Misplaced Pages

User talk:Hayson1991/mathpage: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
< User talk:Hayson1991 Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 23:02, 23 October 2008 edit74.183.242.181 (talk)No edit summary← Previous edit Latest revision as of 11:03, 6 July 2012 edit undoHayson1991 (talk | contribs)242 edits Blanked the page 
(30 intermediate revisions by 6 users not shown)
Line 1: Line 1:
<math>x = \tan\left(y\right)</math><br /><br />
<math>1 = \sec^2\left(y\right)*\frac{dy}{dx}</math> (Chain rule, derivative of tan=sec^2)<br /><br />
<math>\frac{1}{\sec^2\left(y\right)} = \frac{dy}{dx}</math><br /><br />
<math>\cos^2\left(y\right) = \frac{dy}{dx}</math><br /><br />
<math>\frac{dy}{dx} = \cos^2\left(y\right)</math><br /><br />

== 9~ ==
<math>x^{2}y + xy^2 = 6\,</math><br /><br />
<math>\left(2x*y + x^{2}*\frac{dy}{dx}\right) + \left(1*y^2 + x*2y\frac{dy}{dx}\right) = 0</math><br /><br />
<math>2xy + x^{2}\frac{dy}{dx} + y^2 + 2xy\frac{dy}{dx} = 0</math><br /><br />
<math>x^{2}\frac{dy}{dx} + 2xy\frac{dy}{dx} = -2xy - y^2</math><br /><br />
<math>\frac{dy}{dx} = \frac{-2xy - y^2}{x^{2} + 2xy}</math><br /><br />
<math>\frac{dy}{dx} = -\frac{2xy + y^2}{x^{2} + 2xy}</math><br /><br />

== Multiple u's ==

To Find dy/dx for<br />
<math>y = 2\cos\left(\left(5x\right)^2\right)</math><br /><br />
===The way she explains it===
you'll make 3 u's<br />
<math>\text{Let }u = 2\cos\left(u\right)</math><br /><br />
<math>\text{Let }u = u^2\,</math><br /><br />
<math>\text{Let }u = 5x\,</math><br /><br />
===The way you should do it===
<math>\text{Let }y=2\cos\left(u\right)\,</math><br /><br />
<math>\text{Let }u=v^2\,</math><br /><br />
<math>\text{Let }v=5x\,</math><br /><br />
<math>\frac{dy}{dx}=\frac{dy}{du}*\frac{du}{dv}*\frac{dv}{dx}</math><br /><br />

Find <math>\frac{dy}{dx}\,</math> then find <math>\frac{d^2y}{dx^2}\,</math> <br /><br />

<math>x^{2} + y^{2} = 1\,</math><br /><br />

Latest revision as of 11:03, 6 July 2012