110 electric railways incorporating Sprague's equipment had been begun or planned on several continents.<ref name="siemens.com">{{Cite web |url=http://www.siemens.com/history/en/innovations/transportation.htm |title=Siemens History Site - Transportation |access-date=5 February 2014 |archive-url=https://web.archive.org/web/20160729124510/https://www.siemens.com/history/en/innovations/transportation.htm |archive-date=29 July 2016 |url-status=dead }}</ref>
The tram developed in numerous cities of Europe (], ], ], etc.). Faster and more comfortable than the omnibus, trams had a high cost of operation because they were pulled by horses. That is why mechanical drives were rapidly developed, with ] in 1873, and ] after 1881, when ] presented the electric drive at the ] in Paris.


Horses continued to be used for light ] well into the 20th century. New York City had a regular horse car service on the ] until its closure in 1917.<ref> '']'' 29 July 191, page 12</ref> ], had its Sarah Street line drawn by horses until 1923. The last regular mule-drawn cars in the US ran in ], until 1926 and were commemorated by a ] issued in 1983.<ref name="encyclopediaofarkansas">{{cite web|url=http://www.encyclopediaofarkansas.net/encyclopedia/entry-detail.aspx?entryID=3727|title=Sulphur Rock Street Car; Encyclopedia of Arkansas History & Culture|access-date=2008-12-23}}</ref> The last mule tram service in ] ended in 1932, and a mule tram in ], survived until 1954.<ref name="morrison_celaya">{{cite web|url=http://www.tramz.com/mx/ce/ce.html|title=The Indomitable Tramways of Celaya|author=Allen Morrison|access-date=2008-12-22}}</ref> The last horse-drawn tram to be withdrawn from public service in the UK took passengers from ] to ] one mile away on the main Omagh to Enniskillen railway in Northern Ireland. The tram made its last journey on 30 September 1957 when the ] to ] line closed. The van now lies at the ].


Horse-drawn trams still operate on the 1876-built ] on the ], and on the 1894-built ], in ], South Australia. New horse-drawn systems have been established at the ] Museum in Japan and in ].
== '''Bicycle-Operated Trams'''


==Steam==
This kind of tram (tranvia) is the most ancient kind of tram. It is used commonly during the Spanish regime in the Philippines, Puerto Rico and Guam.
{{See also|Tram engine|Steam dummy}}The steam-powered tram engine was a product of multiple steam power innovations and convergence with increased demand for public transportation systems.], pulling a train through ] marketplace, around 1900]]


After popular promotion of the ], so called, "Street Railway" car companies using successful citywide ] transportation systems <ref>{{cite book |title=United States Census Office: Report on Transportation Business in the United States at the Eleventh Census: 1890: Street railways |date=1892 |publisher=U.S. Government Printing Office |page=10 |url=https://www.google.com/books/edition/Report_on_Transportation_Business_in_the/UDny60OHM_QC?hl=en&gbpv=1&pg=PA10&printsec=frontcover |language=en}}</ref> and ] (] c. 78) passage. A number of municipal and company-owned street tramways were built or extended with the application of new cognate technology.


]
== Electric Trams ==
Tram engines usually had modifications to make them suitable for street running in residential areas. The wheels, and other moving parts of the machinery, were usually enclosed for safety reasons and to make the engines quieter. Measures were often taken to prevent the engines from emitting visible smoke or steam. Usually, the engines used ] rather than coal as fuel to avoid emitting smoke; ] or ] were used to avoid emitting visible steam. A major drawback of this style of the tram was the limited space for the engine so that these trams had to replenish fuel and water more frequently compared to other locomotives. Steam tram engines faded out around the 1890s, being replaced by electric trams.


'''Cognate technology''':
The convenience and economy of electricity resulted in its rapid adoption once the technical problems of production and transmission of electricity were solved. The first prototype of the electric tram was developed by Russian engineer ]. In 1875 he experimented with electrically powered railway cars on the Sestroretsk railway. The electricity was transferred over a distance of approximately one kilometer; both rails were isolated from the ground, one rail served as a direct conductor and one as a return conductor. In 1880 he modified a city two-decker horse tram to be powered by electricity instead of horses, and on 3 September 1880 this unusual form of public transport started to serve residents of Saint Petersburg, amid the vocal protests of the owners of the horse-cars. This short-lived experiment continued only until the end of September 1880.
* ]s in ]
**]
**]
* Reduced mass ] and ]s in:
** ] for ]
** ]s for a larger ship's ], canal boats, small ] work-boats.
** Lighter ]s in general
***]
***]
***] - properly distinct from a ] which operates under differing rules and may share a road.
]
], 1866]]
], 1877]]


The first mechanical trams were powered by ]. Generally, there were two types of steam tram. The first and most common had a small ] (called a ] in the UK) at the head of a line of one or more carriages, similar to a small train. Systems with such steam trams included ], New Zealand; ], ]; Sydney, Australia and other city systems in ]; ], Germany (from August 1883 on),<ref name="Muenchen1964">{{cite news| url = http://www.tram-muenchen.de/geschichte/chronik-vor1964.html| title = 1876–1964 (Überblick)| archive-url = https://archive.today/20110224053241/http://www.tram-muenchen.de/geschichte/chronik-vor1964.html| archive-date = 24 February 2011| access-date = 2015-03-08| url-status = dead}}</ref> ] (from 1885), The Hague, Netherlands, 1878,<ref>Stoomtram in en om Den Haag en Gouda, R. F. de Bock, Wyt Publishers, 1972, ISBN 90 6007 642 7.</ref> and the Dublin & Blessington Steam Tramway (from 1888) in Ireland. Steam tramways also were used on the suburban tramway lines around ] and ]; the last ''Gamba de Legn'' ("Peg-Leg") tramway ran on the Milan-]-Castano Primo route in late 1958.{{Citation needed|date=July 2011}}
On 16 May 1881, ] opened the world's first electric tramway in the village of Gross-Lichterfelde, (later incorporated into Berlin-Steglitz). The electric tram was built in meter gauge and ran from today's suburban station East Lichterfelde to the cadet school in the Zehlendorfer Strasse (today Finckensteinallee). At first, the route was just a testing plant; Siemens named it an "elevated line taken down from its pillars and girders". The route was regauged to standard gauge in October 1925. (See ]).


The other style of steam tram had the steam engine in the body of the tram, referred to as a ] (UK) or ] (US). The most notable system to adopt such trams was in Paris. French-designed steam trams also operated in ], in the Australian state of ] between 1909 and 1939. ], Sweden, had a steam tram line at the island of ] between 1887 and 1901.
In 1883, Magnus Volk constructed his 2-foot gauge ] along the eastern seafront at Brighton, England. This 2-km line, re-gauged to 2ft 9ins in 1884, remains in service to this day, and is the '''oldest operating electric tramway''' in the world.


==Cable-hauled==
]
{{Main|Cable car (railway)}}
The first electric '''street''' tramway in Britain, the ], was opened on 29 September 1885 using conduit collection along Blackpool Promenade. After 1960, this remained the only first-generation operational tramway in the UK; it is open yet.
] cable-operated railway, 1840]]
]
]: a cable pulled system, still operating {{as of|2017|lc=y}}]]


Another motive system for trams was the cable car, which was pulled along a ] by a moving steel cable. The power to move the cable was normally provided at a "powerhouse" site some distance away from the actual vehicle.
The first successful, continuously-operating electrified streetcar system in the USA was established in ] in 1886, giving it the nickname "The Electric City", but the first large-scale electric street railway system was built in ], in January 1888. By 1890 over 100 such systems had been begun or were planned.


The ], which opened for passengers in ], England, in 1840 used such a system.<ref>{{cite journal|last=Robertson|first=Andrew|date=March 1848|title=Blackwall Railway Machinery|journal=The Civil Engineer and Architect's Journal|publisher=Wiley & Putnam|location=New York|volume=11}}</ref>
==Disappearance from many cities==
The advent of personal motor vehicles and the improvements in motorized buses caused the rapid disappearance of the tram from most western and Asian countries by the end of the 1950s. Continuing technical improvements in buses made them more reliable (than before), and a serious competitor to trams because they did not require the construction of costly infrastructure. However, the demise of the streetcar came when lines were torn out of the major cities by "bus manufacturing or oil marketing companies for the specific purpose of replacing rail service with buses."<ref>, American Public Transportation Association</ref>


The first practical cable car line was tested in ], in 1873. Part of its success is attributed to the development of an effective and reliable ] mechanism, to grab and release the moving cable without damage. The second city to operate cable trams was ] in New Zealand, from 1881 to 1957.
In many cases postwar buses were cited as providing a smoother ride and a faster journey than the older, prewar trams. For example, the tram network survived in Budapest but for a considerable period of time bus fares were higher to recognize the superior quality of the buses. However, many riders protested against the replacement of streetcars arguing that buses weren't as smooth or efficient and polluted the air. In the United States, there have been allegations that the ] was responsible for the replacement of trains with buses, but critics of this theory point to evidence that larger economic forces were driving conversion before General Motors' actions and outside of its reach. Certainly the oldest system of all, the ] of 1807, was purchased by the The South Wales Transport Company (which operated a large motor bus fleet in the area) and despite vociferous local opposition, closed down in 1960.


The most extensive cable system in the US was built in ] between 1882 and 1906.<ref>{{cite book|last=Borzo|first=Greg|title=Chicago Cable Cars|year=2012|publisher=The History Press|isbn=978-1-60949-327-1|pages=15–21}}</ref>{{when|date=March 2013}} New York City developed at least seven cable car lines.{{when|date=March 2013}} Los Angeles also had several cable car lines, including the Second Street Cable Railroad, which operated from 1885 to 1889, and the Temple Street Cable Railway, which operated from 1886 to 1898.
Governments thus put investment principally into bus networks. Indeed, infrastructure for roads and highways meant for the automobile were perceived as a mark of progress. The priority given to roads is illustrated in the proposal of French president ] who declared in 1971 that "the city must adapt to the car".


] in ] in 1905.]]
Tram networks were no longer maintained or modernized, a state of affairs that served to discredit them in the eyes of the public. Old lines, considered archaic, were then bit by bit replaced by buses.
], circa 1919–20. ] once had one of the largest tram networks in the world.]]
From 1885 to 1940, the city of ], Victoria, Australia operated one of the largest cable systems in the world, at its peak running 592 trams on {{convert|75|km|mi}} of track, though during its heyday, ],<ref></ref> with about 1,600 cars in service at any one time at its peak during the 1930s (cf. about 500 trams in Melbourne today). There were also two isolated cable lines in Sydney, the North Sydney line from 1886 to 1900,<ref>]</ref> and the King Street line from 1892 to 1905. Sydney's tram network ceased to serve the city population by the 1960s, with all tracks being removed, in lieu of a bus service. Melbourne's tram network, however, continues to run to this day.


In ], Germany, in 1901 an elevated ] cable car following the ''Eugen Langen one-railed floating tram system'' started operating. Cable cars operated on ] in North London,{{when|date=March 2013}} and ] to ] Hill in South London (1891–1905).<ref>{{cite web |title=Vauxhall, Oval & Kennington - The Brixton Tramway |url=https://www.vauxhallandkennington.org.uk/brixton_tramway.html |website=www.vauxhallandkennington.org.uk |access-date=8 February 2022}}</ref> They also worked around "Upper Douglas" in the ] from 1897 to 1929 (cable car 72/73 is the sole survivor of the fleet).
Tram networks disappeared almost completely from ], ], ], ], the ], ], and altogether from ], ], ] and ]. On the other hand, they were generally retained or modernized in most ] countries, as well as ], ], ], ], ], the ], ], ] and ]. In France, only the networks in ], ] and ], survive from this period, but they all suffered significant reduction from their original size. In Great Britain, only the ] kept the faith, with an extensive system which includes some street running in Blackpool, and a long stretch of segregated track to nearby Fleetwood. Most ]s disappeared by 1973, with the exception of the extensive system in ], and ] in ]. There are also many tourist tram lines operating in ] including ] and ], and ] including ] and ].


Cable cars suffered from high ] costs, since an expensive system of ], ]s, ]s and lengthy underground vault structures beneath the rails had to be provided. They also required physical strength and skill to operate, and alert operators to avoid obstructions and other cable cars. The cable had to be disconnected ("dropped") at designated locations to allow the cars to coast by inertia, for example when crossing another cable line. The cable would then have to be "picked up" to resume progress, the whole operation requiring precise timing to avoid damage to the cable and the grip mechanism. Breaks and frays in the cable, which occurred frequently, required the complete cessation of services over a cable route while the cable was repaired. Due to overall wear, the entire length of cable (typically several kilometres) would have to be replaced on a regular schedule. After the development of reliable electrically powered trams, the costly high-maintenance cable car systems were rapidly replaced in most locations.
==Return to grace==
]]]
] produced ] tram in ]]]
], 2004.]]


Cable cars remained especially effective in hilly cities since their non-driven wheels would not ] as they climbed or descended a steep hill. The moving cable would physically pull the car up the hill at a steady pace, unlike a low-powered steam or horse-drawn car. Cable cars do have wheel brakes and ]s, but the cable also restrains the car so that it goes downhill at a constant speed (9 mph in San Francisco). Performance in steep terrain partially explains the survival of cable cars in San Francisco.
The priority given to personal vehicles and notably to the automobile led to a loss in quality of life, particularly in large cities where ], ], ] and ] became problematic. Acknowledging this, some authorities saw fit to redefine their transport policies. ] required a heavy investment and presented problems in terms of subterranean spaces that required constant security. For rapid transit, the investment was mainly in underground construction, which made it impossible in some cities (with underground water reserves, archaeological remains, etc.). Metro construction thus was not a universal panacea.


The ], though significantly reduced in number, continue to perform a regular transportation function, in addition to being a well-known ]. A single cable line also survives in ], New Zealand (rebuilt in 1979 as a ] but still called the ]). Another system, actually two separate cable lines with a shared power station in the middle, operates from the Welsh town of ] up to the top of the ] hill in ], UK.
The advantages of the tram thus became once again visible. At the end of the 1970s, some governments studied, and then built new tram lines. In France, ] and ] lead the way in terms of the modern tram, and new systems were inaugurated in 1985 and 1988. The first UK modern light rail system opened in ] in ] with ] built vehicles. In 1994 ] opened a system with novel British-built trams, specified by the city, with the goal of breaking with the archaic conceptual image that was held by the public.


==Gas==
The renaissance of light rail in North America began in 1978 when the Canadian city of ] adopted the German ] system, followed three years later by ], ] and ]. Britain began replacing its run-down local railways with light rail in the 1980s, starting with ] and followed by the ] in London. The trend to light rail in the United Kingdom was firmly established with the success of the ] system and ] in 1992, followed by ] in 2000.
In the late 19th and early 20th centuries, a number of systems in various parts of the world employed trams powered by gas, ] gas or ] in particular. Gas trams are known to have operated between ] and ] in the northern suburbs of ], Australia (1886–1888); in Berlin and ], Germany; between ], ], and ] in Poland (from 1897); and in the UK at ], ] (1896–1920), and ], Manchester (1897–1908).


On 29 December 1886 the Melbourne newspaper '']'' reprinted a report from the '']'' that Mr Noble had demonstrated a new 'motor car' for tramways 'with success'. The tramcar 'exactly similar in size, shape, and capacity to a cable grip car' had the 'motive power' of gas 'with which the reservoir is to be charged once a day at power stations by means of a rubber hose'. The car also carried an electricity generator for 'lighting up the tram and also for driving the engine on steep grades and effecting a start'.<ref>{{cite news |url=http://nla.gov.au/nla.news-article11584473 |title=WEDNESDAY, DECEMBER 29, 1886. |newspaper=] |location=Melbourne |date=29 December 1886 |access-date=10 March 2013 |page=5 |via=National Library of Australia}}</ref>
A great example of this shift in ideology is the city of ], which began replacing its tram network with a ] a few years before the ]. When the metro network was finished in the 1990s the city began to tear out the tram network (which had become rather old and decrepit), but now faced opposition from many citizens who enjoyed the enhanced mobility of the mixed network -- the metro lines deviate from the tram lines to a significant degree. New ] was purchased and the system was modernized, and a new line was proposed in 2003.


Comparatively little has been published about gas trams. However, research on the subject was carried out for an article in the October 2011 edition of "The Times", the historical journal of the Australian Association of Timetable Collectors, now the Australian Timetable Association.<ref>{{cite web|url=http://cdn.timetable.org.au/thetimes201110issue.pdf|title=Australian Timetable Association|last=Isaacs|first=Albert|date=2012-08-10|publisher=austta.org.au|access-date=2012-12-08}}</ref><ref>{{cite web|url=http://markthefitter.blogspot.com/2008_11_01_archive.html |title=mark the fitter: November 2008 |publisher=Markthefitter.blogspot.com |date=2008-11-17 |access-date=2015-03-08}}</ref><ref>http://www.google.com.au/search?q=%22gas+tram%22+Northcote+history&rls=com.microsoft:en-au:IE-SearchBox&ie=UTF-8&oe=UTF-8&sourceid=ie7&rlz=1I7GGLL_en-GB&redir_esc=&ei=R1MvTpXqGamdmQW4ofga {{Webarchive|url=https://archive.today/20121230092858/http://www.google.com.au/search?q=%22gas+tram%22+Northcote+history&rls=com.microsoft:en-au:IE-SearchBox&ie=UTF-8&oe=UTF-8&sourceid=ie7&rlz=1I7GGLL_en-GB&redir_esc=&ei=R1MvTpXqGamdmQW4ofga |date=30 December 2012 }}</ref><ref name=Ceti>
It was the Olympic games of 2004 that prompted the redevelopment of trams as part of the ]. The tramways in Athens are among the most modern in the world, integrated with the revived ] system, as well as the buses, trolleybuses and suburban trains.
{{cite news |url=http://www.ceti.pl/js29a/ciepl/en,ecal.html |title=Cieplice lšskie Zdrój is one of the best known Silesian towns |archive-url=https://web.archive.org/web/20060929211328/http://www.ceti.pl/js29a/ciepl/en%2Cecal.html |archive-date=29 September 2006 |access-date=2015-03-08
|url-status=dead |df=dmy-all }}</ref>


A tram system powered by ] was due to open in ] in 2012,<ref name=NgvJournal>{{cite news| url = http://www.ngvjournal.com/pt/veiculos/item/4266-malaysia-first-compressed-natural-gas-tram-in-the-world-will-be-ready-next-year| title = Malaysia: first compressed natural gas tram in the world will be ready next year| publisher = ]| date = 2011-02-22| archive-url = https://web.archive.org/web/20120328055237/http://www.ngvjournal.com/pt/veiculos/item/4266-malaysia-first-compressed-natural-gas-tram-in-the-world-will-be-ready-next-year| archive-date = 28 March 2012| url-status = dead| access-date = 30 June 2016}}</ref> but the news about the project appears to have dried up.
In ], ], the already extensive tramway system continues to be extended. In 2004 the Mont Albert line was extended several kilometres to Box Hill, whilst in 2005 the Burwood East line was extended several kilometres to Vermont South.


==Electric==
== Technical developments ==
] tram in Berlin, 1882]]
] was the first city in ] to have a full-time (from dawn to dusk) operational electric tram line. Since then it has upgraded to more modern trams.]]
], built in 1883, is still in operation]]
<!-- Unsourced image removed: ] tram in ]]] -->
]cars, powered by bipolar overhead line, 1883]]
] streetcar]]
] in ]]]
], 1890s]]


The world's first experimental electric tramway was built by Ukrainian inventor ] near St Petersburg, Russian Empire, in 1875. The first commercially successful electric tram line operated in ] near Berlin, Germany, in 1881. It was built by ] (see ]). It initially drew current from the rails, with the overhead wire being installed in 1883.<ref> {{webarchive|url=https://web.archive.org/web/20160101185206/https://books.google.com/books?id=wN4DAAAAMBAJ&pg=PA750&dq=Popular+Science+1930+plane+%22Popular+Mechanics%22&hl=en&ei=fxBvTp7pAoyhtwfhqq33CQ&sa=X&oi=book_result&ct=result&resnum=8&ved=0CEQQ6AEwBzgU |date=1 January 2016 }} ''Popular Mechanics'', May 1929, pg. 750. via Google Books.</ref>
Modern trams generally use overhead electric cables, from which they draw current through a ], a ] (less commonly) or the now-rare ] (the pantograph is most common and used on new tram designs). There are other methods of powering electric trams, sometimes preferred for aesthetic reasons since poles and overhead wires are not required. The old tram systems in ], ] (New York City), and ], used live rails, like those on third-rail electrified railways, but in a conduit underneath the road, from which they drew power through a ]. It was called ]. Washington's was the last of these to close, in 1962. Today, no commercial tramway uses this system. More recently, a modern equivalent to the old stud systems has been developed which allows for the safe installation of a ] on city streets, which is known as surface current collection or ]; the main example of this is the new tramway in ].


In Britain, Leeds introduced Europe's first overhead electric service (Roundhay Electric Tramway) on 29 October 1891, though strictly speaking, it did not officially open to passengers until the following month.<ref>{{Cite web |title=Leeds City Tramways Uniform |url=http://www.tramwaybadgesandbuttons.com/page148/styled-79/page174/page174.html |access-date=2023-10-04 |website=Tramway Systems of the British Isles |language=en}}</ref> The ] was opened in 1883 in ]. This two kilometer line, re-gauged to {{convert|2|ft|9|in|mm}} in 1884, remains in service to this day, and is the oldest operating electric tramway in the world. Also in 1883, ] was opened near ] in Austria. It was the first tram in the world in regular service that was run with electricity served by an overhead line with pantograph current collectors. The ], was opened in Blackpool, England on 29 September 1885 using conduit collection along Blackpool Promenade. This system is still in operation in a modernised form.
In narrow situations double-track tram lines sometimes reduce to single track, or, to avoid ], have the tracks interlaced, e.g. in the Leidsestraat in ] on three short stretches (see ); this is known as interlaced or ]. There is a UK example of interlaced track on the ], just west of Mitcham Station, where the formation is narrowed by an old landslip causing an obstruction. (See photo in ] entry).


The earliest tram system in Canada was by ], brother of the famous mining entrepreneur ], in ] in 1883. In the US, multiple functioning experimental ] were exhibited at the 1884 ] World's Fair in ], but they were not deemed good enough to replace the ] fireless engines then propelling the ] in that city. The first commercial installation of an electric streetcar in the United States was built in 1884 in ], ] and operated for a period of one year by the East Cleveland Street Railway Company.<ref>{{cite web|last=American Public Transportation Association |title=Milestones in U.S. Public Transportation History |url=http://apta.com/research/stats/history/mileston.cfm |access-date=2013-03-20 |url-status=dead |archive-url=https://web.archive.org/web/20090303212350/http://apta.com/research/stats/history/mileston.cfm |archive-date=3 March 2009 }}</ref> Trams were operated in ], in 1888, on the ] built by ]. Sprague later developed ] control, first demonstrated in Chicago in 1897, allowing multiple cars to be coupled together and operated by a single motorman. This gave birth to the modern subway train.
Traditionally trams had high floors, requiring passengers to climb several steps in order to board, but since the 1990s this design has been largely replaced by ] trams, or occasionally by high-floor trams with level boarding platforms, as in ] and some parts of ]'s network, which allow passengers in ]s or with ]s to access vehicles more easily. In some jurisdictions this has even been made mandatory since the 1990s, for example by the ] in Britain and the ] in the United Kingdom and other ] countries.


Earlier electric installations often proved difficult or unreliable. The Lichterfelde line, for example, provided power through a live rail and a return rail, like a ], limiting the ] that could be used, and providing electric shocks to people and animals crossing the tracks.<ref>{{cite web|last = Wood|first = E. Thomas|title = Nashville now and then: From here to there|url = http://www.nashvillepost.com/news/2007/4/27/nashville_now_and_then_from_here_to_there|access-date = 7 August 2007|url-status = live|archive-url = https://web.archive.org/web/20070928011259/http://www.nashvillepost.com/news/2007/4/27/nashville_now_and_then_from_here_to_there|archive-date = 28 September 2007|df = dmy-all}}</ref> The system for collecting electricity from the ]s was soon improved, however, through Frank J. Sprague's trolley pole and Werner von Siemens' ]. With new, reliable technology available, electric tram systems were rapidly adopted across the world.
Historically, the ] has had considerable variations, with ] common in many early systems. However, most light rail systems are now ]. An important advantage of standard gauge is that standard railway maintenance equipment can be used on it, rather than custom-built machinery. Using standard gauge also allows light rail vehicles to be delivered and relocated conveniently using freight railways and locomotives. Another factor favoring standard gauge is that low-floor vehicles are becoming popular, and there is generally insufficient space for wheelchairs to move between the wheels in a narrow gauge layout.

] designed and produced the first ] that operated a streetcar without gears. The motor had its ] direct-connected to the ]'s ] for the driving force.{{sfn|Kaempffert|Martin|1924|pages=122-123}}{{sfn|Hammond|2011|p=142}}<ref name=FtWorth1894>{{cite news |author=<!--Staff writer(s); no by-line.--> |title= Professor Sidney Howe Short experiments with motors |url=https://www.newspapers.com/clip/9450242// | work=] |location=Fort Worth, Texas |date= November 11, 1894 |via=] {{open access}} }}</ref><ref name="Grace">{{cite web |url=http://www.gracesguide.co.uk/Sidney_Howe_Short |title=Sidney Howe Short |work=Grace's Guide to British Industrial History |publisher=Grace's Guide Ltd. |access-date=March 10, 2017 |url-status=live |archive-url=https://web.archive.org/web/20170312062123/http://www.gracesguide.co.uk/Sidney_Howe_Short |archive-date=12 March 2017 |df=dmy-all }}</ref><ref name=Topeka1894>{{cite news |author=<!--Staff writer(s); no by-line.--> |title= Street Railways his hobby |url=https://www.newspapers.com/clip/9450668// | work=] |location=Topeka, Kansas |date=November 14, 1894 |via=] {{open access}}}}</ref> Short pioneered "use of a conduit system of concealed feed" thereby eliminating the necessity of ], ]s and a ] for street cars and railways.{{sfn|Malone|1928|p=128}}{{sfn|Kaempffert|Martin|1924|pages=122-123}}{{sfn|Hammond|2011|p=142}} While at the University of Denver he conducted important experiments which established that ] powered cars were a better way to operate trains and trolleys.{{sfn|Kaempffert|Martin|1924|pages=122-123}}{{sfn|Hammond|2011|p=142}}

] built a citywide system of electric trams in 1885.<ref>{{cite web |url=http://www.sarajevo.ba/en/stream.php?kat=79 |title=Sarajevo Official Web Site : Sarajevo through history |publisher=Sarajevo.ba |date=1914-06-29 |access-date=2015-03-08 |url-status=dead |archive-url=https://web.archive.org/web/20141023042858/http://www.sarajevo.ba/en/stream.php?kat=79 |archive-date=23 October 2014 |df=dmy-all }}</ref> ] established ] in 1887, and its ring line has grown to be the busiest tram line in Europe, with a tram running every 60 seconds at rush hour. ] and ]<ref>{{cite web |url=http://www.beograd.org.rs/cms/view.php?id=201239 |title=City of Belgrade – Important Years in City History |publisher=Beograd.org.rs |date=2000-10-05 |access-date=2015-03-08 |url-status=live |archive-url=https://web.archive.org/web/20150111233244/http://www.beograd.org.rs/cms/view.php?id=201239 |archive-date=11 January 2015 |df=dmy-all }}</ref> ran a regular service from 1894.<ref>{{cite web |url=http://hampage.hu/trams/e_index.html |title=Trams of Hungary and much more |publisher=Hampage.hu |access-date=2015-03-08 |url-status=live |archive-url=https://web.archive.org/web/20150302131306/http://hampage.hu/trams/e_index.html |archive-date=2 March 2015 |df=dmy-all }}</ref><ref>{{cite web |url=http://www.ratb.ro/index.php?page=meniu&id_rubrica_meniu=13 |title=RATB – Regia Autonoma de Transport București |publisher=Ratb.ro |access-date=2015-03-08 |url-status=dead |archive-url=https://web.archive.org/web/20150318064322/http://www.ratb.ro/index.php?page=meniu&id_rubrica_meniu=13 |archive-date=18 March 2015 |df=dmy-all }}</ref> ] introduced ] in 1901&nbsp;– it closed in 1958.<ref>{{cite web|url=http://www.jhl.si/en/lpp/?m=51&k=1605 |title=Historical Highlights |publisher=Ljubljanski potniški promet |access-date=25 April 2012 |url-status=dead |archive-url=https://web.archive.org/web/20120304092909/http://www.jhl.si/en/lpp/?m=51&k=1605 |archive-date=4 March 2012 }}</ref>

The first electric tramway in Australia was a Sprague system demonstrated at the 1888 ] in ]; afterwards, this was installed as a commercial venture operating between the outer Melbourne suburbs of ] and ] from 1889 to 1896.<ref>{{cite book|last1=Green|first1=Robert|title=The first electric road : a history of the Box Hill and Doncaster tramway|date=1989|publisher=John Mason Press|location=East Brighton, Victoria|isbn=0731667158}}</ref> As well, electric systems were built in ], ], ], ], ], ], ], ], ], ], ], ] and ]. By the 1970s, the only tramway system remaining in Australia was the Melbourne tram system other than a few single lines remaining elsewhere: the ], connecting Adelaide to the beachside suburb of ], and tourist trams in the Victorian ] cities of Ballarat and Bendigo. In recent years the Melbourne system, generally recognised as one of the largest in the world, has been considerably modernised and expanded. The Adelaide line has also been extended to the Entertainment Centre, and there are plans to expand further.

In Japan, the Kyoto Electric railroad was the first tram system, starting operation in 1895.<ref>. Retrieved 12 February 2009.</ref> By 1932, the network had grown to 82 railway companies in 65 cities, with a total network length of {{convert|1,479|km|mi|abbr=on}}.<ref>. Retrieved 12 February 2009.</ref> By the 1960s the tram had generally died out in Japan.

Two rare but significant alternatives were ], which was widely used in London, Washington, D.C. and New York City, and the ] method, used in ] (the Lorain system), ] and ] in the UK (the Dolter stud system), and currently in ], France (the ] system).

The convenience and economy of electricity resulted in its rapid adoption once the technical problems of production and transmission of electricity were solved. Electric trams largely replaced animal power and other forms of motive power including cable and steam, in the late 19th and early 20th centuries.

There is one particular hazard associated with trams powered from a trolley off an overhead line. Since the tram relies on contact with the rails for the current return path, a problem arises if the tram is derailed or (more usually) if it halts on a section of track that has been particularly heavily sanded by a previous tram, and the tram loses electrical contact with the rails. In this event, the underframe of the tram, by virtue of a circuit path through ancillary loads (such as saloon lighting), is live at the full supply voltage, typically 600 volts. In British terminology, such a tram was said to be 'grounded'—not to be confused with the US English use of the term, which means the exact opposite. Any person stepping off the tram completed the earth return circuit and could receive a nasty electric shock. In such an event the driver was required to jump off the tram (avoiding simultaneous contact with the tram and the ground) and pull down the trolley before allowing passengers off the tram. Unless derailed, the tram could usually be recovered by running water down the running rails from a point higher than the tram. The water providing a conducting bridge between the tram and the rails.

In the 2000s, two companies introduced catenary-free designs. The ] line uses a third rail, and Bombardier's Primove LRV is charged by contactless induction plates embedded in the trackway.<ref> {{webarchive|url=https://web.archive.org/web/20090129082418/http://thetransportpolitic.wordpress.com/2009/01/22/bombardier-presents-new-catenary-free-streetcar/ |date=29 January 2009 }}, "The transport politic"</ref>

===Battery===

As early as 1834, ], a Vermont blacksmith, had invented a battery-powered electric motor which he later patented. The following year he used it to operate a small model electric car on a short section of track four feet in diameter.<ref>. Retrieved 14 February 2009.</ref><ref> {{webarchive|url=https://web.archive.org/web/20081016141835/http://chem.ch.huji.ac.il/history/davenport.html |date=16 October 2008 }}. Retrieved 14 February 2009.</ref>

Attempts to use ] as a source of electricity were made from the 1880s and 1890s, with unsuccessful trials conducted in among other places ] and ] in Australia, and for about 14 years as ] ''accutram'' of ] in the Netherlands. The first trams in ], Australia, in 1892, were battery-powered but within as little as three months they were replaced with horse-drawn trams. In New York City some minor lines also used storage batteries. Then, comparatively recently, during the 1950s, a longer battery-operated tramway line ran from Milan to ]. In China there is a ] and has been running since 2014.<ref>{{cite web|url=http://www.railwaygazette.com/news/urban/single-view/view/battery-trams-running-in-nanjing.html?sword_list%255B%255D=nanjing&sword_list%255B%255D=tram&no_cache=1|title=Battery trams running in Nanjing|last=UK|first=DVV Media|website=]|access-date=2016-06-02|url-status=live|archive-url=https://web.archive.org/web/20180114232814/http://www.railwaygazette.com/news/urban/single-view/view/battery-trams-running-in-nanjing.html?sword_list%255B%255D=nanjing&sword_list%255B%255D=tram&no_cache=1|archive-date=14 January 2018|df=dmy-all}}</ref>

==Other power sources==
], on line 19 in the 1920s]]

In some places, other forms of power were used to power the tram.

] and some other tramways, for example ] in Sweden and some lines in ], used ] trams. Paris operated trams that were powered by ] using the ].

] in Texas operated diesel trams due to the city's hurricane-prone location, which would result in frequent damage to an electrical supply system. Although ] promotes its tourist tram<ref>{{cite web|url=http://www.google.com.au/search?q=Portland+Tram&rls=com.microsoft:en-au:IE-SearchBox&ie=UTF-8&oe=UTF-8&sourceid=ie7&rlz=1I7GGLL_en-GB&redir_esc=&ei=RPExTqDCHKzzmAWQuZTxCg|title=Portland Tram – Google Search|work=Google.com.au|access-date=2015-03-08}}</ref> as being a cable car it actually operates using a hidden diesel motor. The tram, which runs on a circular route around the town of Portland, uses dummies and salons formerly used on the extensive ] and now beautifully restored.

In March 2015, ] (CSR) demonstrated the world's first hydrogen ] tramcar at an assembly facility in Qingdao. The chief engineer of the CSR subsidiary ], Liang Jianying, said that the company is studying how to reduce the running costs of the tram.<ref>{{cite web| url=http://en.yibada.com/articles/21142/20150321/china-worlds-first-hydrogen-fueled-tram.htm#|title=China Presents the World's First Hydrogen-Fueled Tram}}</ref><ref>{{cite web|url=http://www.iflscience.com/technology/china-develops-worlds-first-hydrogen-powered-tram|title=China Develops World's First Hydrogen-Powered Tram|work=IFLScience|date=24 March 2015 }}</ref>

==Hybrid systems==
] in ], Italy.]]

The ] in ] operates a hybrid funicular tramway system. Conventional electric trams are operated in ] and on ] for most of their route. However, on one steep segment of track, they are assisted by cable tractors, which push the trams uphill and act as brakes for the downhill run. For safety, the cable tractors are always deployed on the downhill side of the tram vehicle.

Similar systems were used elsewhere in the past, notably on the ] in Seattle and the ] wharf line in Sydney.

==Rail profile==
At first the ] protruded above street level, causing accidents and problems for pedestrians. They were supplanted in 1852 by ] or ], invented by ].<ref> {{webarchive|url=https://web.archive.org/web/20080922173813/http://www.valdeseinevert.net/spip.php?article84 |date=22 September 2008 }}. In French. Retrieved 11 February 2009.</ref> Loubat, inspired by Stephenson, built the first tramline in Paris, France. The {{convert|2|km|mi|abbr=on}} line was inaugurated on 21 November 1853, in connection with the ], running on a trial basis from ] to ] and later to the village of ].<ref>. Retrieved 11 February 2009.</ref>

The ] is one of the few in North America still operating in the classic style on street trackage shared with car traffic, where streetcars stop on demand at frequent stops like buses rather than having fixed stations. Known as Red Rockets because of their colour, they have been operating since the mid-19th century – ] service started in 1856 and electric service in 1892.<ref>. Retrieved 11 February 2009.</ref>

==Decline==
{{See also|Effects of the car on societies}}
], January 1969. (Grossraumtriebwagen 524) The then obsolete tram model would soon be phased out, and the entire system closed.]]

The advent of personal motor vehicles and the improvements in motorized buses caused the rapid disappearance of the tram from most western and Asian countries by the end of the 1950s (for example the first major UK city to completely abandon its trams was ] by January 1949). Continuing technical and reliability improvements in buses made them a serious competitor to trams because they did not require the construction of costly infrastructure.<ref>{{cite web |url=http://www.lava.net/cslater/TQOrigin.pdf |title=Archived copy |website=www.lava.net |access-date=14 January 2022 |archive-url=https://web.archive.org/web/20070702205035/http://www.lava.net/cslater/TQOrigin.pdf |archive-date=2 July 2007 |url-status=dead}}</ref> However, the demise of the streetcar came when lines were torn out of the major cities by "bus manufacturing or oil marketing companies for the specific purpose of replacing rail service with buses."<ref>{{cite web | url=http://www.heritagetrolley.org/articleTennyson.htm | title=Transit Ridership – Rail vs. Bus | publisher=APTA Streetcar and Heritage Trolley Site | access-date=4 July 2015 }}</ref>

In many cases, postwar buses were cited as providing a smoother ride and a faster journey than the older, pre-war trams. For example, the tram network survived in Budapest but for a considerable period of time bus fares were higher to recognize the superior quality of the buses. However, many riders protested against the replacement of streetcars arguing that buses weren't as smooth or efficient and polluted the air. In the United States, there have been allegations that the ] was responsible for the replacement of trains with buses, but critics of this theory point to evidence that larger economic forces were driving conversion before General Motors' actions and outside of its reach. Certainly, the oldest system of all, the ] of 1807, was purchased by The South Wales Transport Company (which operated a large motorbus fleet in the area) and despite vociferous local opposition, closed down in 1960.

Governments thus put investment principally into bus networks. Indeed, infrastructure for roads and highways meant for the automobile were perceived as a mark of progress. The priority given to roads is illustrated in the proposal of French president ] who declared in 1971 that "the city must adapt to the car". Tram networks were no longer maintained or modernized, a state of affairs that served to discredit them in the eyes of the public. Old lines, considered archaic, were then gradually replaced by buses.

Tram networks disappeared almost completely from France, the UK, and altogether from Ireland, Denmark, Spain, as well as being completely removed from cities such as ], which had one of the largest networks in the world with route length {{convert|291|km|mi|abbr=on}} and ]. The vast majority of tram networks also disappeared in North America, but American cities ], ], ], ], ], ], ], Canadian city ], and ] still retained trams. This situation occurred in Italy and Netherlands, too. There are preserved system in ], ], ], ], ] and between ], and in ], ] and ]. On the other hand, tram systems were generally retained or modernized in most ] countries, as well as Switzerland, West Germany, Austria, Belgium, Norway, Portugal, Sweden, Japan etc. though cuts and closures of entire systems also happened there as the example of Hamburg shows. In France, only the networks in ], ] and ], survive from this period, but they all suffered significant reduction from their original size. In Great Britain, only the ] kept running, with an extensive system which includes some street running in Blackpool, and a long stretch of segregated track to nearby Fleetwood.

==Resurgences==
], 2004]]
] tram in ], 2004]]
] tram in ], 2006]]
The priority given to personal vehicles and notably to the automobile led to a loss in quality of life, particularly in large cities where ], ], ] and ] became problematic. Acknowledging this, some authorities saw fit to redefine their transport policies. ] required a heavy investment and presented problems in terms of subterranean spaces that required constant security. For rapid transit, the investment was mainly in underground construction, which made it impossible in some cities (with underground water reserves, archaeological remains, etc.). Metro construction thus was not a universal panacea.

The advantages of the tram thus became once again visible. At the end of the 1970s, some governments studied, and then built new tram lines. In Germany the ] was a modern tram (or ]) hybrid built to run on heavy rail tracks in a ] type of system. The renaissance of light rail in North America began in 1978 when the Canadian city of ] adopted the German ] system, followed three years later by ] and ].

===1980s and 1990s===
Britain began replacing its run-down local railways with light rail in the 1980s, starting with the ] in ] followed by the ] in London. The trend to light rail in the United Kingdom was firmly established with the success of the ] system and ] in 1992, followed by ] in ] in 1999, and ] in London in 2000.

In France, ] and ] led the way in terms of the modern tram, and new systems were inaugurated in 1985 and 1988. In 1994 ] opened a system with novel British-built trams, specified by the city, with the goal of breaking with the archaic conceptual image that was held by the public.

A great example of this shift in ideology is the city of ], which began replacing ] with a ] a few years before the ]. When the metro network was finished in the 1990s the city began to tear out the tram network (which had become rather old and decrepit), but now faced opposition from many citizens who enjoyed the enhanced mobility of the mixed network—the metro lines deviate from the tramlines to a significant degree. New ] was purchased and the system was modernized, and a new line was proposed in 2003.

], in 1990, ], the world's first completely low floor tram was introduced.{{citation needed|date=April 2024}} West Berlin had shut down its trams in the 1960s but the East reversed a previous decision to shut down the tramway network and new lines have been laid into the western part of Berlin after reunification.

===21st century===
The ] resulted in the return of trams to ]: the ] was integrated with the expanded ] system, as well as the buses, trolleybuses and ].

In ], Australia, the already extensive tramway system continues to be extended. In 2004 the ] was extended several kilometres to Box Hill, whilst in 2005 the ] was extended several kilometres to ]. In Sydney, trams returned in the form of ] with the opening of the ] line in 1997, which has seen extensions and now covers {{convert|7.2|mi|abbr=on}}.

], in 2009, ], the world's first completely ] with ]s was introduced.

In Scotland, ] relaunched its ] on 31 May 2014<ref>{{cite news | url=https://www.bbc.co.uk/news/uk-scotland-edinburgh-east-fife-27250311 | title=Edinburgh tram starting date revealed as 31 May | publisher=BBC | date=2 May 2014 | access-date=4 July 2015 }}</ref> after delayed development which began in 2008. Edinburgh previously had an extensive tram network which began closure in the 1950s.<ref>{{Cite web|url=http://www.grantonhistory.org/transport/edinburgh_tram_maps.htm|title=Granton History: Edinburgh tram routes|access-date=16 May 2014|archive-date=21 October 2017|archive-url=https://web.archive.org/web/20171021040835/http://www.grantonhistory.org/transport/edinburgh_tram_maps.htm|url-status=dead}}</ref> The new network is significantly smaller, {{convert|8.7|mi|km|abbr=on}}, compared to the previous tram network, {{convert|47.3|mi|km|abbr=on}}

Systems such as ]s are bringing rail-based transit to areas that never had it and would not otherwise have gotten it. The ] was one of the first in the modern era and provided one-seat rides where several connections would have been necessary before, increasing ridership by significant amounts upon opening of service compared to the prior bus or local train routes.

==Modern development==
While many networks closed down during the postwar decades, the rolling stock on remaining systems kept developing, with multi-car trains (or ]) with double-end designs and automatic control systems, allowing a single driver to serve more passengers, and decreasing turnaround time. Passenger and driver comfort have improved with stuffed seats and cabin heating. Advertising on trams, including all-over striping, became common.

The resurgence in the late 20th and 21st century has seen development of new technologies such as driverless ] in ],<ref>{{cite news |last1=Connolly |first1=Kate |title=Germany launches world's first autonomous tram in Potsdam |url=https://www.theguardian.com/world/2018/sep/23/potsdam-inside-the-worlds-first-autonomous-tram |work=The Guardian |date=23 September 2018}}</ref> ]s and ].

<!-- Very badly written section. Needs to be improved or removed. For now commenting.
== By country ==
{{More citations needed|section|date=January 2018}}
''Note: The number indicates the number of cities with trams.''

'''Networks in about 1920s (in Golden Age of trams)'''
* Not introduced – Afghanistan, Saudi Arabia, Turkmenistan, United Arab Emirates
* Human – Kenya (1)
* Horse-drawn – Albania (1), Barbados (1), Dominican Republic (3), Fiji (1), Iran (1), Libya (1), Madagascar (1), Nigeria (1), Sierra Leone (1), Zimbabwe (1)...<ref>]</ref>
* Steam system – Democratic Republic of Congo (1), Eritrea (1), Ghana (1), Iraq (1), Suriname (1), Tanzania (1)...<ref>]</ref>
* Diesel or Petrol (gasoline) – Pakistan (1), Haiti(1)
* Electric – Algeria, Australia (about 22 ), Armenia (1), Austria (16), Azerbaijan (3), Colombia (3), Costa Rica (1), Czechoslovakia (21), Brazil, Belarus (4), Belgium (21), Canada, China (8), Denmark (4), Ecuador (2), Egypt, Estonia (2), France (96), Finland (3), Georgia (1), Germany, Honduras (1), Hong Kong (1), Hungary (8), India (7), Indonesia (2), Ireland (11), Isle of Man (4), Italy (about 90), Jamaica (1), Japan (66), Kazakhistan (1), Latvia (4), Lebanon (1), Kazakhstan, Malaysia (1), Mexico (about 20), Mocrocco, Mozambique (1), Myanmar (2), Netherlands (about 35), New Zealand (6 North Island, 4 South Island), Norway (3), North Korea (1), Philippines (1), Portugal (5), Poland (27), Singapore (1), South Korea (2), Spain, Sri Lanka (1), Sudan (1), Syria (2), Sweden (13), Switzerland (28), Thailand (2), Tunisia (1), Turkey (2), Ukraine, United Kingdom (about 190), United States, Ukraine, Uzbekistan (1), Vietnam (2)

'''Networks in about 1970s (in a period when many cities abandoned trams):'''
* Closed completely in many countries like – Albania, Barbados, Denmark, Dominican Republic, Fiji, Greece, Iran, Ireland, Lithuana, Libya, Madagascar, Malaysia, Myanmar, New Zealand, Nigeria, North Korea, Sierra Leone, Singapore, South Africa, South Korea, Syria, Thailand, Turkey, Vietnam, Zimbabwe
* Almost closed with the exception of one or two (maximum three cities), such as – Australia (2), Canada (1), China (3), Estonia (1), Finland (1), France (3), India (1), Mexico (2), Netherlands (3), Sweden (3), United Kingdom (1)
* Systems closed except for a few exceptions – Italy (6), United States (7)
* Some systems closed, some remains – Armenia (1), Austria (7), Azerbaijan, Belarus (4), Belgium (5), Bulgaria, Czechoslovakia (10), East Germany (20), Egypt (2), Hungary (4), Isle of Man (3), Japan (20), Kazakhistan (5), Latvia (3), Norway (2), Poland (15), Portugal (3), Russia, Switzerland (7), Ukraine, West Germany (31)

'''Networks in 2017:'''
* Closed completely in many countries like – Algeria, Armenia, Azerbaijan, Bolivia, Cuba, Ecuador, Georgia, Guyana, Indonesia, Jamaica, Malta, Lebanon, Lithuania, Panama, Paraguay, South Korea, Sri Lanka, Singapore, Syria, Thailand, Trinidad, Uruguay, Uzbekistan, Venezuela, Vietnam
* Closed almost except one or two towns like – Croatia (2), Estonia (1), Finland (1), Greece (1), India (1), Ireland (1), Mexico (2)
* Previously closed but later returned as heritage system – Netherlands (1), Chile (1), New Zealand, Peru (1), South Africa (1)
* Previously closed but later reinstated as modern systems – Algeria (3), Argentina, Colombia (1), Ethiopia (1), Morocco (2), Myanmar (1), North Korea (2), Philippines (1), Singapore, Tunisia (1), Turkey (10).
* Introduced at the site where never before - Dubai (1), Israel (1), Taiwan (Mid-2016) (1).
* Projected returns / or new systems - Australia (Canberra from 2019, Darwin (proposed), in Newcastle construction since 2017 and commissioning in 2019, Paramatta, Sunshine Coast (proposed), Perth, Hobart), Belgium (Lutych in 2022),<ref>http://www.cs-dopravak.cz/zpravy/2016/4/2/belgick-lutych-si-na-obnoven-tramvaj-bude-muset-pokat {{Bare URL inline|date=May 2022}}</ref> Denmark (Aarhus in May 2017 and Odense in 2020),<ref>https://www.cs-dopravak.cz/zpravy/2016/6/1/nvrat-tramvaj-do-dnska-prvn-tramvaj-zahjila-zkouky {{Bare URL inline|date=May 2022}}</ref> Luxembourg (2017, full completion in 2021),<ref>http://www.cs-dopravak.cz/zpravy/2015/12/8/nvrat-tramvaj-do-lucemburku {{Bare URL inline|date=May 2022}}</ref> Sweden (Lund from 2019),<ref>, http://www.cs-dopravak.cz/zpravy/2016/1/27/nov-tramvajov-provoz-ve-vdsku-lund</ref> Switzerland (from 2021 Lausanne),<ref>http://www.cs-dopravak.cz/zpravy/2016/3/11/vcarsk-lausanne-vrt-do-ulic-msta-tramvaj {{Bare URL inline|date=May 2022}}</ref> USA (from 2017 Detroit streetcar).
* Some systems closed, some remain, some reinstated, some new – Australia (4), Austria (7), Czech Republic (7), Brazil, Belarus (4), Belgium (6), Canada (5), China (9), Egypt (2), France(28), Germany (about between 50 and 60), Hungaria (4), Isle of Man (3), Italy (13), Japan (19), Latvia (3), Kazakhstan (3), Netherlands (3), Norway (3), Philippines (1), Portugal (4), Poland (15), Russia, Spain, Slovakia (3), Sweden, Switzerland (7), Ukraine (22), United Kingdom (10), United Arab Emirates (1), United States (35). -->


==See also== ==See also==
{{colbegin}}
*] *]
*]
*] *]
*]
*]
{{colend}}


==References== ==References==
<references /> <references />


==Bibliography==
]
*{{cite book|last=Hammond|first=John Winthrop|title=Men and volts; the story of General Electric|url=https://books.google.com/books?id=ZXYAYAAACAAJ|year=2011|location=Philadelphia, Pennsylvania, USA; London, UK |publisher=General Electric Company; ]; Literary Licensing, LLC|isbn=978-1-258-03284-5|orig-year=1941 |quote=He was to produce the first motor that operated without gears of any sort, having its armature direct-connected to the car axle. |via= }}
]
*{{cite book |last1=Kaempffert |first1=Waldemar Bernhard, Editor |author-link=Waldemar Kaempffert|url=https://archive.org/details/popularhistoryof01kaem |first2=T. Comerford |last2=Martin |year=1924 |title=A Popular History of American Invention |via=] |publisher=Charles Scribner's Sons|location=London, UK; New York, USA |access-date=March 11, 2017 |volume=1 }}
*{{cite book|last=Malone|first=Dumas |author-link=Dumas Malone|title=Sidney Howe Short |url=https://books.google.com/books?id=fxFQAQAAMAAJ&pg=PA128|year=1928|publisher=Charles Scribner's Sons |work=] |location=London, UK; New York, USA |volume=17 }}


]
]
]

Latest revision as of 04:59, 27 December 2024

History of trams, streetcars or trolleys from the early 19th century

Part of a series on
Rail transport

Infrastructure

Service and rolling stock

Urban rail transit

Miscellanea
icon Transport portal
New York's mass transit systems—the elevated steam railway above and cable trolleys below in the 1890s.

The history of trams, streetcars, or trolleys began in the early nineteenth century. It can be divided up into several discrete periods defined by the principal means of motive power used. Eventually the so-called US "street railways" were deemed advantageous auxiliaries of the new elevated and/or tunneled metropolitan steam railways.

Proposed Broadway arcade-railway, 1884

Horse-drawn

Main article: Horsecar
The Welsh Swansea and Mumbles Railway ran the world's first passenger tram service in 1807
Mule-drawn streetcar, Houston, USA, 1870s
An Adelaide, South Australia horse tram and employees at the depot (probably Unley) about 1910
The Douglas Bay Horse Tramway in Douglas, Isle of Man was still operating as of 2017

The world's first passenger tram was the Swansea and Mumbles Railway, in Wales, UK. The Mumbles Railway Act was passed by the British Parliament in 1804, and this first horse-drawn passenger tramway started operating in 1807. It was worked by steam from 1877, and then, from 1929, by very large (106-seater) electric tramcars, until closure in 1961.

The first streetcar in America, developed by John Stephenson, began service in the year 1832. This was the New York and Harlem Railroad's Fourth Avenue Line which ran along the Bowery and Fourth Avenue in New York City. These trams were an animal railway, usually using horses and sometimes mules to haul the cars, usually two as a team. Rarely, other animals were tried, including humans in emergency circumstances. It was followed in 1835 by New Orleans, Louisiana, which is the oldest continuously operating street railway system in the world, according to the American Society of Mechanical Engineers.

The first tram in Continental Europe opened in France in 1839 between Montbrison and Montrond, on the streets inside the towns, and on the roadside outside town. It had permission for steam traction but was entirely run with horse traction. In 1848, it was closed down after repeated economic failure. The tram developed in numerous cities of Europe (some of the most extensive systems were found in Berlin, Budapest, Birmingham, Leningrad, Lisbon, London, Manchester, Paris).

The first tram in South America opened on 10 June 1858 in Santiago, Chile. The first trams in Australia opened in 1860 in Sydney. Africa's first tram service started in Alexandria on 8 January 1863. The first trams in Asia opened in 1869 in Batavia (now Jakarta), Netherlands East Indies (now Indonesia).

Problems with horsecars included the fact that any given animal could only work so many hours on a given day, had to be housed, groomed, fed and cared for day in and day out, and produced prodigious amounts of manure, which the streetcar company was charged with storing and then disposing of. Since a typical horse pulled a streetcar for about a dozen miles a day and worked for four or five hours, many systems needed ten or more horses in stable for each horse car.

Beginning in the late 19th century, horse cars were largely replaced by electric-powered trams. Several inventors and companies were involved in the transition. Werner von Siemens pioneered electric traction in the early 1880s in Berlin. In the USA, Frank J. Sprague's groundbreaking work collecting power from overhead wires using trolleys kickstarted the transition. His spring-loaded trolley pole used a wheel to travel along the wire. In late 1887 and early 1888, using his trolley system, Sprague installed the first successful large electric street railway system in Richmond, Virginia. Within a year, the economy of electric power had replaced more costly horse cars in many cities. By 1889, 110 electric railways incorporating Sprague's equipment had been begun or planned on several continents.

Horses continued to be used for light shunting well into the 20th century. New York City had a regular horse car service on the Bleecker Street Line until its closure in 1917. Pittsburgh, had its Sarah Street line drawn by horses until 1923. The last regular mule-drawn cars in the US ran in Sulphur Rock, Arkansas, until 1926 and were commemorated by a U.S. postage stamp issued in 1983. The last mule tram service in Mexico City ended in 1932, and a mule tram in Celaya, Mexico, survived until 1954. The last horse-drawn tram to be withdrawn from public service in the UK took passengers from Fintona railway station to Fintona Junction one mile away on the main Omagh to Enniskillen railway in Northern Ireland. The tram made its last journey on 30 September 1957 when the Omagh to Enniskillen line closed. The van now lies at the Ulster Folk and Transport Museum.

Horse-drawn trams still operate on the 1876-built Douglas Bay Horse Tramway on the Isle of Man, and on the 1894-built Victor Harbor Horse Drawn Tram, in Adelaide, South Australia. New horse-drawn systems have been established at the Hokkaidō Museum in Japan and in Disneyland.

Steam

See also: Tram engine and Steam dummy

The steam-powered tram engine was a product of multiple steam power innovations and convergence with increased demand for public transportation systems.

A German steam tram engine from the Cologne-Bonn railway, pulling a train through Brühl marketplace, around 1900

After popular promotion of the United States, so called, "Street Railway" car companies using successful citywide horse-drawn railway transportation systems and Tramways Act 1870 (33 & 34 Vict. c. 78) passage. A number of municipal and company-owned street tramways were built or extended with the application of new cognate technology.

1879

Tram engines usually had modifications to make them suitable for street running in residential areas. The wheels, and other moving parts of the machinery, were usually enclosed for safety reasons and to make the engines quieter. Measures were often taken to prevent the engines from emitting visible smoke or steam. Usually, the engines used coke rather than coal as fuel to avoid emitting smoke; condensers or superheating were used to avoid emitting visible steam. A major drawback of this style of the tram was the limited space for the engine so that these trams had to replenish fuel and water more frequently compared to other locomotives. Steam tram engines faded out around the 1890s, being replaced by electric trams.

Cognate technology:

Horse-drawn water pump
Steam launch Waterlily, 1866
Minimum-gauge railway, 1877

The first mechanical trams were powered by steam. Generally, there were two types of steam tram. The first and most common had a small steam locomotive (called a tram engine in the UK) at the head of a line of one or more carriages, similar to a small train. Systems with such steam trams included Christchurch, New Zealand; Adelaide, South Australia; Sydney, Australia and other city systems in New South Wales; Munich, Germany (from August 1883 on), British India (Pakistan) (from 1885), The Hague, Netherlands, 1878, and the Dublin & Blessington Steam Tramway (from 1888) in Ireland. Steam tramways also were used on the suburban tramway lines around Milan and Padua; the last Gamba de Legn ("Peg-Leg") tramway ran on the Milan-Magenta-Castano Primo route in late 1958.

The other style of steam tram had the steam engine in the body of the tram, referred to as a tram engine (UK) or steam dummy (US). The most notable system to adopt such trams was in Paris. French-designed steam trams also operated in Rockhampton, in the Australian state of Queensland between 1909 and 1939. Stockholm, Sweden, had a steam tram line at the island of Södermalm between 1887 and 1901.

Cable-hauled

Main article: Cable car (railway)
Winding drums on the London and Blackwall cable-operated railway, 1840
1906
A San Francisco cable car: a cable pulled system, still operating as of 2017

Another motive system for trams was the cable car, which was pulled along a fixed track by a moving steel cable. The power to move the cable was normally provided at a "powerhouse" site some distance away from the actual vehicle.

The London and Blackwall Railway, which opened for passengers in East London, England, in 1840 used such a system.

The first practical cable car line was tested in San Francisco, in 1873. Part of its success is attributed to the development of an effective and reliable cable grip mechanism, to grab and release the moving cable without damage. The second city to operate cable trams was Dunedin in New Zealand, from 1881 to 1957.

The most extensive cable system in the US was built in Chicago between 1882 and 1906. New York City developed at least seven cable car lines. Los Angeles also had several cable car lines, including the Second Street Cable Railroad, which operated from 1885 to 1889, and the Temple Street Cable Railway, which operated from 1886 to 1898.

Cable tram dummy and trailer on the St Kilda Line in Melbourne in 1905.
Trams on George Street, Sydney, circa 1919–20. Sydney once had one of the largest tram networks in the world.

From 1885 to 1940, the city of Melbourne, Victoria, Australia operated one of the largest cable systems in the world, at its peak running 592 trams on 75 kilometres (47 mi) of track, though during its heyday, Sydney's network was larger, with about 1,600 cars in service at any one time at its peak during the 1930s (cf. about 500 trams in Melbourne today). There were also two isolated cable lines in Sydney, the North Sydney line from 1886 to 1900, and the King Street line from 1892 to 1905. Sydney's tram network ceased to serve the city population by the 1960s, with all tracks being removed, in lieu of a bus service. Melbourne's tram network, however, continues to run to this day.

In Dresden, Germany, in 1901 an elevated suspended cable car following the Eugen Langen one-railed floating tram system started operating. Cable cars operated on Highgate Hill in North London, and Kennington to Brixton Hill in South London (1891–1905). They also worked around "Upper Douglas" in the Isle of Man from 1897 to 1929 (cable car 72/73 is the sole survivor of the fleet).

Cable cars suffered from high infrastructure costs, since an expensive system of cables, pulleys, stationary engines and lengthy underground vault structures beneath the rails had to be provided. They also required physical strength and skill to operate, and alert operators to avoid obstructions and other cable cars. The cable had to be disconnected ("dropped") at designated locations to allow the cars to coast by inertia, for example when crossing another cable line. The cable would then have to be "picked up" to resume progress, the whole operation requiring precise timing to avoid damage to the cable and the grip mechanism. Breaks and frays in the cable, which occurred frequently, required the complete cessation of services over a cable route while the cable was repaired. Due to overall wear, the entire length of cable (typically several kilometres) would have to be replaced on a regular schedule. After the development of reliable electrically powered trams, the costly high-maintenance cable car systems were rapidly replaced in most locations.

Cable cars remained especially effective in hilly cities since their non-driven wheels would not lose traction as they climbed or descended a steep hill. The moving cable would physically pull the car up the hill at a steady pace, unlike a low-powered steam or horse-drawn car. Cable cars do have wheel brakes and track brakes, but the cable also restrains the car so that it goes downhill at a constant speed (9 mph in San Francisco). Performance in steep terrain partially explains the survival of cable cars in San Francisco.

The San Francisco cable cars, though significantly reduced in number, continue to perform a regular transportation function, in addition to being a well-known tourist attraction. A single cable line also survives in Wellington, New Zealand (rebuilt in 1979 as a funicular but still called the Wellington Cable Car). Another system, actually two separate cable lines with a shared power station in the middle, operates from the Welsh town of Llandudno up to the top of the Great Orme hill in North Wales, UK.

Gas

In the late 19th and early 20th centuries, a number of systems in various parts of the world employed trams powered by gas, naphtha gas or coal gas in particular. Gas trams are known to have operated between Alphington and Clifton Hill in the northern suburbs of Melbourne, Australia (1886–1888); in Berlin and Dresden, Germany; between Jelenia Góra, Cieplice, and Sobieszów in Poland (from 1897); and in the UK at Lytham St Annes, Neath (1896–1920), and Trafford Park, Manchester (1897–1908).

On 29 December 1886 the Melbourne newspaper The Argus reprinted a report from the San Francisco Bulletin that Mr Noble had demonstrated a new 'motor car' for tramways 'with success'. The tramcar 'exactly similar in size, shape, and capacity to a cable grip car' had the 'motive power' of gas 'with which the reservoir is to be charged once a day at power stations by means of a rubber hose'. The car also carried an electricity generator for 'lighting up the tram and also for driving the engine on steep grades and effecting a start'.

Comparatively little has been published about gas trams. However, research on the subject was carried out for an article in the October 2011 edition of "The Times", the historical journal of the Australian Association of Timetable Collectors, now the Australian Timetable Association.

A tram system powered by compressed natural gas was due to open in Malaysia in 2012, but the news about the project appears to have dried up.

Electric

The Lichterfelde tram in Berlin, 1882
Volks Electric Railway, built in 1883, is still in operation
First type of Mödling and Hinterbrühl Tramcars, powered by bipolar overhead line, 1883
Fully restored 1920 Toronto streetcar
A Double-decker tram in Blackpool
A Box Hill to Doncaster tram in Melbourne, 1890s

The world's first experimental electric tramway was built by Ukrainian inventor Fyodor Pirotsky near St Petersburg, Russian Empire, in 1875. The first commercially successful electric tram line operated in Lichterfelde near Berlin, Germany, in 1881. It was built by Werner von Siemens (see Berlin Straßenbahn). It initially drew current from the rails, with the overhead wire being installed in 1883.

In Britain, Leeds introduced Europe's first overhead electric service (Roundhay Electric Tramway) on 29 October 1891, though strictly speaking, it did not officially open to passengers until the following month. The Volk's Electric Railway was opened in 1883 in Brighton. This two kilometer line, re-gauged to 2 feet 9 inches (840 mm) in 1884, remains in service to this day, and is the oldest operating electric tramway in the world. Also in 1883, Mödling and Hinterbrühl Tram was opened near Vienna in Austria. It was the first tram in the world in regular service that was run with electricity served by an overhead line with pantograph current collectors. The Blackpool Tramway, was opened in Blackpool, England on 29 September 1885 using conduit collection along Blackpool Promenade. This system is still in operation in a modernised form.

The earliest tram system in Canada was by John Joseph Wright, brother of the famous mining entrepreneur Whitaker Wright, in Toronto in 1883. In the US, multiple functioning experimental electric trams were exhibited at the 1884 World Cotton Centennial World's Fair in New Orleans, Louisiana, but they were not deemed good enough to replace the Lamm fireless engines then propelling the St Charles Streetcar in that city. The first commercial installation of an electric streetcar in the United States was built in 1884 in Cleveland, Ohio and operated for a period of one year by the East Cleveland Street Railway Company. Trams were operated in Richmond, Virginia, in 1888, on the Richmond Union Passenger Railway built by Frank J. Sprague. Sprague later developed multiple unit control, first demonstrated in Chicago in 1897, allowing multiple cars to be coupled together and operated by a single motorman. This gave birth to the modern subway train.

Earlier electric installations often proved difficult or unreliable. The Lichterfelde line, for example, provided power through a live rail and a return rail, like a model train, limiting the voltage that could be used, and providing electric shocks to people and animals crossing the tracks. The system for collecting electricity from the overhead wires was soon improved, however, through Frank J. Sprague's trolley pole and Werner von Siemens' bow collector. With new, reliable technology available, electric tram systems were rapidly adopted across the world.

Sidney Howe Short designed and produced the first electric motor that operated a streetcar without gears. The motor had its armature direct-connected to the streetcar's axle for the driving force. Short pioneered "use of a conduit system of concealed feed" thereby eliminating the necessity of overhead wire, trolley poles and a trolley for street cars and railways. While at the University of Denver he conducted important experiments which established that multiple unit powered cars were a better way to operate trains and trolleys.

Sarajevo built a citywide system of electric trams in 1885. Budapest established its tramway system in 1887, and its ring line has grown to be the busiest tram line in Europe, with a tram running every 60 seconds at rush hour. Bucharest and Belgrade ran a regular service from 1894. Ljubljana introduced its tram system in 1901 – it closed in 1958.

The first electric tramway in Australia was a Sprague system demonstrated at the 1888 Melbourne Centennial Exhibition in Melbourne; afterwards, this was installed as a commercial venture operating between the outer Melbourne suburbs of Box Hill and Doncaster from 1889 to 1896. As well, electric systems were built in Adelaide, Ballarat, Bendigo, Brisbane, Fremantle, Geelong, Hobart, Kalgoorlie, Launceston, Leonora, Newcastle, Perth and Sydney. By the 1970s, the only tramway system remaining in Australia was the Melbourne tram system other than a few single lines remaining elsewhere: the Glenelg tram line, connecting Adelaide to the beachside suburb of Glenelg, and tourist trams in the Victorian Goldfields cities of Ballarat and Bendigo. In recent years the Melbourne system, generally recognised as one of the largest in the world, has been considerably modernised and expanded. The Adelaide line has also been extended to the Entertainment Centre, and there are plans to expand further.

In Japan, the Kyoto Electric railroad was the first tram system, starting operation in 1895. By 1932, the network had grown to 82 railway companies in 65 cities, with a total network length of 1,479 km (919 mi). By the 1960s the tram had generally died out in Japan.

Two rare but significant alternatives were conduit current collection, which was widely used in London, Washington, D.C. and New York City, and the surface contact collection method, used in Wolverhampton (the Lorain system), Torquay and Hastings in the UK (the Dolter stud system), and currently in Bordeaux, France (the ground-level power supply system).

The convenience and economy of electricity resulted in its rapid adoption once the technical problems of production and transmission of electricity were solved. Electric trams largely replaced animal power and other forms of motive power including cable and steam, in the late 19th and early 20th centuries.

There is one particular hazard associated with trams powered from a trolley off an overhead line. Since the tram relies on contact with the rails for the current return path, a problem arises if the tram is derailed or (more usually) if it halts on a section of track that has been particularly heavily sanded by a previous tram, and the tram loses electrical contact with the rails. In this event, the underframe of the tram, by virtue of a circuit path through ancillary loads (such as saloon lighting), is live at the full supply voltage, typically 600 volts. In British terminology, such a tram was said to be 'grounded'—not to be confused with the US English use of the term, which means the exact opposite. Any person stepping off the tram completed the earth return circuit and could receive a nasty electric shock. In such an event the driver was required to jump off the tram (avoiding simultaneous contact with the tram and the ground) and pull down the trolley before allowing passengers off the tram. Unless derailed, the tram could usually be recovered by running water down the running rails from a point higher than the tram. The water providing a conducting bridge between the tram and the rails.

In the 2000s, two companies introduced catenary-free designs. The Alstom Citadis line uses a third rail, and Bombardier's Primove LRV is charged by contactless induction plates embedded in the trackway.

Battery

As early as 1834, Thomas Davenport, a Vermont blacksmith, had invented a battery-powered electric motor which he later patented. The following year he used it to operate a small model electric car on a short section of track four feet in diameter.

Attempts to use batteries as a source of electricity were made from the 1880s and 1890s, with unsuccessful trials conducted in among other places Bendigo and Adelaide in Australia, and for about 14 years as The Hague accutram of HTM in the Netherlands. The first trams in Bendigo, Australia, in 1892, were battery-powered but within as little as three months they were replaced with horse-drawn trams. In New York City some minor lines also used storage batteries. Then, comparatively recently, during the 1950s, a longer battery-operated tramway line ran from Milan to Bergamo. In China there is a Nanjing battery Tram line and has been running since 2014.

Other power sources

The only petrol-driven tram of Stockholms Spårvägar, on line 19 in the 1920s

In some places, other forms of power were used to power the tram.

Hastings and some other tramways, for example Stockholms Spårvägar in Sweden and some lines in Karachi, used petrol trams. Paris operated trams that were powered by compressed air using the Mekarski system.

Galveston Island Trolley in Texas operated diesel trams due to the city's hurricane-prone location, which would result in frequent damage to an electrical supply system. Although Portland, Victoria promotes its tourist tram as being a cable car it actually operates using a hidden diesel motor. The tram, which runs on a circular route around the town of Portland, uses dummies and salons formerly used on the extensive Melbourne cable tramway system and now beautifully restored.

In March 2015, China South Rail Corporation (CSR) demonstrated the world's first hydrogen fuel cell vehicle tramcar at an assembly facility in Qingdao. The chief engineer of the CSR subsidiary CRRC Qingdao Sifang, Liang Jianying, said that the company is studying how to reduce the running costs of the tram.

Hybrid systems

A cable tractor assisting a tramcar on the cable section of the Opicina Tramway in Trieste, Italy.

The Trieste–Opicina tramway in Trieste operates a hybrid funicular tramway system. Conventional electric trams are operated in street running and on reserved track for most of their route. However, on one steep segment of track, they are assisted by cable tractors, which push the trams uphill and act as brakes for the downhill run. For safety, the cable tractors are always deployed on the downhill side of the tram vehicle.

Similar systems were used elsewhere in the past, notably on the Queen Anne Counterbalance in Seattle and the Darling Street wharf line in Sydney.

Rail profile

At first the rails protruded above street level, causing accidents and problems for pedestrians. They were supplanted in 1852 by grooved rails or girder rails, invented by Alphonse Loubat. Loubat, inspired by Stephenson, built the first tramline in Paris, France. The 2 km (1.2 mi) line was inaugurated on 21 November 1853, in connection with the 1855 World Fair, running on a trial basis from Place de la Concorde to Pont de Sèvres and later to the village of Boulogne.

The Toronto streetcar system is one of the few in North America still operating in the classic style on street trackage shared with car traffic, where streetcars stop on demand at frequent stops like buses rather than having fixed stations. Known as Red Rockets because of their colour, they have been operating since the mid-19th century – horsecar service started in 1856 and electric service in 1892.

Decline

See also: Effects of the car on societies
Copenhagen tram, January 1969. (Grossraumtriebwagen 524) The then obsolete tram model would soon be phased out, and the entire system closed.

The advent of personal motor vehicles and the improvements in motorized buses caused the rapid disappearance of the tram from most western and Asian countries by the end of the 1950s (for example the first major UK city to completely abandon its trams was Manchester by January 1949). Continuing technical and reliability improvements in buses made them a serious competitor to trams because they did not require the construction of costly infrastructure. However, the demise of the streetcar came when lines were torn out of the major cities by "bus manufacturing or oil marketing companies for the specific purpose of replacing rail service with buses."

In many cases, postwar buses were cited as providing a smoother ride and a faster journey than the older, pre-war trams. For example, the tram network survived in Budapest but for a considerable period of time bus fares were higher to recognize the superior quality of the buses. However, many riders protested against the replacement of streetcars arguing that buses weren't as smooth or efficient and polluted the air. In the United States, there have been allegations that the Great American streetcar scandal was responsible for the replacement of trains with buses, but critics of this theory point to evidence that larger economic forces were driving conversion before General Motors' actions and outside of its reach. Certainly, the oldest system of all, the Swansea and Mumbles Railway of 1807, was purchased by The South Wales Transport Company (which operated a large motorbus fleet in the area) and despite vociferous local opposition, closed down in 1960.

Governments thus put investment principally into bus networks. Indeed, infrastructure for roads and highways meant for the automobile were perceived as a mark of progress. The priority given to roads is illustrated in the proposal of French president Georges Pompidou who declared in 1971 that "the city must adapt to the car". Tram networks were no longer maintained or modernized, a state of affairs that served to discredit them in the eyes of the public. Old lines, considered archaic, were then gradually replaced by buses.

Tram networks disappeared almost completely from France, the UK, and altogether from Ireland, Denmark, Spain, as well as being completely removed from cities such as Sydney, which had one of the largest networks in the world with route length 291 km (181 mi) and Brisbane. The vast majority of tram networks also disappeared in North America, but American cities Boston, Philadelphia, Newark, San Francisco, New Orleans, Pittsburgh, Cleveland, Canadian city Toronto, and Mexico City still retained trams. This situation occurred in Italy and Netherlands, too. There are preserved system in Milan, Rome, Naples, Turin, Ritten and between Trieste and Opicina, and in Amsterdam, Rotterdam and The Hague. On the other hand, tram systems were generally retained or modernized in most communist countries, as well as Switzerland, West Germany, Austria, Belgium, Norway, Portugal, Sweden, Japan etc. though cuts and closures of entire systems also happened there as the example of Hamburg shows. In France, only the networks in Lille, Saint-Étienne and Marseille, survive from this period, but they all suffered significant reduction from their original size. In Great Britain, only the Blackpool Tramway kept running, with an extensive system which includes some street running in Blackpool, and a long stretch of segregated track to nearby Fleetwood.

Resurgences

Tram in Strasbourg, 2004
A Siemens Combino tram in Amsterdam, 2004
An Italian produced Sirio tram in Gothenburg, 2006

The priority given to personal vehicles and notably to the automobile led to a loss in quality of life, particularly in large cities where smog, traffic congestion, sound pollution and parking became problematic. Acknowledging this, some authorities saw fit to redefine their transport policies. Rapid transit required a heavy investment and presented problems in terms of subterranean spaces that required constant security. For rapid transit, the investment was mainly in underground construction, which made it impossible in some cities (with underground water reserves, archaeological remains, etc.). Metro construction thus was not a universal panacea.

The advantages of the tram thus became once again visible. At the end of the 1970s, some governments studied, and then built new tram lines. In Germany the Stadtbahnwagen B was a modern tram (or tram-train) hybrid built to run on heavy rail tracks in a premetro type of system. The renaissance of light rail in North America began in 1978 when the Canadian city of Edmonton adopted the German Siemens-Duewag U2 system, followed three years later by Calgary and San Diego.

1980s and 1990s

Britain began replacing its run-down local railways with light rail in the 1980s, starting with the Tyne & Wear Metro in Tyneside followed by the Docklands Light Railway in London. The trend to light rail in the United Kingdom was firmly established with the success of the Manchester Metrolink system and Sheffield Supertram in 1992, followed by Midland Metro in Birmingham in 1999, and Tramlink in London in 2000.

In France, Nantes and Grenoble led the way in terms of the modern tram, and new systems were inaugurated in 1985 and 1988. In 1994 Strasbourg opened a system with novel British-built trams, specified by the city, with the goal of breaking with the archaic conceptual image that was held by the public.

A great example of this shift in ideology is the city of Munich, which began replacing its tram network with a metro a few years before the 1972 Summer Olympics. When the metro network was finished in the 1990s the city began to tear out the tram network (which had become rather old and decrepit), but now faced opposition from many citizens who enjoyed the enhanced mobility of the mixed network—the metro lines deviate from the tramlines to a significant degree. New rolling stock was purchased and the system was modernized, and a new line was proposed in 2003.

In Berlin, in 1990, ADtranz low floor tram, the world's first completely low floor tram was introduced. West Berlin had shut down its trams in the 1960s but the East reversed a previous decision to shut down the tramway network and new lines have been laid into the western part of Berlin after reunification.

21st century

The 2004 Summer Olympics resulted in the return of trams to Athens: the Athens Tram was integrated with the expanded Athens Metro system, as well as the buses, trolleybuses and suburban trains.

In Melbourne, Australia, the already extensive tramway system continues to be extended. In 2004 the Mont Albert line was extended several kilometres to Box Hill, whilst in 2005 the Burwood East line was extended several kilometres to Vermont South. In Sydney, trams returned in the form of light rail with the opening of the Inner West Light Rail line in 1997, which has seen extensions and now covers 7.2 mi (11.6 km).

In Prague, in 2009, Škoda 15 T, the world's first completely low-floor tram with articulated bogies was introduced.

In Scotland, Edinburgh relaunched its tram network on 31 May 2014 after delayed development which began in 2008. Edinburgh previously had an extensive tram network which began closure in the 1950s. The new network is significantly smaller, 8.7 mi (14.0 km), compared to the previous tram network, 47.3 mi (76.1 km)

Systems such as tram-trains are bringing rail-based transit to areas that never had it and would not otherwise have gotten it. The Karlsruhe model was one of the first in the modern era and provided one-seat rides where several connections would have been necessary before, increasing ridership by significant amounts upon opening of service compared to the prior bus or local train routes.

Modern development

While many networks closed down during the postwar decades, the rolling stock on remaining systems kept developing, with multi-car trains (or articulated trams) with double-end designs and automatic control systems, allowing a single driver to serve more passengers, and decreasing turnaround time. Passenger and driver comfort have improved with stuffed seats and cabin heating. Advertising on trams, including all-over striping, became common.

The resurgence in the late 20th and 21st century has seen development of new technologies such as driverless automatic train operation in trams in Potsdam, low-floor trams and regenerative braking.


See also

References

  1. "The Cable Car Home Page - Cable Car Lines in New York and New Jersey". www.cable-car-guy.com. Retrieved 24 December 2024. Third Avenue Railroad cars run between the elevated structures through the Bowery.
  2. Haupt, Herman (1893). Street railway motors. H.C. Baird & Company. The subjects here considered are horse railroads steam motors cable traction electric roads com pressed air motors ammonia motors hot water motors gas motors and carbonic acid motors
  3. The Technologist: Especially Devoted to Engineering, Manufacturing and Building. Industrial publishing Company. 1870. p. 48. treet railways can not compete with Metropolitan steam railways Street railways will certainly be able to effect certain advantages can not be attained by Metropolitan railways but where such judiciously introduced the horse railways become at once auxiliaries This condition of the subject we believe is not fully comprehended their introduction into London For the absence of any means of street transit in London except by stages called there omnibuses or hacks cabs and other vehicular and limited means on the introduction of the splendid system of Metropolitan railways both tunnel and overhead Whereas in New York the apparent comprehensiveness of the street railway system demand for a through steam track is unceasing and universal Albany will this session be the battle ground upon which may prob ably rest the decision for an underground railroad under Broadway So great is the popular and monetary influence brought to bear the New York Arcade Railway that its speedy introduction may be looked for.
  4. "Proposed 'arcade railway' below Broadway would aid 1860s gridlock | 6sqft".
  5. "The Swansea and Mumbles Railway – the world's first railway service". Welshwales.co.uk. Archived from the original on 26 June 2007. Retrieved 8 March 2015.
  6. The John Stephenson Car Co. Retrieved 25 February 2009.
  7. Bellis, Mary. "History of Streetcars and Cable Cars". Archived from the original on 24 July 2012. Retrieved 10 January 2007.
  8. "Siemens History Site - Transportation". Archived from the original on 29 July 2016. Retrieved 5 February 2014.
  9. "New York Loses its Last Horse Car" New York Times 29 July 191, page 12
  10. "Sulphur Rock Street Car; Encyclopedia of Arkansas History & Culture". Retrieved 23 December 2008.
  11. Allen Morrison. "The Indomitable Tramways of Celaya". Retrieved 22 December 2008.
  12. United States Census Office: Report on Transportation Business in the United States at the Eleventh Census: 1890: Street railways. U.S. Government Printing Office. 1892. p. 10.
  13. "1876–1964 (Überblick)". Archived from the original on 24 February 2011. Retrieved 8 March 2015.
  14. Stoomtram in en om Den Haag en Gouda, R. F. de Bock, Wyt Publishers, 1972, ISBN 90 6007 642 7.
  15. Robertson, Andrew (March 1848). "Blackwall Railway Machinery". The Civil Engineer and Architect's Journal. 11. New York: Wiley & Putnam.
  16. Borzo, Greg (2012). Chicago Cable Cars. The History Press. pp. 15–21. ISBN 978-1-60949-327-1.
  17. From ABC-TV's 'Can you help?'. Sydney, the largest city in Australia, once had the largest tram system in Australia, the second largest in the Commonwealth (after London), and one of the largest in the world. In the early 1960s the entire network was dismantled.
  18. Trams in Sydney
  19. "Vauxhall, Oval & Kennington - The Brixton Tramway". www.vauxhallandkennington.org.uk. Retrieved 8 February 2022.
  20. "WEDNESDAY, DECEMBER 29, 1886". The Argus. Melbourne. 29 December 1886. p. 5. Retrieved 10 March 2013 – via National Library of Australia.
  21. Isaacs, Albert (10 August 2012). "Australian Timetable Association" (PDF). austta.org.au. Retrieved 8 December 2012.
  22. "mark the fitter: November 2008". Markthefitter.blogspot.com. 17 November 2008. Retrieved 8 March 2015.
  23. http://www.google.com.au/search?q=%22gas+tram%22+Northcote+history&rls=com.microsoft:en-au:IE-SearchBox&ie=UTF-8&oe=UTF-8&sourceid=ie7&rlz=1I7GGLL_en-GB&redir_esc=&ei=R1MvTpXqGamdmQW4ofga Archived 30 December 2012 at archive.today
  24. "Cieplice lšskie Zdrój is one of the best known Silesian towns". Archived from the original on 29 September 2006. Retrieved 8 March 2015.
  25. "Malaysia: first compressed natural gas tram in the world will be ready next year". Natural Gas Journal. 22 February 2011. Archived from the original on 28 March 2012. Retrieved 30 June 2016.
  26. "This is how some of the world's familiar..." Archived 1 January 2016 at the Wayback Machine Popular Mechanics, May 1929, pg. 750. via Google Books.
  27. "Leeds City Tramways Uniform". Tramway Systems of the British Isles. Retrieved 4 October 2023.
  28. American Public Transportation Association. "Milestones in U.S. Public Transportation History". Archived from the original on 3 March 2009. Retrieved 20 March 2013.
  29. Wood, E. Thomas. "Nashville now and then: From here to there". Archived from the original on 28 September 2007. Retrieved 7 August 2007.
  30. ^ Kaempffert & Martin 1924, pp. 122–123.
  31. ^ Hammond 2011, p. 142.
  32. "Professor Sidney Howe Short experiments with motors". Fort Worth Daily Gazette. Fort Worth, Texas. 11 November 1894 – via Newspapers.com Open access icon.
  33. "Sidney Howe Short". Grace's Guide to British Industrial History. Grace's Guide Ltd. Archived from the original on 12 March 2017. Retrieved 10 March 2017.
  34. "Street Railways his hobby". Topeka Daily Capital. Topeka, Kansas. 14 November 1894 – via newspapers.com Open access icon.
  35. Malone 1928, p. 128.
  36. "Sarajevo Official Web Site : Sarajevo through history". Sarajevo.ba. 29 June 1914. Archived from the original on 23 October 2014. Retrieved 8 March 2015.
  37. "City of Belgrade – Important Years in City History". Beograd.org.rs. 5 October 2000. Archived from the original on 11 January 2015. Retrieved 8 March 2015.
  38. "Trams of Hungary and much more". Hampage.hu. Archived from the original on 2 March 2015. Retrieved 8 March 2015.
  39. "RATB – Regia Autonoma de Transport București". Ratb.ro. Archived from the original on 18 March 2015. Retrieved 8 March 2015.
  40. "Historical Highlights". Ljubljanski potniški promet . Archived from the original on 4 March 2012. Retrieved 25 April 2012.
  41. Green, Robert (1989). The first electric road : a history of the Box Hill and Doncaster tramway. East Brighton, Victoria: John Mason Press. ISBN 0731667158.
  42. Kyoto Tram from Kyoto City Web. Retrieved 12 February 2009.
  43. The Rebirth of Trams from the JFS Newsletter, December 2007. Retrieved 12 February 2009.
  44. Wordpress.com Archived 29 January 2009 at the Wayback Machine, "The transport politic"
  45. Electrifying America by David E. Nye, p.86, from Google Books. Retrieved 14 February 2009.
  46. Thomas Davenport from the Hebrew University of Jerusalem Archived 16 October 2008 at the Wayback Machine. Retrieved 14 February 2009.
  47. UK, DVV Media. "Battery trams running in Nanjing". Railway Gazette International. Archived from the original on 14 January 2018. Retrieved 2 June 2016.
  48. "Portland Tram – Google Search". Google.com.au. Retrieved 8 March 2015.
  49. "China Presents the World's First Hydrogen-Fueled Tram".
  50. "China Develops World's First Hydrogen-Powered Tram". IFLScience. 24 March 2015.
  51. Conférence sur Alphonse LOUBAT, inventeur du tramway Archived 22 September 2008 at the Wayback Machine. In French. Retrieved 11 February 2009.
  52. John Prentice: Tramway Origins and Pioneers. Retrieved 11 February 2009.
  53. Toronto Transport Commission – History. Retrieved 11 February 2009.
  54. "Archived copy" (PDF). www.lava.net. Archived from the original (PDF) on 2 July 2007. Retrieved 14 January 2022.{{cite web}}: CS1 maint: archived copy as title (link)
  55. "Transit Ridership – Rail vs. Bus". APTA Streetcar and Heritage Trolley Site. Retrieved 4 July 2015.
  56. "Edinburgh tram starting date revealed as 31 May". BBC. 2 May 2014. Retrieved 4 July 2015.
  57. "Granton History: Edinburgh tram routes". Archived from the original on 21 October 2017. Retrieved 16 May 2014.
  58. Connolly, Kate (23 September 2018). "Germany launches world's first autonomous tram in Potsdam". The Guardian.

Bibliography

Categories: