Misplaced Pages

Alien hand syndrome: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 20:51, 14 January 2010 editCoolug (talk | contribs)Extended confirmed users, Pending changes reviewers, Rollbackers4,231 edits Pop cultural references: getting rid of this trivia section← Previous edit Latest revision as of 10:33, 7 November 2024 edit undoGraham Beards (talk | contribs)Autopatrolled, Administrators35,514 edits patients -> individuals 
(716 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Short description|Neuropsychiatric disorder}}
{{Wikify|date=September 2009}}
{{Redirect-distinguish|Alien limb syndrome|Phantom limb syndrome}}
{{Original research|date=October 2015}}
{{Infobox medical condition (new)
| name = Alien hand syndrome
| synonyms = AHS; alien limb syndrome; ALS; Dr. Strangelove syndrome
| image =
| caption =
| pronounce =
| field = ], ]
| symptoms =
| complications =
| onset =
| duration =
| types =
| causes =
| risks =
| diagnosis =
| differential =
| prevention =
| treatment =
| medication =
| prognosis =
| frequency =
| deaths =
}}


'''Alien hand syndrome''' ('''AHS''') or '''Dr. Strangelove syndrome'''<ref name="auto">{{cite journal|title=The alien hand syndrome|first1=Ragesh|last1=Panikkath|first2=Deepa|last2=Panikkath|first3=Deb|last3=Mojumder|first4=Kenneth|last4=Nugent|date=1 July 2014|journal=Proceedings (Baylor University. Medical Center)|volume=27|issue=3|pages=219–220|pmid = 24982566|pmc = 4059570|doi=10.1080/08998280.2014.11929115}}</ref> is a category of conditions in which a person experiences their limbs acting seemingly on their own, without conscious control over the actions.<ref>{{Cite journal|last1=Biran|first1=Iftah|last2=Giovannetti|first2=Tania|last3=Buxbaum|first3=Laurel|last4=Chatterjee|first4=Anjan|date=2006-06-01|title=The alien hand syndrome: What makes the alien hand alien?|journal=Cognitive Neuropsychology|volume=23|issue=4|pages=563–582|doi=10.1080/02643290500180282|issn=0264-3294|pmid=21049344|quote=The alien hand syndrome is a deeply puzzling phenomenon in which brain-damaged patients experience their limb performing seemingly purposeful acts without their intention. Furthermore, the limb may interfere with the actions of their normal limb.|citeseerx=10.1.1.537.6357|s2cid=15889976}}</ref> There are a variety of clinical conditions that fall under this category, most commonly affecting the left hand.<ref>{{Cite journal|last1=Aboitiz|first1=F.|last2=Carrasco|first2=X.|last3=Schröter|first3=C.|last4=Zaidel|first4=D.|last5=Zaidel|first5=E.|last6=Lavados|first6=M.|year=2003|title=The alien hand syndrome: classification of forms reported and discussion of a new condition|journal=Neurological Sciences|volume=24|issue=4|pages=252–257|doi=10.1007/s10072-003-0149-4|pmid=14658042|s2cid=24643561|issn=1590-1874|quote=The term "alien hand" refers to a variety of clinical conditions whose common characteristic is the uncontrolled behavior or the feeling of strangeness of one extremity, most commonly the left hand.}}</ref> There are many similar terms for the various forms of the condition, but they are often used inappropriately.<ref>{{Cite journal|last1=Aboitiz|first1=F.|last2=Carrasco|first2=X.|last3=Schröter|first3=C.|last4=Zaidel|first4=D.|last5=Zaidel|first5=E.|last6=Lavados|first6=M.|year=2003|title=The alien hand syndrome: classification of forms reported and discussion of a new condition|journal=Neurological Sciences|volume=24|issue=4|pages=252–257|doi=10.1007/s10072-003-0149-4|pmid=14658042|s2cid=24643561|issn=1590-1874|quote=A large variety of complex, abnormal, involuntary motor behaviors have been described following callosal lesions which may or may not be accompanied by hemispheric damage, especially in the frontal medial region. Although the different terminologies used to describe these movements attempt to address their clinical specificity, there is a noticeable nosological confusion in the literature which results in assigning similar names, often inappropriate, to diverse phenomena and vice versa. One example of such confusion is the group of syndromes labeled as "alien hand", "anarchic hand" , "way-ward hand" , "intermanual conflict" and "diagonistic dyspraxia" .}}</ref> The affected person may sometimes reach for objects and manipulate them without wanting to do so, even to the point of having to use the controllable hand to restrain the alien hand.<ref>{{cite journal|last1=Assal|first1=Frédéric|last2=Schwartz|first2=Sophie|last3=Vuilleumier|first3=Patrik|s2cid=14180577|title=Moving with or without will: functional neural correlates of alien hand syndrome|journal=Annals of Neurology|volume=62|issue=3|pages=301–306|year=2007|pmid=17638304|doi=10.1002/ana.21173}}
'''Alien hand syndrome''' (also known as '''anarchic hand''' or ''''']'' syndrome'''<ref>{{cite web|url=http://news.bbc.co.uk/2/hi/uk_news/916005.stm | title=The Mind's Strange Syndroms | date=September 8, 2000 | publisher = BBC News}} "Even today, "anarchic hand" has earned the popular sobriquet Dr Strangelove syndrome - named after the eponymous scientist with the unruly limb in Stanley Kubrick's 1964 film."</ref>) is an unusual ] in which one of the sufferer's hands seem to take on a mind of its own. AHS is best documented in cases where a person has had the two ]s of their ] ], a procedure sometimes used to relieve the symptoms of extreme cases of ]. It also occurs in some cases after other ], ]s, or ]s.
* {{lay source|template=cite web|title=Alien Hand Syndrome: Nerve Impulses Can Cause Movement Even When Person Is Unaware|url=https://www.sciencedaily.com/releases/2007/07/070717014413.htm|website=ScienceDaily|date=July 17, 2007}}</ref> The occurrence of alien hand syndrome can be usefully conceptualized as a phenomenon reflecting a functional "disentanglement" between thought and action.


Alien hand syndrome is best documented in cases where a person has had the two ],<ref>{{Cite web|last=Munevar|first=Gonzalo|date=2012|title=The Myth of Dual Consciousness in the Split Brain: Contrary Evidence from Psychology and Neuroscience|url=http://www.brain-mind-institute.org/ICBM-2012/proceedings-html/full%20paper/paper%2016.pdf|url-status=live|archive-url=https://web.archive.org/web/20150415044736/http://www.brain-mind-institute.org/ICBM-2012/proceedings-html/full%20paper/paper%2016.pdf|archive-date=2015-04-15 }}</ref> a procedure sometimes used to relieve the symptoms of extreme cases of ] and epileptic ], e.g., ]. It also occurs in some cases after ], ], ], ], ], ] and specific degenerative brain conditions such as ], ]<ref>{{Cite journal|last1=Belfor|first1=Nataliya|last2=Amici|first2=Serena|last3=Boxer|first3=Adam L.|last4=Kramer|first4=Joel H.|last5=Gorno-Tempini|first5=Maria Luisa|last6=Rosen|first6=Howard J.|last7=Miller|first7=Bruce L.|date=2006|title=Clinical and neuropsychological features of corticobasal degeneration|journal=Mechanisms of Ageing and Development|volume=127|issue=2|pages=203–207|doi=10.1016/j.mad.2005.09.013|pmid=16310834|s2cid=35169781}}</ref> and ].<ref name=":0">{{Cite web|last=Anderson|first=Alyssa|date=8 April 2022|title=What Is Alien Hand Syndrome?|url=https://www.webmd.com/brain/what-is-alien-hand-syndrome|access-date=3 October 2022|website=]}}</ref> Other areas of the brain that are associated with alien hand syndrome are the ], ], and ]s.<ref>{{cite journal|last1=Kloesel|first1=Benjamin|last2=Czarnecki|first2=Kathrin|last3=Muir|first3=Jeffery J.|last4=Keller|first4=A. Scott|title=Sequelae of a left-sided parietal stroke: Posterior alien hand syndrome|journal=Neurocase|volume=16|issue=6|pages=488–493|year=2010|pmid=20824573|doi=10.1080/13554794.2010.497154|s2cid=31374522 }}</ref><ref>{{cite web|first1=Victor W|last1=Mark|date=November 29, 2014|title=Alien hand syndrome|url=http://www.medlink.com/article/alien_hand_syndrome|publisher=MedLink}}</ref>{{MEDRS|date=October 2015}}<ref name=":0" />
==Symptoms==
An alien hand sufferer can feel normal sensation in the hand and leg, but believes that the hand, while still being a part of their body, behaves in a manner that is totally distinct from the sufferer's normal behavior. They lose the ']' associated with the purposeful movement of the limb while retaining a sense of 'ownership' of the limb. They feel that they have no control over the movements of the 'alien' hand, but that, instead, the hand has the capability of acting autonomously — i.e., independent of their voluntary control. The hand effectively has 'a will of its own.' Alien hands can perform complex acts such as undoing buttons, removing clothing, and manipulating tools. Alien behavior can be distinguished from reflexive behavior in that the former is flexibly purposive while the latter is obligatory. Sometimes the sufferer will not be aware of what the alien hand is doing until it is brought to his or her attention, or until the hand does something that draws their attention to its behavior.


==Signs and symptoms==
A related syndrome described by the French neurologist François Lhermitte involves the release through disinhibition of a tendency to compulsively utilize objects that present themselves in the surrounding environment around the patient (Lhermitte 1983; Lhermitte et al 1986). The behavior of the patient is, in a sense, obligatorily linked to the ] (using terminology introduced by the American ecological psychologist, ]) presented by objects that are located within the immediate peri-personal environment. This condition, termed ], is most often associated with extensive bilateral frontal lobe damage and might actually be thought of as "bilateral" Alien Hand Syndrome in which the patient is compulsively directed by external environmental contingencies (e.g., the presence of a hairbrush on the table in front of them elicits the act of brushing the hair) and has no capacity to "hold back" and inhibit pre-potent motor programs that are obligatorily linked to the presence of specific external objects in the peri-personal space of the patient. When the frontal lobe damage is bilateral and generally more extensive, the patient completely loses the ability to act in a self-directed manner and becomes totally dependent upon the surrounding environmental indicators to guide their behavior in a general social context, a condition also identified by Lhermitte (1986), and referred to as "]."
"Alien behavior" can be distinguished from reflexive behavior in that the former is flexibly purposive while the latter is obligatory. Sometimes the affected person will not be aware of what the alien hand is doing until it is brought to his or her attention, or until the hand does something that draws their attention to its behavior. There is a clear distinction between the behaviors of the two hands in which the affected hand is viewed as "wayward" and sometimes "disobedient" and generally out of the realm of their own voluntary control, while the unaffected hand is under normal volitional control. At times, particularly in individuals who have sustained damage to the ] that connects the two ]s {{xref|(see also ])}}, the hands appear to be acting in opposition to each other.<ref name=d>{{cite book| last= Revonsuo| first= Antti| title= Consciousness: The Science of Subjectivity| place= New York| publisher= Psychology Press| year= 2009| isbn= 9781135164805}}{{page needed|date=July 2022}}</ref>


A related syndrome described by the French neurologist François Lhermitte involves the release through disinhibition of a tendency to compulsively utilize objects that present themselves in the surrounding environment around the patient.<ref>{{cite book|last1=Lhermitte|first1=F|title='Utilization behaviour' and its relation to lesions of the frontal lobes|journal=Brain|volume=106|issue=2|pages=237–255|year=1983|pmid=6850269|doi=10.1093/brain/106.2.237|url=https://books.google.com/books?id=JHztR7ITiOgC&pg=PA1416|isbn=9780415134989 }}</ref><ref>{{cite journal|last1=Lhermitte|first1=F.|last2=Pillon|first2=B.|last3=Serdaru|first3=M.|s2cid=2031690|title=Human autonomy and the frontal lobes. Part I: Imitation and utilization behavior: A neuropsychological study of 75 patients|journal=Annals of Neurology|volume=19|issue=4|pages=326–334|year=1986|pmid=3707084|doi=10.1002/ana.410190404 }}</ref> The behavior of the patient is, in a sense, obligatorily linked to the ] (using terminology introduced by the American ecological psychologist, ]) presented by objects that are located within the immediate peri-personal environment.{{citation needed|date=October 2015}}
Sufferers of alien hand will often personify the rogue limb, for example believing it to be "possessed" by some intelligent or alien spirit or an entity that they may name or identify. There is a clear distinction between the behaviors of the two hands in which the affected hand is viewed as "wayward" and sometimes "disobedient" and generally out of the realm of their own voluntary control, while the unaffected hand is under normal volitional control. At times, particularly in patients who have sustained damage to the ] that connects the two cerebral hemispheres (see also ]), the hands appear to be acting in opposition to each other. For example, one patient was observed putting a cigarette into her mouth with her intact, 'controlled' hand (her right, dominant hand), following which her alien, non-dominant, left hand came up to grasp the cigarette, pull the cigarette out of her mouth, and toss it away before it could be lit by the controlled, dominant, right hand. The patient then surmised that "I guess 'he' doesn't want me to smoke that cigarette." This type of problem has been termed "intermanual conflict" or "diagonistic apraxia."


This condition is known as ]. It is most often associated with extensive bilateral frontal lobe damage and might actually be thought of as "bilateral" alien hand syndrome in which the patient is compulsively directed by external environmental contingencies (such as the presence of a hairbrush on the table in front of them elicits the act of brushing the hair) and has no capacity to "hold back" and inhibit pre-potent motor programs that are obligatorily linked to the presence of specific external objects in the peri-personal space of the patient. When the frontal lobe damage is bilateral and generally more extensive, the patient completely loses the ability to act in a self-directed manner and becomes totally dependent upon the surrounding environmental indicators to guide their behavior in a general social context, a condition referred to as "]".<ref>{{cite journal|last1=Lhermitte|first1=F.|title=Human autonomy and the frontal lobes. Part II: Patient behavior in complex and social situations: The 'environmental dependency syndrome'|journal=Annals of Neurology|volume=19|issue=4|pages=335–343|year=1986|pmid=3707085|doi=10.1002/ana.410190405|s2cid=46441945 }}</ref>
This condition has been thought to provide a fascinating window into the nature of human ] as it relates to voluntary action, processes underlying ] and conscious ], as well as the general nature of ] and ]. It provides insight into the neural mechanisms involved in the emergence of a ] association with bodily action. Besides its relevancy to the understanding of the neurobiologic basis of human action and volition/intentionality, these observations would appear to have significant relevance for the general ].
In that the recognition and study of this condition depends upon linking an observation of a particular behavior—the appearance of a purposeful limb action—to either a direct report or inference regarding the subjective experience of the actor associated with producing the movement, and then correlating this transformed relation with brain pathophysiology, alien hand syndrome and its study may be viewed as within the purview of ]. Furthermore, the dissociation of the ] from the sense of ownership that is observed in alien hand syndrome can also be seen in other neuropsychiatric conditions, such as schizophrenia, and may serve to help provide insight into the neural mechanisms underlying these conditions.


To deal with the alien hand, some individuals engage in personification of the affected hand.<ref name = "scepkowski">{{cite journal|last1=Scepkowski|first1=Lisa A.|last2= Cronin-Golomb|first2=Alice|title=The Alien Hand: Cases, Categorizations, and Anatomical Correlates|journal=Behavioral and Cognitive Neuroscience Reviews|volume=2|issue=4|pages= 261–277|year=2003|pmid=15006289|doi=10.1177/1534582303260119 }}</ref> Usually these names are negative in nature, from mild such as "cheeky" to malicious "monster from the moon".<ref name="doody">{{cite journal|last1=Doody|first1=R S|author-link=Rachelle Doody|last2=Jankovic|first2=J|year=1992|title=The alien hand and related signs|journal=Journal of Neurology, Neurosurgery, and Psychiatry|volume=55|issue=9|pages=806–810|doi=10.1136/jnnp.55.9.806|pmc=1015106|pmid=1402972}}</ref> For example, ] and Jankovic described a patient who named her alien hand "baby Joseph". When the hand engaged in playful, troublesome activities such as pinching her nipples (akin to biting while nursing), she would experience amusement and would instruct baby Joseph to "stop being naughty".<ref name="doody" /> Furthermore, Bogen suggested that certain personality characteristics, such as a flamboyant personality, contribute to frequent personification of the affected hand.<ref name = bogen>{{cite book|first1=Eran|last1=Zaidel|first2=Marco|last2=Iacoboni|first3=Dahlia W.|last3=Zaidel|first4=Joseph E.|last4=Bogen|chapter=The Callosal Syndromes|chapter-url=https://books.google.com/books?id=F0yOYlS_s-4C&pg=PA347|pages=347–403|year=2003|editor1-first=Kenneth M.|editor1-last=Heilman|editor2-first=Edward|editor2-last=Valenstein|title=Clinical Neuropsychology|edition=4th|publisher=Oxford University Press|isbn=978-0-19-972672-1 }}</ref>
==Subtypes==
There are several distinct subtypes of Alien Hand Syndrome that appear to be associated with specific distributions of associated brain injury. Damage to the ] can give rise to "purposeful" actions in the sufferer's non-dominant hand (an individual who is left-hemisphere-dominant will experience the left hand becoming alien, and the right hand will turn alien in the person with right-hemisphere dominance) as well as a problem termed "intermanual conflict" in which the two hands appear to be directed at opposing purposes, whereas unilateral injury to the brain's ] can trigger reaching, grasping and other purposeful movements in the contralateral hand. With anteromedial frontal lobe injury, these movements are often exploratory reaching movements in which external objects are frequently grasped and utilized functionally, without the simultaneous perception on the part of the patient that they are "in control" of these movements. Once an object is maintained in the grasp of this "frontal variant" form of alien hand, the patient often has difficulty with voluntarily releasing the object from grasp and can sometimes be seen to be peeling the fingers of the hand back off the grasped object using the opposite controlled hand to enable the release of the grasped object.


Neuroimaging and pathological research shows that lesions of the ] (in the frontal variant) and corpus callosum (in the callosal variant) are the most common anatomical lesions responsible for the alien hand syndrome.{{Citation needed|date=December 2016}} These areas are closely linked in terms of ] and its final pathways.<ref name = caix>{{cite journal|first1=Leonardo|last1=Caixeta|first2=Patrícia|last2=Maciel|first3=Juliana|last3=Nunes|first4=Larissa|last4=Nazareno|first5=Letícia|last5=Araújo|first6= Jules Rimet|last6=Borges|display-authors=3|year=2007|title=Alien hand syndrome in AIDS: Neuropsychological features and physiopathological considerations based on a case report|journal=Dementia & Neuropsychologia|volume=1|issue=4|pages=418–421|url=http://www.redalyc.org/articuloBasic.oa?id=339529000016|doi=10.1590/S1980-57642008DN10400016|pmid= 29213422|pmc=5619440 }}</ref>
A distinct "posterior variant" form of alien hand syndrome is associated with damage to the posterolateral ] and/or ] of the brain. The movements in this situation tend to be more likely to withdraw the palmar surface of the hand away from environmental contact rather than reaching out to grasp onto objects to produce palmar tactile stimulation, as is most often seen in the frontal form of the condition. Alien movements in the posterior variant of the syndrome also tend to be less coordinated and show a coarse ataxic motion during active movement that is generally not observed in the frontal form of the condition. The alien limb in the posterior variant of the syndrome may be seen to 'levitate' upward into the air and away from contact surfaces. Alien hand movement in the posterior variant may show a typical posture, sometimes referred to as a 'parietal hand' or 'instinctive avoidance reaction' (a term introduced by neurologist ]), in which the digits move into a highly extended position and the palmar surface is pulled back away from approaching objects. The 'alien' movements, however, remain purposeful and goal-directed, a point which clearly differentiates these movements from other forms of involuntary limb movement (e.g., ], ], or ]). In both the frontal and the posterior variants of the alien hand syndrome, the patient's reactions to the limb's apparent capability to perform goal-directed actions independent of conscious volition is similar. In both of these variants of alien hand syndrome, the alien hand emerges in the hand contralateral to the damaged hemisphere.


The callosal variant includes advanced willed motor acts by the non-dominant hand, where individuals frequently exhibit "intermanual conflict" in which one hand acts at cross-purposes with the other "good hand".<ref name = bogen/> For example, one patient was observed putting a cigarette into her mouth with her intact, "controlled" hand (her right, dominant hand), following which her left hand rose, grasped the cigarette, pulled it out of her mouth, and toss it away before it could be lit by the right hand. The patient then surmised that "I guess 'he' doesn't want me to smoke that cigarette." Another patient was observed to be buttoning up her blouse with her controlled dominant hand while the alien non-dominant hand, at the same time, was unbuttoning her blouse. The frontal variant most often affects the dominant hand, but can affect either hand depending on the lateralization of the damage to medial frontal cortex, and includes grasp reflex, impulsive groping toward objects or/and tonic grasping (in other words, difficulty in releasing grip).<ref name = caix/>
Patients thus will often indicate that the apparently purposeful movements of the alien hand are "wayward" or "disobedient," in that they are not being generated through the exertion of their own voluntary will or directed toward goals that have been consciously produced, but, instead, the alien hand appears to behave independent of conscious will, effectively "on its own." The alien hand is directed toward goals of which the patient is not consciously aware. The alien hand may even engage in socially inappropriate behavior in a public venue causing significant embarrassment and distress (Ong Hai & Odderson, 2000). Patients may react with dismay and concern at the ability of the hand to perform purposeful actions that are independent of their own conscious sense of control over the movement, a phenomenon termed "auto-criticism."


In most cases, classic alien-hand signs derive from damage to the medial frontal cortex, accompanying damage to the corpus callosum.<ref name="scepkowski"/> In these individuals, the main cause of damage is unilateral or bilateral infarction of cortex in the territory supplied by the ] or associated arteries.<ref name = caix/> Oxygenated blood is supplied by the anterior cerebral artery to most medial portions of the frontal lobes and to the anterior two-thirds of the corpus callosum,<ref>{{cite journal|last1=Giroud|first1=M|last2=Dumas|first2=R|title=Clinical and topographical range of callosal infarction: a clinical and radiological correlation study|journal=Journal of Neurology, Neurosurgery, and Psychiatry|volume=59|issue=3|pages=238–242|year=1995|pmid=7673948|pmc=486019|doi=10.1136/jnnp.59.3.238 }}</ref> and infarction may consequently result in damage to multiple adjacent locations in the brain in the supplied territory. As the medial frontal lobe damage is often linked to lesions of the corpus callosum, frontal variant cases may also present with callosal form signs. Cases of damage restricted to the callosum however, tend not to show frontal alien-hand signs.<ref name="scepkowski"/>
Alternatively, they may attribute the forces initiating and controlling these purposeful movements to some external being that is somehow "alien" to their self-perceived personna. For example, a particularly religious woman with alien hand syndrome, when asked who or what was actually controlling the alien movements of her hand if she was not, replied that "God must be doing all of that." Some patients choose to "personify" the hand and dissociate themselves from the behavior of the hand by giving it a proper name and attributing to it a separate and distinct personality and personhood. They may choose to "hold back" these unwanted, bothersome "alien" movements and behaviors by grasping and constraining the "wayward" hand with the controlled contralateral hand, an action that has been termed "self-restriction" or "self-grasping." Such alien movements and behaviors can also be seen in progressive degenerative diseases that produce a process of steady systematic disintegration of motor control circuitry within the central nervous system, such as ], and ].


==Cause==
==Explanatory theories==
The common emerging factor in alien hand syndrome is that the ] controlling hand movement is isolated from ] influences but remains generally intact in its ability to execute movements of the hand.{{citation needed|date=December 2020}}
The common emerging factor in Alien Hand Syndrome is that the primary motor cortex controlling hand movement is isolated from premotor influences but remains generally intact in its ability to execute movements of the hand. A very recent fMRI study looking at the temporal sequence of activation of components of a cortical network associated with voluntary movement in normal individuals demonstrated "an anterior-to-posterior temporal gradient of activity from supplemental motor area through premotor and motor cortices to the posterior parietal cortex" (Kayser et al 2009). Therefore, with normal voluntary movement, the emergent ] appears to be associated with an orderly sequence of activation that develops initially in the anteromedial frontal cortex in the vicinity of the supplementary motor complex on the medial surface of the hemisphere ''prior'' to activation of the primary motor cortex. A recent fMRI study examining the difference in functional brain activation patterns associated with alien as compared to non-alien 'volitional' movement in a patient with alien hand syndrome found that alien movement involves isolated activation of the contralateral primary motor cortex, while non-alien movement involved the activation of primary motor cortex in concert with frontal and parietal association cortex presumably involved in a cortical network generating premotor influences on the primary motor cortex (Assal et al 2007).


A 2009 ] study looking at the temporal sequence of activation of components of a cortical network associated with voluntary movement in normal individuals demonstrated "an anterior-to-posterior temporal gradient of activity from supplemental motor area through premotor and motor cortices to the posterior parietal cortex".<ref>{{Cite journal|last1 = Kayser|first1 = A. S.|last2 = Sun|first2 = F. T.|last3 = D'esposito|first3 = M.|doi = 10.1002/hbm.20771|title = A comparison of Granger causality and coherency in fMRI-based analysis of the motor system|journal = Human Brain Mapping|volume = 30|issue = 11|pages = 3475–3494|year = 2009|pmid = 19387980|pmc =2767459 }}</ref> Therefore, with normal voluntary movement, the emergent ] appears to be associated with an orderly sequence of activation that develops initially in the anteromedial frontal cortex in the vicinity of the supplementary motor complex on the medial surface of the frontal aspect of the hemisphere (including the ]) ''prior'' to activation of the primary motor cortex in the pre-central gyrus on the lateral aspect of the hemisphere, when the hand movement is being generated. Activation of the primary motor cortex, presumed to be directly involved in the execution of the action via projections into the corticospinal component of the ], is then followed by activation of the ], possibly related to the receipt of recurrent or ''re-afferent'' somatosensory ] generated from the periphery by the movement which would normally interact with the ] transmitted from primary motor cortex to permit the movement to be recognized as self-generated rather than imposed by an external force. That is, the efference copy allows the recurrent afferent somatosensory flow from the periphery associated with the self-generated movement to be recognized as ''re-afference'' as distinct from ''ex-afference''. Failure of this mechanism may lead to a failure to distinguish between self-generated and externally generated movement of the limb. This anomalous situation in which re-afference from a self-generated movement is mistakenly registered as ex-afference due to a failure to generate and successfully transmit an efference copy to sensory cortex, could readily lead to the interpretation that what is in actuality a self-generated movement has been produced by an external force as a result of the failure to develop a sense of agency in association with emergence of the self-generated movement (see below for a more detailed discussion).{{citation needed|date=December 2020}}
It is theorized that Alien Hand Syndrome results when disconnection occurs between different parts of the brain that are engaged in different aspects of the control of bodily movement. As a result, different regions of the brain are able to command bodily movements, but cannot generate a conscious feeling of self-control over these movements. As a result, the "]" that is normally associated with voluntary movement is impaired or lost. There is thus a dissociation between the process associated with the actual execution of the physical movements of the limb and the process that produces an internal sense of voluntary control over the movements, with this latter process thus normally creating the internal conscious sensation that the movements are being internally initiated, controlled and produced by an active self. Recent studies have examined the neural correlates of emergence of the ] under normal circumstances (Spengler, et al 2009). This appears to involve consistent congruence between what is being produced through efferent outflow to the musculature of the body, and what is being sensed as the presumed product in the periphery of this efferent command signal. In alien hand syndrome, the neural mechanisms involved in establishing that this congruence has occurred may be impaired. This may involve an abnormality in the brain mechanism that differentiates between "re-afference" (i.e., the return of kinesthetic sensation from the self-generated 'active' limb movement) and "ex-afference" (i.e., kinesthetic sensation generated from an externally-produced 'passive' limb movement in which an active self does not participate). This brain mechanism is proposed to involve the production of a parallel "efference copy" signal that is sent directly to the somatic sensory regions and is transformed into a "corollary discharge," an expected afferent signal from the periphery that would result from the performance driven by the issued efferent signal. The correlation of the corrollary discharge signal with the actual afferent signal returned from the periphery can then be used to determine if, in fact, the intended action occurred as expected. When the sensed result of the action is congruent with the predicted result, then the action can be labelled as self-generated and associated with an emergent ]. If, however, the neural mechanisms involved in establishing this sensorimotor linkage associated with self-generated action are faulty, it would be expected that the ] with action would not develop.


A 2007 fMRI study examining the difference in functional brain activation patterns associated with alien as compared to non-alien "volitional" movement in a patient with alien hand syndrome found that alien movement involved anomalous ''isolated'' activation of the primary motor cortex in the damaged hemisphere contralateral to the alien hand, while non-alien movement involved the normal process of activation described in the preceding paragraph in which primary motor cortex in the intact hemisphere activates in concert with frontal premotor cortex and posterior parietal cortex presumably involved in a normal cortical network generating premotor influences on the primary motor cortex along with immediate post-motor re-afferent activation of the posterior parietal cortex.<ref>{{Cite journal|last1 = Assal|first1 = F. D. R.|last2 = Schwartz|first2 = S.|last3 = Vuilleumier|first3 = P.|s2cid = 14180577|title = Moving with or without will: functional neural correlates of alien hand syndrome|journal = Annals of Neurology|volume = 62|issue = 3|pages = 301–306|year = 2007|pmid = 17638304|doi = 10.1002/ana.21173}}</ref>
One theory posed to explain these phenomena proposes that the brain has separable neural "premotor" or "agency" systems for managing the process of transforming intentions into overt action. An anteromedial frontal premotor system is engaged in the process of directing exploratory actions based on "internal" drive by releasing or reducing inhibitory control over such actions. Damage to this system produces disinhibition and release of such actions which then occur autonomously. A posterolateral temporo-parieto-occipital premotor system has a similar inhibitory control over actions that withdraw from environmental stimuli as well as the ability to excite actions that are contingent upon and driven by external stimulation, as distinct from internal drive. These two hemispheric systems interact through mutual inhibition that maintains a balance between responding to and withdrawing from environmental stimuli in the behavior of the contralateral limbs (Denny-Brown, 1956, 1958, 1966). Together, these hemispheric agency systems form an integrated intrahemispheric agency system.


Combining these two fMRI studies, one could hypothesize that the alien behavior that is unaccompanied by a sense of agency emerges due to autonomous activity in the primary motor cortex acting independently of ] pre-activating influences that would normally be associated with the emergence of a sense of agency linked to the execution of the action.{{citation needed|date=December 2020}}
When the anteromedial frontal system is damaged, involuntary but purposive movements of an exploratory reach-and-grasp nature--what Denny-Brown (1956, 1966) referred to as a positive cortical tropism--are released in the contralateral limb. When the posterolateral parieto-occipital system is damaged, involuntary purposive movements of a release-and-retract nature, such as levitation and instinctive avoidance, are released. Furthermore, each intrahemispheric agency system has the capability of acting autonomously in its control over the contralateral limb although unitary integrative control of the two hands is maintained through interhemispheric communication between these systems via the projections traversing the corpus callosum at the cortical level and other interhemispheric commissures linking the two hemispheres at the subcortical level. Thus, human agency can be thought of as emerging through the linked and coordinated action of at least four major agency systems, two in each hemisphere.


As noted above, these ideas can also be linked to the concept of ] and ''re-afference'', where efference copy is a signal postulated to be directed from premotor cortex (activated normally in the process associated with emergence of an internally generated movement) over to somatosensory cortex of the parietal region, in advance of the arrival of the "re-afferent" input generated from the moving limb, that is, the afferent return from the moving limb associated with the self-generated movement produced. It is generally thought that a movement is recognized as internally generated when the efference copy signal effectively "cancels out" the re-afference. The afferent return from the limb is effectively correlated with the efference copy signal so that the re-afference can be recognized as such and distinguished from "ex-afference", which would be afferent return from the limb produced by an externally imposed force. When the efference copy is no longer normally generated, then the afferent return from the limb associated with the self-generated movement is mis-perceived as externally produced "ex-afference" since it is no longer correlated with or canceled out by the efference copy. As a result, the development of the sense that a movement is not internally generated even though it actually is (i.e. the failure of the sense of agency to emerge in conjunction with the movement), could indicate a failure of the generation of the efference copy signal associated with the normal premotor process through which the movement is prepared for execution.{{citation needed|date=December 2021}}
The critical difference between the two hemispheres, however, is the direct connection between the agency system of the dominant hemisphere and the encoding system based primarily in the dominant hemisphere that links action production and its interpretation with language. Thus, the overarching unitary conscious agent that emerges in the intact brain is based primarily in the dominant hemisphere and is closely connected to the organization of language capacity. It is proposed that while action precedes linguistic capacity during development, a process ensues through the course of development through which linguistic constructs are linked to action elements in order to produce a language-based encoding of action-oriented knowledge. Through this process of basically "telling oneself a story" about how an act occurs, a language-based "action-capable" self is constructed through consistent correlations between intended actions and subsequent perceived outcomes.


Since there is no disturbance of the ] of the limb in this situation, and there is no apparent physical explanation for how the owned limb could be moving in a purposive manner without an associated sense of agency, a ] is created which may be resolved through the assumption that the goal-directed limb movement is being directed by an "alien" unidentifiable external force with the capacity for directing goal-directed actions of one's own limb.{{citation needed|date=December 2020}}
When there is a major disconnection between the two hemispheres resulting from callosal injury, the language-linked dominant hemisphere agent which maintains its primary control over the dominant limb effectively loses its direct and linked control over the separate "agent" based in the nondominant hemisphere (and, thus, the nondominant limb), which had been previously responsive and "obedient" to the dominant conscious agent. The possibility of purposeful action occurring outside of the realm of influence of the conscious dominant agent, thus can occur and the basic assumption that both hands are controlled through and subject to the dominant agent is proven incorrect. The sense of agency that would normally arise from movement of the nondominant limb now no longer develops, or, at least, is no longer accessible to consciousness. A new explanatory "story" for understanding the nature of the inaccessible agent moving the nondominant limb is thus necessitated.


===Disconnection===
Under such circumstances, the two agents therefore can direct actions in the two limbs that are directed at opposing purposes although the dominant hand remains linked to the dominant consciously accessible agent and is thus viewed as continuing to be under "conscious control" and obedient to conscious will, while the nondominant hand is no longer "tied in" to the dominant agent and is thus identified by the conscious language-based dominant agent as having a separate and alien agency. This theory would explain the emergence of alien behavior in the nondominant limb and intermanual conflict between the two limbs in the presence of damage to the corpus callosum. The distinct anteromedial frontal and posterolateral temporo-parieto-occipital forms of the alien hand syndrome would be explained by selective injury to either the frontal or the posterior agency systems within a particular hemisphere, with the alien behavior developing in the limb contralateral to the damaged hemisphere.
It is theorized that alien hand syndrome results when disconnection occurs between different parts of the brain that are engaged in different aspects of the control of bodily movement.<ref name = goldberg /> As a result, different regions of the brain are able to command bodily movements, but cannot generate a conscious feeling of self-control over these movements. As a result, the sense of agency that is normally associated with voluntary movement is impaired or lost. There is a dissociation between the process associated with the actual execution of the physical movements of the limb and the process that produces an internal sense of voluntary control over the movements, with this latter process thus normally creating the internal conscious sensation that the movements are being internally initiated, controlled and produced by an active self.<ref>{{cite book|last1=Goldberg|first1= Gary|last2=Goodwin|first2=Matthew E.|chapter=Alien Hand Syndrome|pages= –91|year=2011|editor1-first= Jeffrey S.|editor1-last=Kreutzer|editor2-first=John|editor2-last=DeLuca|editor3-first=Bruce|editor3-last=Caplan|title=Encyclopedia of Clinical Neuropsychology|url= https://archive.org/details/encyclopediaclin00kreu|url-access=limited|doi=10.1007/978-0-387-79948-3_1877|isbn=978-0-387-79947-6|via=archive.org}}</ref>


Recent studies have examined the neural correlates of emergence of the sense of agency under normal circumstances.<ref>{{Cite journal|last1 = Spengler|first1 = S.|last2 = Von Cramon|first2 = D. Y.|last3 = Brass|first3 = M.|doi = 10.1002/hbm.20800|title = Control of shared representations relies on key processes involved in mental state attribution|journal = Human Brain Mapping|volume = 30|issue = 11|pages = 3704–3718|year = 2009|pmid = 19517530|pmc =6870802 }}</ref> This appears to involve consistent congruence between what is being produced through efferent outflow to the musculature of the body, and what is being sensed as the presumed product in the periphery of this efferent command signal. In alien hand syndrome, the neural mechanisms involved in establishing that this congruence has occurred may be impaired. This may involve an abnormality in the brain mechanism that differentiates between "re-afference" (the return of kinesthetic sensation from the self-generated "active" limb movement) and "ex-afference" (kinesthetic sensation generated from an externally produced 'passive' limb movement in which an active self does not participate). This brain mechanism is proposed to involve the production of a parallel "efference copy" signal that is sent directly to the somatic sensory regions and is transformed into a "corollary discharge", an expected afferent signal from the periphery that would result from the performance driven by the issued efferent signal. The correlation of the corollary discharge signal with the actual afferent signal returned from the periphery can then be used to determine if, in fact, the intended action occurred as expected. When the sensed result of the action is congruent with the predicted result, then the action can be labelled as self-generated and associated with an emergent sense of agency.{{citation needed|date=December 2020}}
==Proposed strategies for treatment==
Although there is no known formal (primary) treatment for Alien Hand Syndrome at this time, the symptoms can be reduced and managed to some degree by keeping the alien hand occupied and involved in a task, for example by giving it an object to hold in its grasp. Also, specific learned tasks can restore voluntary control of the hand to a significant degree. For example, one patient with the "frontal" form of alien hand who would reach out to grasp onto different objects (e.g., door handles) as he was walking, was given a cane to hold in the alien hand while walking, even though he really did not need a cane for its usual purpose of assisting with balance and facilitating ambulation. With the cane firmly in the grasp of the alien hand, it would generally not release the grasp and drop the cane in order to reach out to grasp onto a different object. Thus, different strategies can be employed to reduce the interference of the alien hand behavior on the ongoing coherent controlled bodily actions of the patient.


If, however, the neural mechanisms involved in establishing this sensorimotor linkage associated with self-generated action are faulty, it would be expected that the sense of agency with action would not develop as discussed in the previous section.{{citation needed|date=December 2020}}
Furthermore, in the presence of unilateral damage to a single cerebral hemisphere, there is generally a gradual reduction in the frequency of alien behaviors observed over time and a gradual restoration of voluntary control over the affected hand, suggesting that ] in the bihemispheric and subcortical brain systems involved in voluntary movement production can serve to re-establish the connection between the executive production process and the internal self-generation and registration process. Exactly how this may occur is not well-understood but a process of gradual recovery from alien hand syndrome when the damage involves a single hemisphere has been reported.


===Loss of inhibitions===
In another approach, the patient is trained to perform a specific task, such as moving the alien hand to contact a specific object or a highly salient environmental target, which is a movement that the patient can learn to generate voluntarily through focused training in order to effectively override the alien behavior. It is possible that some of this training produces a re-organization of premotor systems within the damaged hemisphere, or, alternatively, that ipsilateral control of the limb from the intact hemisphere may be expanded. Yet another approach involves simultaneously "muffling" the action of the alien hand and limiting the sensory feedback coming back to the hand from environmental contact by placing it in a restrictive "cloak" such as a specialized soft foam hand orthosis or, alternatively, an everyday oven mitt. Of course, this then limits the degree to which the hand can participate in addressing functional goals for the patient. Theoretically, this approach could slow down the process through which voluntary control of the hand is restored if the neuroplasticity that underlies recovery involves the exercise of voluntary will to control the actions of the hand in a functional context.
One theory posed to explain these phenomena proposes that the brain has separable neural "premotor" or "agency" systems for managing the process of transforming intentions into overt action.<ref name = goldberg>{{cite journal|last1=Goldberg|first1=Gary|last2=Bloom|first2=Karen K.|title=The Alien Hand Sign|journal=American Journal of Physical Medicine & Rehabilitation|volume=69|issue=5|pages=228–238|year=1990|pmid=2222983|doi=10.1097/00002060-199010000-00002|s2cid=45589053 }}</ref> An anteromedial frontal premotor system is engaged in the process of directing exploratory actions based on "internal" drive by releasing or reducing inhibitory control over such actions.{{citation needed|date=December 2021}}


A 2011 paper reporting on neuronal unit recording in the medial frontal cortex in human subjects showed a clear pre-activation of neurons identified in this area up to several hundred milliseconds prior to the onset of an overt self-generated finger movement and the authors were able to develop a computational model whereby volition emerges once a change in internally generated firing rate of neuronal assemblies in this part of the brain crossed a threshold.<ref>{{cite journal|last1=Fried|first1=Itzhak|last2=Mukamel|first2=Roy|last3=Kreiman|first3=Gabriel|title=Internally Generated Preactivation of Single Neurons in Human Medial Frontal Cortex Predicts Volition|journal=Neuron|volume=69|issue=3|pages= 548–562|year= 2011|pmid= 21315264|pmc=3052770|doi=10.1016/j.neuron.2010.11.045 }}</ref> Damage to this anteromedial premotor system produces disinhibition and release of such exploratory and object acquisition actions which then occur autonomously. A posterolateral temporo-parieto-occipital premotor system has a similar inhibitory control over actions that withdraw from environmental stimuli as well as the ability to excite actions that are contingent upon and driven by external stimulation, as distinct from internal drive. These two intrahemispheric systems, each of which activates an opposing cortical "tropism", interact through mutual inhibition that maintains a dynamic balance between approaching toward (in other words, with "intent-to-capture" in which contact with and grasping onto the attended object is sought) versus withdrawing from (that is, with "intent-to-escape" in which distancing from the attended object is sought) environmental stimuli in the behavior of the contralateral limbs.<ref name = Denny-Brown1958>{{cite journal|last1= Denny-Brown|first1=Derek|title=The nature of apraxia|journal=The Journal of Nervous and Mental Disease|volume=126|issue=1|pages=9–32|year=1958|pmid=13514485|doi= 10.1097/00005053-195801000-00003|s2cid=1998070 }}</ref><ref name= Denny-Brown1966>{{cite book|last1=Denny-Brown|first1=Derek|year=1966|title=The Cerebral Control of Movement|series=The Sherrington Lectures|oclc=599028587}}{{page needed|date=October 2015}}</ref> Together, these two intrahemispheric agency systems form an integrated trans-hemispheric agency system.{{citation needed|date=October 2015}}
==Notes==
{{No footnotes|date=September 2009}}
{{reflist}}


When the anteromedial frontal "escape" system is damaged, involuntary but purposive movements of an exploratory reach-and-grasp nature{{snd}}what Denny-Brown referred to as a ''positive'' cortical tropism{{snd}}are released in the contralateral limb.<ref name = Denny-Brown1958 /><ref name = Denny-Brown1966 /> This is referred to as a ''positive'' cortical tropism because eliciting sensory stimuli, such as would result from tactile contact on the volar aspect of the fingers and palm of the hand, are linked to the activation of movement that increases or enhances the eliciting stimulation through a positive feedback connection (see discussion above in section entitled "Parietal and Occipital Lobes").{{citation needed|date=December 2020}}
==Selected references from medical literature==


When the posterolateral parieto-occipital "approach" system is damaged, involuntary purposive movements of a release-and-retract nature, such as levitation and instinctive avoidance – what Denny-Brown referred to as a ''negative'' cortical tropism – are released in the contralateral limb.<ref name = Denny-Brown1966 /> This is referred to as a ''negative'' cortical tropism because eliciting sensory stimuli, such as would result from tactile contact on the volar aspect of the fingers and palm of the hand, are linked to the activation of movement that reduces or eliminates the eliciting stimulation through a negative feedback connection (see discussion above in section entitled "Parietal and Occipital Lobes").{{citation needed|date=December 2020}}
*Adamovich, S.V., August, K., Merians, A., & Tunik, E. (2009). A virtual reality-based system integrated with fMRI to study neural mechanisms of action observation-execution: a proof of concept study. Restorative Neurology and Neuroscience, 27, 209-223.

*Akelaitis, A. (1944–1945). Studies on the corpus callosum. IV. Diagonistic dyspraxia in epileptics following partial and complete section of the corpus callosum. American Journal of Psychiatry, 101, 594–599.
Each intrahemispheric agency system has the potential capability of acting autonomously in its control over the contralateral limb although unitary integrative control of the two hands is maintained through interhemispheric communication between these systems via the projections traversing the ] at the cortical level and other interhemispheric commissures linking the two hemispheres at the subcortical level.{{citation needed|date=October 2015}}
*Archibald, S.J., Mateer, C.A., & Kerns, K.A. (2001). Utilization behavior: clinical manifestations and neurological mechanisms. Neuropsychological Review, 11, 117-130.

*Assal, F., Schwartz, S., & Vuilleumier, P. (2007) Moving with or without will: Functional neural correlates of alien hand syndrome. Annals of Neurology, 62, 301-306.
===Disconnection of hemispheres due to injury===
*Banks, G., Short, P., Martinez, J., Latchaw, R., Ratcliff, G., & Boller, F. (1989). The alien hand syndrome: Clinical and postmortem findings. Archives of Neurology, 46, 456–459.
One major difference between the two hemispheres is the direct connection between the agency system of the dominant hemisphere and the encoding system based primarily in the dominant hemisphere that links action to its production and through to its interpretation with language and language-encoded thought.{{citation-needed|date=November 2022}} It is proposed that while relational action in the form of embodied inter-subjective behavior<ref>{{cite journal|last1=Trevarthen|first1=Colwyn|title=What is it like to be a person who knows nothing? Defining the active intersubjective mind of a newborn human being|journal=Infant and Child Development|volume=20|issue=1|year=2011|pages=119–135|doi=10.1002/icd.689|citeseerx= 10.1.1.475.9911 }}</ref> precedes linguistic capacity during infant development, a process ensues through the course of development through which linguistic constructs are linked to action elements in order to produce a language-based encoding of action-oriented knowledge.{{citation needed|date=October 2015}}
*Baynes, K., Tramo, M. J., Reeves, A. G., & Gazzaniga, M. S. (1997). Isolation of a right hemisphere cognitive system in a patient with anarchic (alien) hand sign. Neuropsychologia, 35, 1159–1173.

*Biran, I., Giovanetti, T., Buxbaum, L., Chatterjee, A. (2006). The alien hand syndrome. What makes the alien hand alien? Cognitive Neuropsychology 23, 563-582.
When there is a major disconnection between the two hemispheres resulting from callosal injury, the language-linked dominant hemisphere agent which maintains its primary control over the dominant limb loses, to some degree, its direct and linked control over the separate "agent" based in the nondominant hemisphere, and the nondominant limb, which had been previously responsive and "obedient" to the dominant conscious agent. The possibility of purposeful action occurring outside of the realm of influence of the conscious dominant agent can occur and the basic assumption that both hands are controlled through and subject to the dominant agent is proven incorrect. The ] that would normally arise from movement of the nondominant limb now no longer develops, or, at least, is no longer accessible to consciousness. A new explanatory narrative for understanding the situation in which the now inaccessible nondominant hemisphere based agent is capable of activating the nondominant limb is necessitated.{{citation needed|date=October 2015}}
*Biran, I., & Chatterjee, A. (2004). Alien hand syndrome. Archives of Neurology, 61, 292–294.

*Blakemore, S. J., Wolpert, D. M., & Frith, C. D. (2002). Abnormalities in the awareness of action. Trends in Cognitive Sciences, 6, 237–242.
Under such circumstances, the two separated agents can control simultaneous actions in the two limbs that are directed at opposing purposes although the dominant hand remains linked to the dominant consciously accessible language-linked agent and is viewed as continuing to be under "conscious control" and obedient to conscious will and intent as accessible through thought, while the nondominant hand, directed by an essentially non-verbal agent whose intent can only be inferred by the dominant agent after the fact, is no longer "tied in" and subject to the dominant agent and is thus identified by the conscious language-based dominant agent as having a separate and inaccessible alien agency and associated existence. This theory would explain the emergence of alien behavior in the nondominant limb and intermanual conflict between the two limbs in the presence of damage to the corpus callosum.{{citation needed|date=October 2015}}
*Bogen, J. E. (1993). The Callosal syndrome. In K. M. Heilman & E. V. Valenstein (Eds.), Clinical neuropsychology (3rd ed., pp.&nbsp;337–407). New York: Oxford University Press.

*Brion, S., & Jedynak, C. P. (1972). Disorders of interhemispheric transfer (callosal disconnection). 3 cases of tumor of the corpus callosum. . Revue Neurologique (Paris), 126, 257–266.
The distinct anteromedial, frontal, and posterolateral temporo-parieto-occipital variants of the alien hand syndrome would be explained by selective injury to either the frontal or the posterior components of the agency systems within a particular hemisphere, with the relevant and specific form of alien behavior developing in the limb contralateral to the damaged hemisphere.{{citation needed|date=October 2015}}
*Bundick, T., & Spinella, M. (2000). Subjective experience, involuntary movement, and posterior alien hand syndrome. Journal of Neurology, Neurosurgery, and Psychiatry, 68, 83–85.

*Buxbaum, L. J., Schwartz, M. F., Coslett, H. B., & Carew, T. G. (1995). Naturalistic action and praxis in callosal apraxia. Neurocase, 1(3–17).
==Diagnosis==
*Chan, J. L., & Liu, A. B. (1999). Anatomical correlates of alien hand syndromes. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 12, 149–155.

*Chatterjee, A. (1998). Feeling frontal dysfunction: Facilitory paratonia and the regulation of motor behavior. Neurology, 51, 937–939.
===Corpus callosum===
*Cooney, J. W., & Gazzaniga, M. S. (2003). Neurological disorders and the structure of human consciousness. Trends in Cognitive Sciences, 7, 161–165.
Damage to the ] can give rise to "purposeful" actions in the person's non-dominant hand (an individual who is left-hemisphere-dominant will experience the left hand becoming alien, and the right hand will turn alien in the person with right-hemisphere dominance).{{citation needed|date=December 2020}}
*David, N., Newen, A., Vogeley, K. (2008). The "sense of agency" and its underlying cognitive and neural mechanisms. Consciousness and Cognition, 17, 523-534.

*Della Sala, S., Marchetti, C., & Spinnler, H. (1991). Right-sided anarchic (alien) hand: A longitudinal study. Neuropsychologia, 29, 1113–1127.
In "the callosal variant", the patient's hand counteracts voluntary actions performed by the other, "good" hand. Two phenomena that are often found in individuals with callosal alien hand are ''agonistic dyspraxia'' and ''diagonistic dyspraxia''.{{citation needed|date=December 2020}}
*Denny-Brown, D. (1956). Positive and negative aspects of cerebral cortical functions. North Carolina Medical Journal, 17, 295-303.

*Denny-Brown, D. (1958). The nature of apraxia. The Journal of Nervous and Mental Disease, 126, 9–32.
Agonistic dyspraxia involves compulsive automatic execution of motor commands by one hand when the patient is asked to perform movements with the other hand. For example, when a patient with callosal damage was instructed to pull a chair forward, the affected hand would decisively and impulsively push the chair backwards.<ref name = caix/>
*Denny-Brown, D. (1966). The cerebral control of movement. Liverpool: Liverpool University Press.
Agonistic dyspraxia can thus be viewed as an involuntary competitive interaction between the two hands directed toward completion of a desired act in which the affected hand competes with the unaffected hand to complete a purposive act originally intended to be performed by the unaffected hand.{{citation needed|date=December 2020}}
*Desmurget, M., & Grafton, S. (2000). Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Sciences, 4, 423–431.

*Doody, R.S., Jankovic, J. (1992). The alien hand and related signs. Journal of Neurology Neurosurgery and Psychiatry, 55, 806-810.
Diagonistic dyspraxia, on the other hand, involves a conflict between the desired act in which the unaffected hand has been engaged and the interfering action of the affected hand which works to oppose the purpose of the desired act intended to be performed by the unaffected hand. For instance, when Akelaitis's individuals underwent surgery to the corpus callosum to reduce epileptic seizures, one patient's left alien hand would frequently interfere with the right hand. For instance, while trying to turn over to the next page with the right hand, his left hand would try to close the book.<ref>{{cite journal|last1=Akelaitis|first1=Andrew J.|title=Studies on the corpus callosum: IV. Diagonistic dyspraxia in epileptics following partial and complete section of the corpus callosum|journal=American Journal of Psychiatry|volume=101|issue=5|year=1945|pages=594–599|doi=10.1176/ajp.101.5.594}}</ref>
*Eslinger, P. J. (2002). The anatomic basis of utilization behavior: A shift from frontal-parietal to intrafrontal mechanisms. Cortex, 38, 273–276.

*Feinberg, T. E. (1997). Some interesting perturbations of the self in neurology. Seminars in Neurology, 17, 129–135.
In another case of callosal alien hand, the patient did not have intermanual conflict between the hands but rather from a symptom characterized by involuntary mirror movements of the affected hand.<ref name=pmid1388978>{{cite journal|last1=Gottlieb|first1=D|last2=Robb|first2=K|last3=Day|first3=B|title=Mirror movements in the alien hand syndrome. Case report|journal=American Journal of Physical Medicine & Rehabilitation|volume=71|issue=5|pages=297–300|year=1992|pmid=1388978|doi=10.1097/00002060-199210000-00009}}</ref> When the patient was asked to perform movements with one hand, the other hand would involuntarily perform a mirror image movement which continued even when the involuntary movement was brought to the attention of the patient, and the patient was asked to restrain the mirrored movement. The patient had a ruptured ] near the ], which resulted in the right hand being mirrored by the left hand. The patient described the left hand as frequently interfering and taking over anything the patient tried to do with the right hand. For instance, when trying to grasp a glass of water with the right hand with a right side approach, the left hand would involuntary reach out and grasp hold of the glass through a left side approach.{{citation needed|date=December 2020}}
*Feinberg, T. E., Schindler, R. J., Flanagan, N. G., & Haber, L. D. (1992). Two alien hand syndromes. Neurology, 42, 19–24.

*Fellows, L., & Farah, M. J. (2005). Is the anterior cingulate necessary for cognitive control? Brain, 128, 788–796.
More recently, Geschwind et al. described the case of a woman with severe ].<ref name=pmid7723974>{{cite journal|last1=Geschwind|first1=D. H.|last2=Iacoboni|first2=M.|last3=Mega|first3=M. S.|last4=Zaidel|first4=D. W.|last5=Cloughesy|first5=T.|last6=Zaidel|first6=E.|author-link5=Timothy Cloughesy|display-authors= 3|title=Alien hand syndrome: Interhemispheric motor disconnection due to a lesion in the midbody of the corpus callosum|journal=Neurology|volume=45|issue=4|pages=802–808|year=1995|pmid=7723974|doi=10.1212/WNL.45.4.802|s2cid=39196545 }}</ref> One week after undergoing coronary artery bypass grafting, she noticed that her left hand started to "live a life of its own". It would unbutton her gown, try to choke her while asleep and would automatically fight with the right hand to answer the phone. She had to physically restrain the affected hand with the right hand to prevent injury, a behavior which has been termed "self-restriction". The left hand also showed signs of severe ]. It was able to mimic actions but only with the help of mirror movements executed by the right hand (enabling synkinesis). Using ] (MRI), Geschwind et al. found damage to the posterior half of the callosal body, sparing the anterior half and the ] extending slightly into the white matter underlying the right ].<ref name=pmid7723974/>
*Fisher, C. M. (2000). Alien hand phenomena: A review with the addition of six personal cases. The Canadian Journal of Neurological Sciences, 27, 192–203.

*Frith C. D., Blakemore, S. J., & Wolpert, D. M. (2000). Abnormalities in the awareness and control of action. Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences, 355(1404), 1771–1788.
Park et al. also described two cases of infarction as the origin of alien hand symptoms. Both individuals had had infarction of the anterior cerebral artery (ACA). One individual, a 72-year-old male, had difficulty controlling his hands, as they often moved involuntarily, despite his trying to stabilize them. Furthermore, he often could not let go of objects after grasping them with his palms. The other individual, a 47-year-old female with an ACA in a different location of the artery, complained that her left hand would move on its own and she could not control its movements. Her left hand could also sense when her right hand was holding an object and would involuntarily, forcibly take the object out of her right hand.<ref>{{Cite journal|last1=Park|first1=Yong Won|last2=Kim|first2=Chang Hwan|last3=Kim|first3=Myeong Ok|last4=Jeong|first4=Hyung Joon|last5= Jung| first5= Han Young| display-authors= 3| date=August 2012|title=Alien Hand Syndrome in Stroke – Case Report & Neurophysiologic Study|journal=Annals of Rehabilitation Medicine|volume= 36|issue= 4|pages= 556–560|doi= 10.5535/arm.2012.36.4.556| issn= 2234-0645|pmc= 3438424|pmid= 22977783}}</ref>
*Gasquoine, P. G. (1993). Alien hand sign. Journal of Clinical and Experimental Neuropsychology, 15, 653–667.

*Gehring, W. J., & Knight, R. T. (2000). Prefrontal-cingulate interactions in action monitoring. Nature Neuroscience, 3, 516–520.
===Frontal lobe===
*Gerloff, C., Corwell, B., Chen, R., Hallet, M., & Cohen, L. G. (1997). Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain, 120, 1587–1602.
Unilateral injury to the medial aspect of the brain's ] can trigger reaching, grasping and other purposeful movements in the contralateral hand. With anteromedial frontal lobe injuries, these movements are often exploratory reaching movements in which external objects are frequently grasped and utilized functionally, without the simultaneous perception on the part of the patient that they are "in control" of these movements.<ref>{{cite journal|last1=Goldberg|first1=G.|last2=Mayer|first2=N. H.|last3=Toglia|first3= J. U.|title=Medial Frontal Cortex Infarction and the Alien Hand Sign|journal=Archives of Neurology|volume=38|issue=11|pages=683–686|year=1981|pmid=7305695|doi= 10.1001/archneur.1981.00510110043004 }}</ref> Once an object has been acquired and is maintained in the grasp of this "frontal variant" form of alien hand, the patient often has difficulty with voluntarily releasing the object from grasp and can sometimes be seen to be peeling the fingers of the hand back off the grasped object using the opposite controlled hand to enable the release of the grasped object (also referred to as tonic grasping or the "instinctive grasp reaction"<ref>{{cite journal|last1=Seyfarth|first1=H|last2=Denny-Brown|first2=D|title=The grasp reflex and the instinctive grasp reaction|journal=Brain|volume=71|issue=2|pages=109–183|year=1948|pmid=18890913|doi=10.1093/brain/71.2.109}}</ref>). Some (for example, the neurologist ]) have referred to this behavior as "magnetic apraxia"<ref>{{EMedicine|article|1136037|Apraxia and Related Syndromes}}</ref>
*Ghahramani, Z. (2000). Computational neuroscience: Building blocks of movement. Nature, 407(6805), 682–683.

*Giovannetti, T., Buxbaum, L. J., Biran, I., & Chatterjee, A. (2005). Reduced endogenous control in alien hand syndrome: Evidence from naturalistic action. Neuropsychologia, 43, 75–88.
Goldberg and Bloom described a woman with a large ] of the medial surface of the left frontal lobe in the territory of the left anterior cerebral artery which left her with the frontal variant of the alien hand involving the right hand.<ref name = goldberg /> There were no signs of callosal disconnection nor was there evidence of any callosal damage. The patient displayed frequent grasp reflexes; her right hand would reach out and grab objects without releasing them. In regards to tonic grasping, the more the patient tried to let go of the object, the more the grip of the object tightened. With focused effort the patient was able to let go of the object, but if distracted, the behaviour would re-commence. The patient could also forcibly release the grasped object by peeling her fingers away from contact with the object using the intact left hand. Additionally, the hand would scratch at the patient's leg to the extent that an orthotic device was required to prevent injury.<ref name = goldberg /> Another patient reported not only tonic grasping towards objects nearby, but the alien hand would take hold of the patient's penis and engage in public masturbation.<ref>{{cite journal|last1=Kischka|first1=U|last2=Ettlin|first2=TM|last3=Lichtenstern|first3=L|last4=Riedo|first4=C|title=Alien hand syndrome of the dominant hand and ideomotor apraxia of the nondominant hand|journal=European Neurology|volume=36|issue=1|pages=39–42|year=1996|pmid=8719649|doi=10.1159/000117198}}</ref>
*Giovannetti, T., Libon, D. J., & Hart, T. (2002). Awareness of naturalistic action errors in dementia. Journal of the International Neuropsychological Society, 8, 633–644.

*Goldberg, G. (1985). Supplementary motor area structure and function: Review and hypothesis. Behavioral and Brain Sciences, 8, 567–616.
===Parietal and occipital lobes===
*Goldberg, G. (2000). Invited Editorial: When aliens invade: multiple mechanisms for dissociation between will and action. Journal of Neurology, Neurosurgery and Psychiatry 68, 7.
A distinct "posterior variant" form of alien hand syndrome is associated with damage to the posterolateral ] and/or ] of the brain. The movements in this situation tend to be more likely to withdraw the palmar surface of the hand away from sustained environmental contact rather than reaching out to grasp onto objects to produce palmar tactile stimulation, as is most often seen in the frontal form of the condition. In the frontal variant, tactile contact on the ventral surface of the palm and fingers facilitates finger flexion and grasp of the object through a positive feedback loop (i.e. the stimulus generates movement that reinforces, strengthens and sustains the triggering stimulation).{{citation needed|date=December 2020}}
*Goldberg, G. (1987). From intent to action: Evolution and function of the premotor systems of the frontal lobe. In: The Frontal Lobes Re-visited. Ed. E. Perecman. IRBN Press.

*Goldberg, G. (1992). Premotor systems, attention to action and behavioural choice. In J. Kien, C. McCrohan, & W. Winlow (Eds.), Neurobiology of motor programme selection. New approaches to mechanisms of behavioural choice (pp. 225-249). Oxford: Pergamon Press.
In contrast, in the posterior variant, tactile contact on the ventral surface of the palm and fingers is actively avoided through facilitation of extension of the fingers and withdrawal of the palm in a ] loop (i.e. the stimulus, and even anticipation of stimulation of the palmar surface of the hand, generates movement of the palm and fingers that reduces and effectively counteracts and eliminates the triggering stimulation, or, in the case of anticipated palmar contact, decreases the likelihood of such contact). Alien movements in the posterior variant of the syndrome also tend to be less coordinated and show a coarse ataxic motion during active movement that is generally not observed in the frontal form of the condition. This is generally thought to be due to an optic form of ataxia since it is facilitated by the visual presence of an object with visual attention directed toward the object. The apparent instability could be due to an unstable interaction between the tactile avoidance tendency biasing toward withdrawal from the object, and the visually based acquisition bias tendency pushing toward an approach to the object.{{citation needed|date=December 2020}}
*Goldberg, G., & Bloom, K. K. (1990). The alien hand sign: Localization, lateralization and recovery. American Journal of Physical Medicine and Rehabilitation, 69, 228–238.

*Goldberg, G., Mayer, N. H., & Toglia, J. U. (1981). Medial frontal cortex infarction and the alien hand sign. Archives of Neurology, 38, 683–686.
The alien limb in the posterior variant of the syndrome may be seen to "levitate" upward into the air withdrawing away from contact surfaces through the activation of anti-gravity musculature. Alien hand movement in the posterior variant may show a typical posture, sometimes referred to as a "parietal hand" or the "instinctive avoidance reaction" (a term introduced by neurologist ] as an inverse form of the "magnetic apraxia" seen in the frontal variant, as noted above), in which the digits move into a highly extended position with active extension of the interphalangeal joints of the digits and hyper-extension of the metacarpophalangeal joints, and the palmar surface of the hand is actively pulled back away from approaching objects or up and away from supporting surfaces. The "alien" movements, however, remain purposeful and goal-directed, a point which clearly differentiates these movements from other disorganized non-purposeful forms of involuntary limb movement (e.g. ], ], or ]).{{citation needed|date=December 2020}}
*Hart, T., Giovannetti, T., Montgomery, M. W., & Schwartz, M. F. (1998). Awareness of errors in naturalistic action after traumatic brain injury. The Journal of Head Trauma Rehabilitation, 13, 16–28.

*Jackson, J. H. (1958). On some implications of dissolution of the nervous system. In J. Taylor (Ed.), Selected writings of John Hughlings Jackson (vol 2, 1st ed., pp.&nbsp;29–44). London: Staples Press.
===Similarities between frontal and posterior variants===
*Jeannerod, M. (2007). Being oneself. Journal of Physiology (Paris), 101, 161-168.
In both the frontal and the posterior variants of the alien hand syndrome, the patient's reactions to the limb's apparent capability to perform goal-directed actions independent of conscious volition is similar. In both of these variants of alien hand syndrome, the alien hand emerges in the hand contralateral to the damaged hemisphere.{{citation needed|date=December 2020}}
*Jeannerod, M. (2009). The sense of agency and its disturbances in schizophrenia: a reappraisal. Experimental Brain Research, 192, 527-532.

*Kertesz, A. (2000). Alien hand, free will and Arnold Pick. The Canadian Journal of Neurological Sciences, 27, 183.
==Treatment==
*Kikkert, M.A., Ribbers, G.M., Koudstaal, P.J. (2006). Alien hand syndrome in stroke: a report of two cases and review of the literature. Archives of Physical Medicine and Rehabilitation, 87, 728-732.
There is no cure for the alien hand syndrome.<ref name=pmid1388978/> However, the symptoms can be reduced and managed to some degree by keeping the alien hand occupied and involved in a task, for example by giving it an object to hold in its grasp. Specific learned tasks can restore voluntary control of the hand to a significant degree. One patient with the "frontal" form of alien hand who would reach out to grasp onto different objects (e.g., door handles) as he was walking was given a cane to hold in the alien hand while walking, even though he really did not need a cane for its usual purpose. With the cane firmly in the grasp of the alien hand, it would generally not release the grasp and drop the cane in order to reach out to grasp onto a different object. Other techniques proven to be effective include; wedging the hand between the legs or slapping it; warm water application and visual or tactile contact.<ref>{{cite journal|last1=Nicholas|first1=John J.|last2=Wichner|first2=Monica H.|last3=Gorelick|first3=Philip B.|last4=Ramsey|first4=Michael M.|title='Naturalization' of the alien hand: Case report|journal=Archives of Physical Medicine and Rehabilitation|volume=79|issue=1|pages=113–114|year=1998|pmid=9440428|doi=10.1016/S0003-9993(98)90218-0 }}</ref> Additionally, Wu et al.<ref>{{cite journal|last1=Wu|first1=FY|last2=Leong|first2=CP|last3=Su|first3=TL|title=Alien hand syndrome: report of two cases|journal=Changgeng Yi Xue Za Zhi|volume=22|issue=4|pages=660–665|year=1999|pmid=10695218 }}</ref> found that an irritating alarm activated by biofeedback reduced the time the alien hand held an object.
*Kischka, U., Ettlin, T. M., Lichtenstern, L., & Riedo, C. (1996). Alien hand syndrome of the dominant hand and ideomotor apraxia of the nondominant hand. European Neurology, 36, 39–42.

*Kumral, E. (2001). Compulsive grasping hand syndrome: A variant of anarchic hand. Neurology, 57, 2143–2144.
In the presence of unilateral damage to a single cerebral hemisphere, there is generally a gradual reduction in the frequency of alien behaviors observed over time and a gradual restoration of voluntary control over the affected hand. Actually, when AHS originates from focal injury of acute onset, recovery usually occurs within a year.<ref>{{cite journal|last1=Chan|first1=JL|last2=Ross|first2=ED|title=Alien hand syndrome: influence of neglect on the clinical presentation of frontal and callosal variants|journal=Cortex|volume=33|issue=2|pages=287–299|year=1997|pmid=9220259|doi=10.1016/s0010-9452(08)70005-4|s2cid=4477228 }}</ref> One theory is that ] in the bihemispheric and subcortical brain systems involved in voluntary movement production can serve to re-establish the connection between the executive production process and the internal self-generation and registration process. Exactly how this may occur is not well understood, but a process of gradual recovery from alien hand syndrome when the damage is confined to a single cerebral hemisphere has been reported.<ref name = goldberg /> In some instances, individuals may resort to constraining the wayward, undesirable and sometimes embarrassing actions of the impaired hand by voluntarily grasping onto the forearm of the impaired hand using the intact hand. This observed behavior has been termed "self-restriction" or "self-grasping".<ref name = goldberg />
*Levine, D. N., & Rinn, W. E. (1986). Opticosensory ataxia and alien hand syndrome after posterior cerebral artery territory infarction. Neurology, 36, 1094–1097.

*Lhermitte, F. (1983). “Utilization behaviour” and its relation to lesions of the frontal lobes. Brain, 106 (Pt 2), 237-255.
In another approach, the patient is trained to perform a specific task, such as moving the alien hand to contact a specific object or a highly salient environmental target, which is a movement that the patient can learn to generate voluntarily through focused training in order to effectively override the alien behavior. It is possible that some of this training produces a re-organization of premotor systems within the damaged hemisphere, or, alternatively, that ] control of the limb from the intact hemisphere may be expanded.{{citation needed|date=December 2021}}
*Lhermitte, F., Pillon, B., Serdaru, M. (1986). Human autonomy and the frontal lobes. Part I: Imitation and utilization behavior. A neuropsychological study of 75 patients. Annals of Neurology, 19, 326-334.

*Lhermitte, F. (1986). Human autonomy and the frontal lobes. Part II: Patient behavior in complex and social situations: The "Environmental Dependency" syndrome. Annals of Neurology, 19, 335-343.
Another method involves simultaneously "muffling" the action of the alien hand and limiting the sensory feedback coming back to the hand from environmental contact by placing it in a restrictive "cloak" such as a specialized soft foam hand orthosis or, alternatively, an everyday oven mitt. Other individuals have reported using an orthotic device to restrict perseverative grasping<ref name = goldberg /> or restraining the alien hand by securing it to the bed pole.<ref>{{cite journal|last1=Banks|first1=Gordon|last2=Short|first2=Priscilla|last3=Martínez|first3=Julio|last4=Latchaw|first4=Richard|last5=Ratcliff|first5=Graham|last6=Boller|first6=François|title=The Alien Hand Syndrome|journal=Archives of Neurology|volume=46|issue=4|pages=456–459|year=1989|pmid=2705906|doi=10.1001/archneur.1989.00520400116030 }}</ref> Of course, this can limit the degree to which the hand can participate in addressing functional goals for the patient and may be considered to be an unjustifiable restraint.{{citation needed|date=December 2021}}
*Luria, A. R. (1966). Higher cortical functioning in man. New York: Oxford University Press.

*MacDonald, A. W., III, Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835–1838.
Theoretically, this approach could slow down the process through which voluntary control of the hand is restored if the neuroplasticity that underlies recovery involves the recurrent exercise of voluntary will to control the actions of the hand in a functional context and the associated experiential reinforcement through successful willful suppression of the alien behavior.{{citation needed|date=October 2015}}
*Marchetti, C., & Della Sala, S. (1998). Disentangling the alien and anarchic hand. Cognitive Neuropsychiatry, 3, 191–208.

*Marey-Lopez, J.,Rubio-Nazabal,E., Alonso-Magdalena, L., & Lopez-Facal,S. (2002).Posterior alien hand syndrome after a right thalamic infarct. Journal of Neurology, Neurosurgery, and Psychiatry, 73, 447–449.
== History ==
*McNabb, A. W., Carroll, W. M., & Mastaglia, F. L. (1988). “Alien hand” and loss of bimanual coordination after dominant anterior cerebral artery territory infarction. Journal of Neurology, Neurosurgery, and Psychiatry, 51, 218–222.
The first known case described in the medical literature appeared in a detailed case report published in German in 1908 by the preeminent German neuro-psychiatrist, ].<ref name="Goldstein1908">{{cite journal|last1=Goldstein|first1=Kurt|year=1908|title=Zur Lehre von der motorischen Apraxie|trans-title=On the doctrine of the motor apraxia|language=de|journal=Journal für Psychologie und Neurologie|volume=11|issue=4/5|pages=169–187, 270–283|url=https://books.google.com/books?id=6gZLAAAAYAAJ&pg=PA169 }}</ref> In this paper, Goldstein described a right-handed woman who had had a stroke affecting her left side from which she had partially recovered by the time she was seen. However, her left arm seemed as though it belonged to another person and performed actions that appeared to occur independent of her will.<ref name="Goldstein1908"/>
*Milner, A., & Goodale, M. (1995). The visual brain in action. New York: Oxford University Press.

*Moore, J.W., Wegner, D.M., Haggard, P. (2009). Modulating the sense of agency with external cues. Consciousness and Cognition, 18, 1056-1064.
The patient complained of a feeling of "strangeness" in relationship to the goal-directed movements of the left hand and insisted that "someone else" was moving the left hand, and that she was not moving it herself. When the left hand grasped an object, she could not voluntarily release it. The senses of touch and ] of the left side were impaired. The left hand would make spontaneous movements, such as wiping the face or rubbing the eyes, but these were relatively infrequent. With significant effort, she was able to move her left arm in response to spoken command, but conscious movements were slower or less precise than similar involuntary motions.<ref name="Goldstein1908"/>
*Nicholas, J.J., Wichner, M.H., Gorelick, P.B., Ramsey, M.M. (1998) "Naturalization" of the alien hand. A case report. Archives of Physical Medicine and Rehabilitation, 79, 113-114.

*Nishikawa, T., Okuda, J., Mizuta, I., Ohno, K., Jamshidi, J., Tokunaga, H., et al. (2001). Conflict of intentions due to callosal disconnection. Journal of Neurology, Neurosurgery, and Psychiatry, 71, 462–471.
Goldstein developed a "doctrine of motor apraxia" in which he discussed the generation of voluntary action and proposed a brain structure for ], ] and other higher cognitive processes. Goldstein maintained that a structure conceptually organizing both the body and external space was necessary for object perception as well as for voluntary action on external objects.<ref name="Goldstein1908"/>
*Norman, D. A., & Shallice, T. (1986). Attention to action; willed and automatic control of behavior. Consciousness and Self-Regulation, 4, 1–18.

*Ong Hai, B. G., & Odderson, I. R. (2000). Involuntary masturbation as a manifestation of stroke-related alien hand syndrome. American Journal of Physical Medicine and Rehabilitation, 79, 395–398.
In his classic papers reviewing the wide variety of disconnection syndromes associated with focal brain pathology, Norman Geschwind commented that Kurt Goldstein "was perhaps the first to stress the non-unity of the personality in individuals with callosal section, and its possible psychiatric effects".<ref>{{cite journal|last1=Geschwind|first1=Norman|title=Disconnexion syndromes in animals and man. I|journal=Brain|volume=88|issue=2|pages=237–294|year=1965|pmid=5318481|doi=10.1093/brain/88.2.237|doi-access=free }}</ref>
*Pack, B.C., Stewart, K.J., Diamond, P.T., Gale, S.D. (2002). Posterior-variant alien hand syndrome: clinical features and response to rehabilitation. Disability and Rehabilitation, 24, 817-818.

*Parkin, A.J., & Barry, C. (1991). Alien hand sign and other cognitive deficits following ruptured aneurysm of the anterior communicating artery. Behavioral Neurology, 4, 167-179.
==In popular culture==
*Passingham, R. E., Ramnani, N., & Rowe, J. B. (2004). The motor system. In R. S. J. Frackowiak, K. J., Friston, C. D. Frith, R. J. Dolan, C. J. Price, S. Zeki, et al. (Eds.), Human brain function (pp.&nbsp;5–32). New York: Elsevier Academic Press.
* In ]'s 1964 film '']'', the eponymous character, played by ], apparently has alien hand syndrome, as he cannot stop himself from doing the ]. "Dr. Strangelove syndrome" was suggested as the official name for AHS. This was not approved, though it is sometimes used as an alternative name.<ref name="auto"/><ref>{{cite web|url=https://www.theguardian.com/books/2016/may/21/darian-leader-how-technology-changing-our-hands|title=Darian Leader: how technology is changing our hands|first= Darian| last= Leader|date=21 May 2016|website=The Guardian|access-date=22 March 2018}}</ref>
*Riddoch, M. J., Edwards, M. G., Humphreys, G. W., West, R., & Heafield, T. (1998). An experimental study of anarchic hand syndrome: Evidence that visual affordances direct action. Cognitive Neuropsychology, 15, 645–683.
* In the medical drama TV series '']'' episode "]", a patient has alien hand syndrome.<ref>{{cite book|url= https://books.google.com/books?id=Cpbkud7YhS8C&q=alien|title=Chasing Zebras: The Unofficial Guide to House, M. D.|first=Barbara|last=Barnett|year= 2010|publisher=ECW Press|via= Google Books|isbn= 9781554908097}}{{page needed|date=July 2022}}</ref>
*Rohde, S., Weidauer, S., Lanfermann, H., Zanelia, F. (2002). Posterior alien hand syndrome: case report. Neuroradiology, 44, 921-923.
* An episode of '']''{{snd}}a ] TV series on ]{{snd}}described alien hand syndrome and traced its history.<ref>{{cite web|url=https://www.youtube.com/watch?v=uYLcTs18j9c|archive-url=https://ghostarchive.org/varchive/youtube/20211212/uYLcTs18j9c| archive-date=2021-12-12|url-status=live|access-date= 8 June 2012|title=Alien Hand Syndrome|date=23 September 2011|publisher= Discovery Science| via= YouTube }}{{cbignore}}</ref><ref>{{cite web| url= https://www.rarediseasereview.org/publications/2017/2/19/a-mind-of-its-own|title=A Mind of Its Own|website=Rare Disease Review|access-date=2018-03-24|archive-url= https://web.archive.org/web/20180324224530/https://www.rarediseasereview.org/publications/2017/2/19/a-mind-of-its-own|archive-date=2018-03-24|url-status=dead}}</ref>
*Sato, A. (2009). Both motor prediction and conceptual congruency between preview and action-effect contribute to explicit judgment of agency. Cognition, 110, 74-83.
* The 2017 Indian Tamil dark comedy film '']'' is about a person with AHS.<ref>{{cite web| website= newindianexpress.com| date= 14 June 2017| url= https://www.newindianexpress.com/entertainment/tamil/2017/jun/14/stories-should-matter-not-the-stars-says-karthiik-1616736.html| title= Stories should matter, not the stars, says Karthiik}}</ref>
*Scepkowski, L., & Cronin-Golomb, A. (2003). The alien hand: Cases, categorizations, and anatomic correlates. Behavioral and Cognitive Neuroscience Reviews, 2, 261–277.
* In Season 2 of the TV series '']'', Dr. Brock Holt appears to have alien hand syndrome.<ref>{{cite magazine|url= http://ew.com/article/2016/08/31/scream-queens-season-2-promo-emma-roberts-john-stamos/|title=Emma Roberts and John Stamos Get Close in New 'Scream Queens' Promo|first= Chancellor|last= Agard|magazine= ]| via= EW.com| publisher= Meredith Corporation| date= 31 August 2016| access-date= 28 October 2021}}</ref>
*Spengler, S., von Cramon, D.Y., & Brass, M. (2009). Was it me or was it you? How the sense of agency originates from ideomotor learning revealed by fMRI. Neuroimage, 46, 290-298.
* In the Brazilian soap opera '']'' (2019), the character Eusébio, played by ], began to suffer from a "supernatural phenomenon" similar to AHS.<ref>{{cite web|website=Notícias da TV|url=https://noticiasdatv.uol.com.br/noticia/novelas/dona-do-pedaco-eusebio-enfrenta-fenomeno-paranormal-e-e-acusado-de-assedio-29935|title=A Dona do Pedaço: Eusébio enfrenta fenômeno paranormal e é acusado de assédio|date=7 October 2019|access-date=22 October 2022|first=Daniel|last=Farad|language=pt}}</ref>
*Sumner, P., & Husain, M. (2008). At the edge of consciousness: automatic motor activation and voluntary control. Neuroscientist, 14, 474-486.

*Suwanwela, N. C., & Leelacheavasit, N. (2002). Isolated corpus callosal infarction secondary to pericallosal artery disease presenting as alien hand syndrome. Journal of Neurology, Neurosurgery, and Psychiatry, 72, 533–536.
==See also==
*Synofzik, M., Vosgerau, G., Newen, A. (2008). I move, therefore I am: a new theoretical framework to investigate agency and ownership. Consciousness and Cognition, 17, 411-424.
* ]
*Synofzik, M., Vosgerau, G., & Lindner, A. (2009). Me or not me--an optimal integration of agency cues? Consciousness and Cognition, 18, 1065-1068.
* ]
*Tanaka, Y., Iwasa, H., & Yoshida, M. (1990). Diagonistic dyspraxia: Case report and movement-related potentials. Neurology, 40, 657–661.
* ]
*Tanaka, Y., Yoshida, A., Kawahata, N., Hashimoto, R., & Obayashi, T. (1996). Diagonistic dyspraxia. Clinical characteristics, responsible lesion and possible underlying mechanism. Brain, 119 (Pt 3), 859–873.
* ]
*Trojano, L., Crisci, C., Lanzillo, B., Elefante, R., & Caruso, G. (1993). How many alien hand syndromes? Follow-up of a case. Neurology, 43, 2710–2712.
* ]
*Tsakiris, M., Schutz-Bosbach, S., Gallagher, S. (2007). On agency and body-ownership: phenomenological and neurocognitive reflections. Consciousness and Cognition, 16, 645-660.
* ]
*Turken, A. U., & Swick, D. (1999). Response selection in the human anterior cingulate cortex. Nature neuroscience, 2, 920–924.
* ]
*Ventura, M. G., Goldman, S., & Hildebrand, J. (1995). Alien hand syndrome without a corpus callosum lesion. Journal of Neurology, Neurosurgery, and Psychiatry, 58, 735–737.
* ]
*de Vignemont, F., & Fourneret, P. (2004). The sense of agency: a philosophical and empirical review of the "Who" system. Consciousness and Cognition, 13, 1-19.
* ]
*Wolpert, D. M., Ghahramani, Z., & Flanagan, J. R. (2001). Perspectives and problems in motor learning. Trends in Cognitive Sciences, 5, 487–494.
* ]
{{Clear}}

==References==
{{Reflist}}


==Works cited== ==Works cited==
* {{cite web|last=Bryant, Charles W.|title=How Alien Hand Syndrome Works|url=http://science.howstuffworks.com/science-vs-myth/unexplained-phenomena/alien-hand.htm|publisher=]|access-date=October 6, 2011|date=September 12, 2007}}
* Bellows, Allen. "Alien Hand Syndrome." Damn Interesting. 19 Nov. 2005. 13 Dec. 2008 <http://www.damninteresting.com/?p=203.>
* {{cite web|title=Definition of Alien Hand Syndrome|url=http://www.medterms.com/script/main/art.asp?articlekey=12655|publisher=MedicalNet.com|access-date=October 6, 2011|date=December 15, 2000|archive-date=August 16, 2014|archive-url=https://web.archive.org/web/20140816122624/http://www.medterms.com/script/main/art.asp?articlekey=12655|url-status=dead}}
* Bryant, Charles W. "How Alien Hand Syndrome Works." HowStuffWorks. 19 June 2005. 15 Dec. 2008 <http://health.howstuffworks.com/alien-hand.htm.>
* "Defininition of Alien Hand Syndrome." MedicalNet.com. 4 Oct. 2008. Dec.-Jan. 2008 <http://www.medterms.com/script/main/art.asp?articlekey=12655>.


==External links== == External links ==
{{Medical resources
*
| DiseasesDB =
*
| ICD10 =
*
| ICD9 = {{ICD9|781.8}}
*
| ICDO =
*
| OMIM =
| MedlinePlus =
| eMedicineSubj =
| eMedicineTopic =
| MeshID = D055964
}}
*
*

{{Nervous and musculoskeletal system symptoms and signs}}


{{DEFAULTSORT:Alien Hand Syndrome}} {{DEFAULTSORT:Alien Hand Syndrome}}
<!--Categories--> <!--Categories-->
] ]
]

]
<!--Other languages-->

]
]
]
]
]
]
]
]
]

Latest revision as of 10:33, 7 November 2024

Neuropsychiatric disorder "Alien limb syndrome" redirects here. Not to be confused with Phantom limb syndrome.
This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (October 2015) (Learn how and when to remove this message)
Medical condition
Alien hand syndrome
Other namesAHS; alien limb syndrome; ALS; Dr. Strangelove syndrome
SpecialtyPsychiatry, Neurology

Alien hand syndrome (AHS) or Dr. Strangelove syndrome is a category of conditions in which a person experiences their limbs acting seemingly on their own, without conscious control over the actions. There are a variety of clinical conditions that fall under this category, most commonly affecting the left hand. There are many similar terms for the various forms of the condition, but they are often used inappropriately. The affected person may sometimes reach for objects and manipulate them without wanting to do so, even to the point of having to use the controllable hand to restrain the alien hand. The occurrence of alien hand syndrome can be usefully conceptualized as a phenomenon reflecting a functional "disentanglement" between thought and action.

Alien hand syndrome is best documented in cases where a person has had the two hemispheres of their brain surgically separated, a procedure sometimes used to relieve the symptoms of extreme cases of epilepsy and epileptic psychosis, e.g., temporal lobe epilepsy. It also occurs in some cases after brain surgery, stroke, infection, tumor, aneurysm, migraine and specific degenerative brain conditions such as Alzheimer's disease, corticobasal degeneration and Creutzfeldt–Jakob disease. Other areas of the brain that are associated with alien hand syndrome are the frontal, occipital, and parietal lobes.

Signs and symptoms

"Alien behavior" can be distinguished from reflexive behavior in that the former is flexibly purposive while the latter is obligatory. Sometimes the affected person will not be aware of what the alien hand is doing until it is brought to his or her attention, or until the hand does something that draws their attention to its behavior. There is a clear distinction between the behaviors of the two hands in which the affected hand is viewed as "wayward" and sometimes "disobedient" and generally out of the realm of their own voluntary control, while the unaffected hand is under normal volitional control. At times, particularly in individuals who have sustained damage to the corpus callosum that connects the two cerebral hemispheres (see also Split-brain), the hands appear to be acting in opposition to each other.

A related syndrome described by the French neurologist François Lhermitte involves the release through disinhibition of a tendency to compulsively utilize objects that present themselves in the surrounding environment around the patient. The behavior of the patient is, in a sense, obligatorily linked to the "affordances" (using terminology introduced by the American ecological psychologist, James J. Gibson) presented by objects that are located within the immediate peri-personal environment.

This condition is known as utilization behavior. It is most often associated with extensive bilateral frontal lobe damage and might actually be thought of as "bilateral" alien hand syndrome in which the patient is compulsively directed by external environmental contingencies (such as the presence of a hairbrush on the table in front of them elicits the act of brushing the hair) and has no capacity to "hold back" and inhibit pre-potent motor programs that are obligatorily linked to the presence of specific external objects in the peri-personal space of the patient. When the frontal lobe damage is bilateral and generally more extensive, the patient completely loses the ability to act in a self-directed manner and becomes totally dependent upon the surrounding environmental indicators to guide their behavior in a general social context, a condition referred to as "environmental dependency syndrome".

To deal with the alien hand, some individuals engage in personification of the affected hand. Usually these names are negative in nature, from mild such as "cheeky" to malicious "monster from the moon". For example, Rachelle Doody and Jankovic described a patient who named her alien hand "baby Joseph". When the hand engaged in playful, troublesome activities such as pinching her nipples (akin to biting while nursing), she would experience amusement and would instruct baby Joseph to "stop being naughty". Furthermore, Bogen suggested that certain personality characteristics, such as a flamboyant personality, contribute to frequent personification of the affected hand.

Neuroimaging and pathological research shows that lesions of the frontal lobe (in the frontal variant) and corpus callosum (in the callosal variant) are the most common anatomical lesions responsible for the alien hand syndrome. These areas are closely linked in terms of motor planning and its final pathways.

The callosal variant includes advanced willed motor acts by the non-dominant hand, where individuals frequently exhibit "intermanual conflict" in which one hand acts at cross-purposes with the other "good hand". For example, one patient was observed putting a cigarette into her mouth with her intact, "controlled" hand (her right, dominant hand), following which her left hand rose, grasped the cigarette, pulled it out of her mouth, and toss it away before it could be lit by the right hand. The patient then surmised that "I guess 'he' doesn't want me to smoke that cigarette." Another patient was observed to be buttoning up her blouse with her controlled dominant hand while the alien non-dominant hand, at the same time, was unbuttoning her blouse. The frontal variant most often affects the dominant hand, but can affect either hand depending on the lateralization of the damage to medial frontal cortex, and includes grasp reflex, impulsive groping toward objects or/and tonic grasping (in other words, difficulty in releasing grip).

In most cases, classic alien-hand signs derive from damage to the medial frontal cortex, accompanying damage to the corpus callosum. In these individuals, the main cause of damage is unilateral or bilateral infarction of cortex in the territory supplied by the anterior cerebral artery or associated arteries. Oxygenated blood is supplied by the anterior cerebral artery to most medial portions of the frontal lobes and to the anterior two-thirds of the corpus callosum, and infarction may consequently result in damage to multiple adjacent locations in the brain in the supplied territory. As the medial frontal lobe damage is often linked to lesions of the corpus callosum, frontal variant cases may also present with callosal form signs. Cases of damage restricted to the callosum however, tend not to show frontal alien-hand signs.

Cause

The common emerging factor in alien hand syndrome is that the primary motor cortex controlling hand movement is isolated from premotor cortex influences but remains generally intact in its ability to execute movements of the hand.

A 2009 fMRI study looking at the temporal sequence of activation of components of a cortical network associated with voluntary movement in normal individuals demonstrated "an anterior-to-posterior temporal gradient of activity from supplemental motor area through premotor and motor cortices to the posterior parietal cortex". Therefore, with normal voluntary movement, the emergent sense of agency appears to be associated with an orderly sequence of activation that develops initially in the anteromedial frontal cortex in the vicinity of the supplementary motor complex on the medial surface of the frontal aspect of the hemisphere (including the supplementary motor area) prior to activation of the primary motor cortex in the pre-central gyrus on the lateral aspect of the hemisphere, when the hand movement is being generated. Activation of the primary motor cortex, presumed to be directly involved in the execution of the action via projections into the corticospinal component of the pyramidal tracts, is then followed by activation of the posterior parietal cortex, possibly related to the receipt of recurrent or re-afferent somatosensory feedback generated from the periphery by the movement which would normally interact with the efference copy transmitted from primary motor cortex to permit the movement to be recognized as self-generated rather than imposed by an external force. That is, the efference copy allows the recurrent afferent somatosensory flow from the periphery associated with the self-generated movement to be recognized as re-afference as distinct from ex-afference. Failure of this mechanism may lead to a failure to distinguish between self-generated and externally generated movement of the limb. This anomalous situation in which re-afference from a self-generated movement is mistakenly registered as ex-afference due to a failure to generate and successfully transmit an efference copy to sensory cortex, could readily lead to the interpretation that what is in actuality a self-generated movement has been produced by an external force as a result of the failure to develop a sense of agency in association with emergence of the self-generated movement (see below for a more detailed discussion).

A 2007 fMRI study examining the difference in functional brain activation patterns associated with alien as compared to non-alien "volitional" movement in a patient with alien hand syndrome found that alien movement involved anomalous isolated activation of the primary motor cortex in the damaged hemisphere contralateral to the alien hand, while non-alien movement involved the normal process of activation described in the preceding paragraph in which primary motor cortex in the intact hemisphere activates in concert with frontal premotor cortex and posterior parietal cortex presumably involved in a normal cortical network generating premotor influences on the primary motor cortex along with immediate post-motor re-afferent activation of the posterior parietal cortex.

Combining these two fMRI studies, one could hypothesize that the alien behavior that is unaccompanied by a sense of agency emerges due to autonomous activity in the primary motor cortex acting independently of premotor cortex pre-activating influences that would normally be associated with the emergence of a sense of agency linked to the execution of the action.

As noted above, these ideas can also be linked to the concept of efference copy and re-afference, where efference copy is a signal postulated to be directed from premotor cortex (activated normally in the process associated with emergence of an internally generated movement) over to somatosensory cortex of the parietal region, in advance of the arrival of the "re-afferent" input generated from the moving limb, that is, the afferent return from the moving limb associated with the self-generated movement produced. It is generally thought that a movement is recognized as internally generated when the efference copy signal effectively "cancels out" the re-afference. The afferent return from the limb is effectively correlated with the efference copy signal so that the re-afference can be recognized as such and distinguished from "ex-afference", which would be afferent return from the limb produced by an externally imposed force. When the efference copy is no longer normally generated, then the afferent return from the limb associated with the self-generated movement is mis-perceived as externally produced "ex-afference" since it is no longer correlated with or canceled out by the efference copy. As a result, the development of the sense that a movement is not internally generated even though it actually is (i.e. the failure of the sense of agency to emerge in conjunction with the movement), could indicate a failure of the generation of the efference copy signal associated with the normal premotor process through which the movement is prepared for execution.

Since there is no disturbance of the sense of ownership of the limb in this situation, and there is no apparent physical explanation for how the owned limb could be moving in a purposive manner without an associated sense of agency, a cognitive dissonance is created which may be resolved through the assumption that the goal-directed limb movement is being directed by an "alien" unidentifiable external force with the capacity for directing goal-directed actions of one's own limb.

Disconnection

It is theorized that alien hand syndrome results when disconnection occurs between different parts of the brain that are engaged in different aspects of the control of bodily movement. As a result, different regions of the brain are able to command bodily movements, but cannot generate a conscious feeling of self-control over these movements. As a result, the sense of agency that is normally associated with voluntary movement is impaired or lost. There is a dissociation between the process associated with the actual execution of the physical movements of the limb and the process that produces an internal sense of voluntary control over the movements, with this latter process thus normally creating the internal conscious sensation that the movements are being internally initiated, controlled and produced by an active self.

Recent studies have examined the neural correlates of emergence of the sense of agency under normal circumstances. This appears to involve consistent congruence between what is being produced through efferent outflow to the musculature of the body, and what is being sensed as the presumed product in the periphery of this efferent command signal. In alien hand syndrome, the neural mechanisms involved in establishing that this congruence has occurred may be impaired. This may involve an abnormality in the brain mechanism that differentiates between "re-afference" (the return of kinesthetic sensation from the self-generated "active" limb movement) and "ex-afference" (kinesthetic sensation generated from an externally produced 'passive' limb movement in which an active self does not participate). This brain mechanism is proposed to involve the production of a parallel "efference copy" signal that is sent directly to the somatic sensory regions and is transformed into a "corollary discharge", an expected afferent signal from the periphery that would result from the performance driven by the issued efferent signal. The correlation of the corollary discharge signal with the actual afferent signal returned from the periphery can then be used to determine if, in fact, the intended action occurred as expected. When the sensed result of the action is congruent with the predicted result, then the action can be labelled as self-generated and associated with an emergent sense of agency.

If, however, the neural mechanisms involved in establishing this sensorimotor linkage associated with self-generated action are faulty, it would be expected that the sense of agency with action would not develop as discussed in the previous section.

Loss of inhibitions

One theory posed to explain these phenomena proposes that the brain has separable neural "premotor" or "agency" systems for managing the process of transforming intentions into overt action. An anteromedial frontal premotor system is engaged in the process of directing exploratory actions based on "internal" drive by releasing or reducing inhibitory control over such actions.

A 2011 paper reporting on neuronal unit recording in the medial frontal cortex in human subjects showed a clear pre-activation of neurons identified in this area up to several hundred milliseconds prior to the onset of an overt self-generated finger movement and the authors were able to develop a computational model whereby volition emerges once a change in internally generated firing rate of neuronal assemblies in this part of the brain crossed a threshold. Damage to this anteromedial premotor system produces disinhibition and release of such exploratory and object acquisition actions which then occur autonomously. A posterolateral temporo-parieto-occipital premotor system has a similar inhibitory control over actions that withdraw from environmental stimuli as well as the ability to excite actions that are contingent upon and driven by external stimulation, as distinct from internal drive. These two intrahemispheric systems, each of which activates an opposing cortical "tropism", interact through mutual inhibition that maintains a dynamic balance between approaching toward (in other words, with "intent-to-capture" in which contact with and grasping onto the attended object is sought) versus withdrawing from (that is, with "intent-to-escape" in which distancing from the attended object is sought) environmental stimuli in the behavior of the contralateral limbs. Together, these two intrahemispheric agency systems form an integrated trans-hemispheric agency system.

When the anteromedial frontal "escape" system is damaged, involuntary but purposive movements of an exploratory reach-and-grasp nature – what Denny-Brown referred to as a positive cortical tropism – are released in the contralateral limb. This is referred to as a positive cortical tropism because eliciting sensory stimuli, such as would result from tactile contact on the volar aspect of the fingers and palm of the hand, are linked to the activation of movement that increases or enhances the eliciting stimulation through a positive feedback connection (see discussion above in section entitled "Parietal and Occipital Lobes").

When the posterolateral parieto-occipital "approach" system is damaged, involuntary purposive movements of a release-and-retract nature, such as levitation and instinctive avoidance – what Denny-Brown referred to as a negative cortical tropism – are released in the contralateral limb. This is referred to as a negative cortical tropism because eliciting sensory stimuli, such as would result from tactile contact on the volar aspect of the fingers and palm of the hand, are linked to the activation of movement that reduces or eliminates the eliciting stimulation through a negative feedback connection (see discussion above in section entitled "Parietal and Occipital Lobes").

Each intrahemispheric agency system has the potential capability of acting autonomously in its control over the contralateral limb although unitary integrative control of the two hands is maintained through interhemispheric communication between these systems via the projections traversing the corpus callosum at the cortical level and other interhemispheric commissures linking the two hemispheres at the subcortical level.

Disconnection of hemispheres due to injury

One major difference between the two hemispheres is the direct connection between the agency system of the dominant hemisphere and the encoding system based primarily in the dominant hemisphere that links action to its production and through to its interpretation with language and language-encoded thought. It is proposed that while relational action in the form of embodied inter-subjective behavior precedes linguistic capacity during infant development, a process ensues through the course of development through which linguistic constructs are linked to action elements in order to produce a language-based encoding of action-oriented knowledge.

When there is a major disconnection between the two hemispheres resulting from callosal injury, the language-linked dominant hemisphere agent which maintains its primary control over the dominant limb loses, to some degree, its direct and linked control over the separate "agent" based in the nondominant hemisphere, and the nondominant limb, which had been previously responsive and "obedient" to the dominant conscious agent. The possibility of purposeful action occurring outside of the realm of influence of the conscious dominant agent can occur and the basic assumption that both hands are controlled through and subject to the dominant agent is proven incorrect. The sense of agency that would normally arise from movement of the nondominant limb now no longer develops, or, at least, is no longer accessible to consciousness. A new explanatory narrative for understanding the situation in which the now inaccessible nondominant hemisphere based agent is capable of activating the nondominant limb is necessitated.

Under such circumstances, the two separated agents can control simultaneous actions in the two limbs that are directed at opposing purposes although the dominant hand remains linked to the dominant consciously accessible language-linked agent and is viewed as continuing to be under "conscious control" and obedient to conscious will and intent as accessible through thought, while the nondominant hand, directed by an essentially non-verbal agent whose intent can only be inferred by the dominant agent after the fact, is no longer "tied in" and subject to the dominant agent and is thus identified by the conscious language-based dominant agent as having a separate and inaccessible alien agency and associated existence. This theory would explain the emergence of alien behavior in the nondominant limb and intermanual conflict between the two limbs in the presence of damage to the corpus callosum.

The distinct anteromedial, frontal, and posterolateral temporo-parieto-occipital variants of the alien hand syndrome would be explained by selective injury to either the frontal or the posterior components of the agency systems within a particular hemisphere, with the relevant and specific form of alien behavior developing in the limb contralateral to the damaged hemisphere.

Diagnosis

Corpus callosum

Damage to the corpus callosum can give rise to "purposeful" actions in the person's non-dominant hand (an individual who is left-hemisphere-dominant will experience the left hand becoming alien, and the right hand will turn alien in the person with right-hemisphere dominance).

In "the callosal variant", the patient's hand counteracts voluntary actions performed by the other, "good" hand. Two phenomena that are often found in individuals with callosal alien hand are agonistic dyspraxia and diagonistic dyspraxia.

Agonistic dyspraxia involves compulsive automatic execution of motor commands by one hand when the patient is asked to perform movements with the other hand. For example, when a patient with callosal damage was instructed to pull a chair forward, the affected hand would decisively and impulsively push the chair backwards. Agonistic dyspraxia can thus be viewed as an involuntary competitive interaction between the two hands directed toward completion of a desired act in which the affected hand competes with the unaffected hand to complete a purposive act originally intended to be performed by the unaffected hand.

Diagonistic dyspraxia, on the other hand, involves a conflict between the desired act in which the unaffected hand has been engaged and the interfering action of the affected hand which works to oppose the purpose of the desired act intended to be performed by the unaffected hand. For instance, when Akelaitis's individuals underwent surgery to the corpus callosum to reduce epileptic seizures, one patient's left alien hand would frequently interfere with the right hand. For instance, while trying to turn over to the next page with the right hand, his left hand would try to close the book.

In another case of callosal alien hand, the patient did not have intermanual conflict between the hands but rather from a symptom characterized by involuntary mirror movements of the affected hand. When the patient was asked to perform movements with one hand, the other hand would involuntarily perform a mirror image movement which continued even when the involuntary movement was brought to the attention of the patient, and the patient was asked to restrain the mirrored movement. The patient had a ruptured aneurysm near the anterior cerebral artery, which resulted in the right hand being mirrored by the left hand. The patient described the left hand as frequently interfering and taking over anything the patient tried to do with the right hand. For instance, when trying to grasp a glass of water with the right hand with a right side approach, the left hand would involuntary reach out and grasp hold of the glass through a left side approach.

More recently, Geschwind et al. described the case of a woman with severe coronary heart disease. One week after undergoing coronary artery bypass grafting, she noticed that her left hand started to "live a life of its own". It would unbutton her gown, try to choke her while asleep and would automatically fight with the right hand to answer the phone. She had to physically restrain the affected hand with the right hand to prevent injury, a behavior which has been termed "self-restriction". The left hand also showed signs of severe ideomotor apraxia. It was able to mimic actions but only with the help of mirror movements executed by the right hand (enabling synkinesis). Using magnetic resonance imaging (MRI), Geschwind et al. found damage to the posterior half of the callosal body, sparing the anterior half and the splenium extending slightly into the white matter underlying the right cingulate cortex.

Park et al. also described two cases of infarction as the origin of alien hand symptoms. Both individuals had had infarction of the anterior cerebral artery (ACA). One individual, a 72-year-old male, had difficulty controlling his hands, as they often moved involuntarily, despite his trying to stabilize them. Furthermore, he often could not let go of objects after grasping them with his palms. The other individual, a 47-year-old female with an ACA in a different location of the artery, complained that her left hand would move on its own and she could not control its movements. Her left hand could also sense when her right hand was holding an object and would involuntarily, forcibly take the object out of her right hand.

Frontal lobe

Unilateral injury to the medial aspect of the brain's frontal lobe can trigger reaching, grasping and other purposeful movements in the contralateral hand. With anteromedial frontal lobe injuries, these movements are often exploratory reaching movements in which external objects are frequently grasped and utilized functionally, without the simultaneous perception on the part of the patient that they are "in control" of these movements. Once an object has been acquired and is maintained in the grasp of this "frontal variant" form of alien hand, the patient often has difficulty with voluntarily releasing the object from grasp and can sometimes be seen to be peeling the fingers of the hand back off the grasped object using the opposite controlled hand to enable the release of the grasped object (also referred to as tonic grasping or the "instinctive grasp reaction"). Some (for example, the neurologist Derek Denny-Brown) have referred to this behavior as "magnetic apraxia"

Goldberg and Bloom described a woman with a large cerebral infarction of the medial surface of the left frontal lobe in the territory of the left anterior cerebral artery which left her with the frontal variant of the alien hand involving the right hand. There were no signs of callosal disconnection nor was there evidence of any callosal damage. The patient displayed frequent grasp reflexes; her right hand would reach out and grab objects without releasing them. In regards to tonic grasping, the more the patient tried to let go of the object, the more the grip of the object tightened. With focused effort the patient was able to let go of the object, but if distracted, the behaviour would re-commence. The patient could also forcibly release the grasped object by peeling her fingers away from contact with the object using the intact left hand. Additionally, the hand would scratch at the patient's leg to the extent that an orthotic device was required to prevent injury. Another patient reported not only tonic grasping towards objects nearby, but the alien hand would take hold of the patient's penis and engage in public masturbation.

Parietal and occipital lobes

A distinct "posterior variant" form of alien hand syndrome is associated with damage to the posterolateral parietal lobe and/or occipital lobe of the brain. The movements in this situation tend to be more likely to withdraw the palmar surface of the hand away from sustained environmental contact rather than reaching out to grasp onto objects to produce palmar tactile stimulation, as is most often seen in the frontal form of the condition. In the frontal variant, tactile contact on the ventral surface of the palm and fingers facilitates finger flexion and grasp of the object through a positive feedback loop (i.e. the stimulus generates movement that reinforces, strengthens and sustains the triggering stimulation).

In contrast, in the posterior variant, tactile contact on the ventral surface of the palm and fingers is actively avoided through facilitation of extension of the fingers and withdrawal of the palm in a negative feedback loop (i.e. the stimulus, and even anticipation of stimulation of the palmar surface of the hand, generates movement of the palm and fingers that reduces and effectively counteracts and eliminates the triggering stimulation, or, in the case of anticipated palmar contact, decreases the likelihood of such contact). Alien movements in the posterior variant of the syndrome also tend to be less coordinated and show a coarse ataxic motion during active movement that is generally not observed in the frontal form of the condition. This is generally thought to be due to an optic form of ataxia since it is facilitated by the visual presence of an object with visual attention directed toward the object. The apparent instability could be due to an unstable interaction between the tactile avoidance tendency biasing toward withdrawal from the object, and the visually based acquisition bias tendency pushing toward an approach to the object.

The alien limb in the posterior variant of the syndrome may be seen to "levitate" upward into the air withdrawing away from contact surfaces through the activation of anti-gravity musculature. Alien hand movement in the posterior variant may show a typical posture, sometimes referred to as a "parietal hand" or the "instinctive avoidance reaction" (a term introduced by neurologist Derek Denny-Brown as an inverse form of the "magnetic apraxia" seen in the frontal variant, as noted above), in which the digits move into a highly extended position with active extension of the interphalangeal joints of the digits and hyper-extension of the metacarpophalangeal joints, and the palmar surface of the hand is actively pulled back away from approaching objects or up and away from supporting surfaces. The "alien" movements, however, remain purposeful and goal-directed, a point which clearly differentiates these movements from other disorganized non-purposeful forms of involuntary limb movement (e.g. athetosis, chorea, or myoclonus).

Similarities between frontal and posterior variants

In both the frontal and the posterior variants of the alien hand syndrome, the patient's reactions to the limb's apparent capability to perform goal-directed actions independent of conscious volition is similar. In both of these variants of alien hand syndrome, the alien hand emerges in the hand contralateral to the damaged hemisphere.

Treatment

There is no cure for the alien hand syndrome. However, the symptoms can be reduced and managed to some degree by keeping the alien hand occupied and involved in a task, for example by giving it an object to hold in its grasp. Specific learned tasks can restore voluntary control of the hand to a significant degree. One patient with the "frontal" form of alien hand who would reach out to grasp onto different objects (e.g., door handles) as he was walking was given a cane to hold in the alien hand while walking, even though he really did not need a cane for its usual purpose. With the cane firmly in the grasp of the alien hand, it would generally not release the grasp and drop the cane in order to reach out to grasp onto a different object. Other techniques proven to be effective include; wedging the hand between the legs or slapping it; warm water application and visual or tactile contact. Additionally, Wu et al. found that an irritating alarm activated by biofeedback reduced the time the alien hand held an object.

In the presence of unilateral damage to a single cerebral hemisphere, there is generally a gradual reduction in the frequency of alien behaviors observed over time and a gradual restoration of voluntary control over the affected hand. Actually, when AHS originates from focal injury of acute onset, recovery usually occurs within a year. One theory is that neuroplasticity in the bihemispheric and subcortical brain systems involved in voluntary movement production can serve to re-establish the connection between the executive production process and the internal self-generation and registration process. Exactly how this may occur is not well understood, but a process of gradual recovery from alien hand syndrome when the damage is confined to a single cerebral hemisphere has been reported. In some instances, individuals may resort to constraining the wayward, undesirable and sometimes embarrassing actions of the impaired hand by voluntarily grasping onto the forearm of the impaired hand using the intact hand. This observed behavior has been termed "self-restriction" or "self-grasping".

In another approach, the patient is trained to perform a specific task, such as moving the alien hand to contact a specific object or a highly salient environmental target, which is a movement that the patient can learn to generate voluntarily through focused training in order to effectively override the alien behavior. It is possible that some of this training produces a re-organization of premotor systems within the damaged hemisphere, or, alternatively, that ipsilateral control of the limb from the intact hemisphere may be expanded.

Another method involves simultaneously "muffling" the action of the alien hand and limiting the sensory feedback coming back to the hand from environmental contact by placing it in a restrictive "cloak" such as a specialized soft foam hand orthosis or, alternatively, an everyday oven mitt. Other individuals have reported using an orthotic device to restrict perseverative grasping or restraining the alien hand by securing it to the bed pole. Of course, this can limit the degree to which the hand can participate in addressing functional goals for the patient and may be considered to be an unjustifiable restraint.

Theoretically, this approach could slow down the process through which voluntary control of the hand is restored if the neuroplasticity that underlies recovery involves the recurrent exercise of voluntary will to control the actions of the hand in a functional context and the associated experiential reinforcement through successful willful suppression of the alien behavior.

History

The first known case described in the medical literature appeared in a detailed case report published in German in 1908 by the preeminent German neuro-psychiatrist, Kurt Goldstein. In this paper, Goldstein described a right-handed woman who had had a stroke affecting her left side from which she had partially recovered by the time she was seen. However, her left arm seemed as though it belonged to another person and performed actions that appeared to occur independent of her will.

The patient complained of a feeling of "strangeness" in relationship to the goal-directed movements of the left hand and insisted that "someone else" was moving the left hand, and that she was not moving it herself. When the left hand grasped an object, she could not voluntarily release it. The senses of touch and proprioception of the left side were impaired. The left hand would make spontaneous movements, such as wiping the face or rubbing the eyes, but these were relatively infrequent. With significant effort, she was able to move her left arm in response to spoken command, but conscious movements were slower or less precise than similar involuntary motions.

Goldstein developed a "doctrine of motor apraxia" in which he discussed the generation of voluntary action and proposed a brain structure for temporal and spatial cognition, will and other higher cognitive processes. Goldstein maintained that a structure conceptually organizing both the body and external space was necessary for object perception as well as for voluntary action on external objects.

In his classic papers reviewing the wide variety of disconnection syndromes associated with focal brain pathology, Norman Geschwind commented that Kurt Goldstein "was perhaps the first to stress the non-unity of the personality in individuals with callosal section, and its possible psychiatric effects".

In popular culture

  • In Stanley Kubrick's 1964 film Dr. Strangelove, the eponymous character, played by Peter Sellers, apparently has alien hand syndrome, as he cannot stop himself from doing the Nazi salute. "Dr. Strangelove syndrome" was suggested as the official name for AHS. This was not approved, though it is sometimes used as an alternative name.
  • In the medical drama TV series House episode "Both Sides Now", a patient has alien hand syndrome.
  • An episode of Dark Matters: Twisted But True – a documentary TV series on Discovery Science – described alien hand syndrome and traced its history.
  • The 2017 Indian Tamil dark comedy film Peechankai is about a person with AHS.
  • In Season 2 of the TV series Scream Queens, Dr. Brock Holt appears to have alien hand syndrome.
  • In the Brazilian soap opera A Dona do Pedaço (2019), the character Eusébio, played by Marco Nanini, began to suffer from a "supernatural phenomenon" similar to AHS.

See also

References

  1. ^ Panikkath, Ragesh; Panikkath, Deepa; Mojumder, Deb; Nugent, Kenneth (1 July 2014). "The alien hand syndrome". Proceedings (Baylor University. Medical Center). 27 (3): 219–220. doi:10.1080/08998280.2014.11929115. PMC 4059570. PMID 24982566.
  2. Biran, Iftah; Giovannetti, Tania; Buxbaum, Laurel; Chatterjee, Anjan (2006-06-01). "The alien hand syndrome: What makes the alien hand alien?". Cognitive Neuropsychology. 23 (4): 563–582. CiteSeerX 10.1.1.537.6357. doi:10.1080/02643290500180282. ISSN 0264-3294. PMID 21049344. S2CID 15889976. The alien hand syndrome is a deeply puzzling phenomenon in which brain-damaged patients experience their limb performing seemingly purposeful acts without their intention. Furthermore, the limb may interfere with the actions of their normal limb.
  3. Aboitiz, F.; Carrasco, X.; Schröter, C.; Zaidel, D.; Zaidel, E.; Lavados, M. (2003). "The alien hand syndrome: classification of forms reported and discussion of a new condition". Neurological Sciences. 24 (4): 252–257. doi:10.1007/s10072-003-0149-4. ISSN 1590-1874. PMID 14658042. S2CID 24643561. The term "alien hand" refers to a variety of clinical conditions whose common characteristic is the uncontrolled behavior or the feeling of strangeness of one extremity, most commonly the left hand.
  4. Aboitiz, F.; Carrasco, X.; Schröter, C.; Zaidel, D.; Zaidel, E.; Lavados, M. (2003). "The alien hand syndrome: classification of forms reported and discussion of a new condition". Neurological Sciences. 24 (4): 252–257. doi:10.1007/s10072-003-0149-4. ISSN 1590-1874. PMID 14658042. S2CID 24643561. A large variety of complex, abnormal, involuntary motor behaviors have been described following callosal lesions which may or may not be accompanied by hemispheric damage, especially in the frontal medial region. Although the different terminologies used to describe these movements attempt to address their clinical specificity, there is a noticeable nosological confusion in the literature which results in assigning similar names, often inappropriate, to diverse phenomena and vice versa. One example of such confusion is the group of syndromes labeled as "alien hand", "anarchic hand" , "way-ward hand" , "intermanual conflict" and "diagonistic dyspraxia" .
  5. Assal, Frédéric; Schwartz, Sophie; Vuilleumier, Patrik (2007). "Moving with or without will: functional neural correlates of alien hand syndrome". Annals of Neurology. 62 (3): 301–306. doi:10.1002/ana.21173. PMID 17638304. S2CID 14180577.
  6. Munevar, Gonzalo (2012). "The Myth of Dual Consciousness in the Split Brain: Contrary Evidence from Psychology and Neuroscience" (PDF). Archived (PDF) from the original on 2015-04-15.
  7. Belfor, Nataliya; Amici, Serena; Boxer, Adam L.; Kramer, Joel H.; Gorno-Tempini, Maria Luisa; Rosen, Howard J.; Miller, Bruce L. (2006). "Clinical and neuropsychological features of corticobasal degeneration". Mechanisms of Ageing and Development. 127 (2): 203–207. doi:10.1016/j.mad.2005.09.013. PMID 16310834. S2CID 35169781.
  8. ^ Anderson, Alyssa (8 April 2022). "What Is Alien Hand Syndrome?". WebMD. Retrieved 3 October 2022.
  9. Kloesel, Benjamin; Czarnecki, Kathrin; Muir, Jeffery J.; Keller, A. Scott (2010). "Sequelae of a left-sided parietal stroke: Posterior alien hand syndrome". Neurocase. 16 (6): 488–493. doi:10.1080/13554794.2010.497154. PMID 20824573. S2CID 31374522.
  10. Mark, Victor W (November 29, 2014). "Alien hand syndrome". MedLink.
  11. Revonsuo, Antti (2009). Consciousness: The Science of Subjectivity. New York: Psychology Press. ISBN 9781135164805.
  12. Lhermitte, F (1983). 'Utilization behaviour' and its relation to lesions of the frontal lobes. Vol. 106. pp. 237–255. doi:10.1093/brain/106.2.237. ISBN 9780415134989. PMID 6850269. {{cite book}}: |journal= ignored (help)
  13. Lhermitte, F.; Pillon, B.; Serdaru, M. (1986). "Human autonomy and the frontal lobes. Part I: Imitation and utilization behavior: A neuropsychological study of 75 patients". Annals of Neurology. 19 (4): 326–334. doi:10.1002/ana.410190404. PMID 3707084. S2CID 2031690.
  14. Lhermitte, F. (1986). "Human autonomy and the frontal lobes. Part II: Patient behavior in complex and social situations: The 'environmental dependency syndrome'". Annals of Neurology. 19 (4): 335–343. doi:10.1002/ana.410190405. PMID 3707085. S2CID 46441945.
  15. ^ Scepkowski, Lisa A.; Cronin-Golomb, Alice (2003). "The Alien Hand: Cases, Categorizations, and Anatomical Correlates". Behavioral and Cognitive Neuroscience Reviews. 2 (4): 261–277. doi:10.1177/1534582303260119. PMID 15006289.
  16. ^ Doody, R S; Jankovic, J (1992). "The alien hand and related signs". Journal of Neurology, Neurosurgery, and Psychiatry. 55 (9): 806–810. doi:10.1136/jnnp.55.9.806. PMC 1015106. PMID 1402972.
  17. ^ Zaidel, Eran; Iacoboni, Marco; Zaidel, Dahlia W.; Bogen, Joseph E. (2003). "The Callosal Syndromes". In Heilman, Kenneth M.; Valenstein, Edward (eds.). Clinical Neuropsychology (4th ed.). Oxford University Press. pp. 347–403. ISBN 978-0-19-972672-1.
  18. ^ Caixeta, Leonardo; Maciel, Patrícia; Nunes, Juliana; et al. (2007). "Alien hand syndrome in AIDS: Neuropsychological features and physiopathological considerations based on a case report". Dementia & Neuropsychologia. 1 (4): 418–421. doi:10.1590/S1980-57642008DN10400016. PMC 5619440. PMID 29213422.
  19. Giroud, M; Dumas, R (1995). "Clinical and topographical range of callosal infarction: a clinical and radiological correlation study". Journal of Neurology, Neurosurgery, and Psychiatry. 59 (3): 238–242. doi:10.1136/jnnp.59.3.238. PMC 486019. PMID 7673948.
  20. Kayser, A. S.; Sun, F. T.; D'esposito, M. (2009). "A comparison of Granger causality and coherency in fMRI-based analysis of the motor system". Human Brain Mapping. 30 (11): 3475–3494. doi:10.1002/hbm.20771. PMC 2767459. PMID 19387980.
  21. Assal, F. D. R.; Schwartz, S.; Vuilleumier, P. (2007). "Moving with or without will: functional neural correlates of alien hand syndrome". Annals of Neurology. 62 (3): 301–306. doi:10.1002/ana.21173. PMID 17638304. S2CID 14180577.
  22. ^ Goldberg, Gary; Bloom, Karen K. (1990). "The Alien Hand Sign". American Journal of Physical Medicine & Rehabilitation. 69 (5): 228–238. doi:10.1097/00002060-199010000-00002. PMID 2222983. S2CID 45589053.
  23. Goldberg, Gary; Goodwin, Matthew E. (2011). "Alien Hand Syndrome". In Kreutzer, Jeffrey S.; DeLuca, John; Caplan, Bruce (eds.). Encyclopedia of Clinical Neuropsychology. pp. 84–91. doi:10.1007/978-0-387-79948-3_1877. ISBN 978-0-387-79947-6 – via archive.org.
  24. Spengler, S.; Von Cramon, D. Y.; Brass, M. (2009). "Control of shared representations relies on key processes involved in mental state attribution". Human Brain Mapping. 30 (11): 3704–3718. doi:10.1002/hbm.20800. PMC 6870802. PMID 19517530.
  25. Fried, Itzhak; Mukamel, Roy; Kreiman, Gabriel (2011). "Internally Generated Preactivation of Single Neurons in Human Medial Frontal Cortex Predicts Volition". Neuron. 69 (3): 548–562. doi:10.1016/j.neuron.2010.11.045. PMC 3052770. PMID 21315264.
  26. ^ Denny-Brown, Derek (1958). "The nature of apraxia". The Journal of Nervous and Mental Disease. 126 (1): 9–32. doi:10.1097/00005053-195801000-00003. PMID 13514485. S2CID 1998070.
  27. ^ Denny-Brown, Derek (1966). The Cerebral Control of Movement. The Sherrington Lectures. OCLC 599028587.
  28. Trevarthen, Colwyn (2011). "What is it like to be a person who knows nothing? Defining the active intersubjective mind of a newborn human being". Infant and Child Development. 20 (1): 119–135. CiteSeerX 10.1.1.475.9911. doi:10.1002/icd.689.
  29. Akelaitis, Andrew J. (1945). "Studies on the corpus callosum: IV. Diagonistic dyspraxia in epileptics following partial and complete section of the corpus callosum". American Journal of Psychiatry. 101 (5): 594–599. doi:10.1176/ajp.101.5.594.
  30. ^ Gottlieb, D; Robb, K; Day, B (1992). "Mirror movements in the alien hand syndrome. Case report". American Journal of Physical Medicine & Rehabilitation. 71 (5): 297–300. doi:10.1097/00002060-199210000-00009. PMID 1388978.
  31. ^ Geschwind, D. H.; Iacoboni, M.; Mega, M. S.; et al. (1995). "Alien hand syndrome: Interhemispheric motor disconnection due to a lesion in the midbody of the corpus callosum". Neurology. 45 (4): 802–808. doi:10.1212/WNL.45.4.802. PMID 7723974. S2CID 39196545.
  32. Park, Yong Won; Kim, Chang Hwan; Kim, Myeong Ok; et al. (August 2012). "Alien Hand Syndrome in Stroke – Case Report & Neurophysiologic Study". Annals of Rehabilitation Medicine. 36 (4): 556–560. doi:10.5535/arm.2012.36.4.556. ISSN 2234-0645. PMC 3438424. PMID 22977783.
  33. Goldberg, G.; Mayer, N. H.; Toglia, J. U. (1981). "Medial Frontal Cortex Infarction and the Alien Hand Sign". Archives of Neurology. 38 (11): 683–686. doi:10.1001/archneur.1981.00510110043004. PMID 7305695.
  34. Seyfarth, H; Denny-Brown, D (1948). "The grasp reflex and the instinctive grasp reaction". Brain. 71 (2): 109–183. doi:10.1093/brain/71.2.109. PMID 18890913.
  35. Apraxia and Related Syndromes at eMedicine
  36. Kischka, U; Ettlin, TM; Lichtenstern, L; Riedo, C (1996). "Alien hand syndrome of the dominant hand and ideomotor apraxia of the nondominant hand". European Neurology. 36 (1): 39–42. doi:10.1159/000117198. PMID 8719649.
  37. Nicholas, John J.; Wichner, Monica H.; Gorelick, Philip B.; Ramsey, Michael M. (1998). "'Naturalization' of the alien hand: Case report". Archives of Physical Medicine and Rehabilitation. 79 (1): 113–114. doi:10.1016/S0003-9993(98)90218-0. PMID 9440428.
  38. Wu, FY; Leong, CP; Su, TL (1999). "Alien hand syndrome: report of two cases". Changgeng Yi Xue Za Zhi. 22 (4): 660–665. PMID 10695218.
  39. Chan, JL; Ross, ED (1997). "Alien hand syndrome: influence of neglect on the clinical presentation of frontal and callosal variants". Cortex. 33 (2): 287–299. doi:10.1016/s0010-9452(08)70005-4. PMID 9220259. S2CID 4477228.
  40. Banks, Gordon; Short, Priscilla; Martínez, Julio; Latchaw, Richard; Ratcliff, Graham; Boller, François (1989). "The Alien Hand Syndrome". Archives of Neurology. 46 (4): 456–459. doi:10.1001/archneur.1989.00520400116030. PMID 2705906.
  41. ^ Goldstein, Kurt (1908). "Zur Lehre von der motorischen Apraxie" [On the doctrine of the motor apraxia]. Journal für Psychologie und Neurologie (in German). 11 (4/5): 169–187, 270–283.
  42. Geschwind, Norman (1965). "Disconnexion syndromes in animals and man. I". Brain. 88 (2): 237–294. doi:10.1093/brain/88.2.237. PMID 5318481.
  43. Leader, Darian (21 May 2016). "Darian Leader: how technology is changing our hands". The Guardian. Retrieved 22 March 2018.
  44. Barnett, Barbara (2010). Chasing Zebras: The Unofficial Guide to House, M. D. ECW Press. ISBN 9781554908097 – via Google Books.
  45. "Alien Hand Syndrome". Discovery Science. 23 September 2011. Archived from the original on 2021-12-12. Retrieved 8 June 2012 – via YouTube.
  46. "A Mind of Its Own". Rare Disease Review. Archived from the original on 2018-03-24. Retrieved 2018-03-24.
  47. "Stories should matter, not the stars, says Karthiik". newindianexpress.com. 14 June 2017.
  48. Agard, Chancellor (31 August 2016). "Emma Roberts and John Stamos Get Close in New 'Scream Queens' Promo". Entertainment Weekly. Meredith Corporation. Retrieved 28 October 2021 – via EW.com.
  49. Farad, Daniel (7 October 2019). "A Dona do Pedaço: Eusébio enfrenta fenômeno paranormal e é acusado de assédio". Notícias da TV (in Portuguese). Retrieved 22 October 2022.

Works cited

External links

ClassificationD
Signs and symptoms relating to movement and gait
Gait
Coordination
Abnormal movement
Posturing
Paralysis
Weakness
Range of motion
Other
Categories: