Misplaced Pages

Marchantiophyta: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 10:43, 21 January 2006 editEncycloPetey (talk | contribs)Extended confirmed users32,449 edits rv erroneous edits by Brya -- see the 1994 Tokyo Code Article 16.1← Previous edit Latest revision as of 13:47, 25 November 2024 edit undoBosmon (talk | contribs)Extended confirmed users583 editsm Added reference to Jean Marchant 
(660 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Short description|Botanical division of non-vascular land plants}}
{{Taxobox_begin | color = lightgreen| name = Liverwort}}
{{Distinguish|text=the genus of flowering plants, ], that may also be called "liverwort"}}
{{Taxobox_image | image = ] | caption = A ], ''Lunularia cruciata''}}
{{Use dmy dates|date=July 2022}}
{{Taxobox_begin_placement | color = lightgreen}}
{{Automatic taxobox
{{Taxobox_regnum_entry | taxon = ]ae}}
| name = Liverworts
{{Taxobox_divisio_entry | taxon = '''Marchantiophyta'''}}
| fossil_range = {{fossil range|472|0}}Mid-]<ref name="Walker 2010" /> to ]
{{Taxobox_end_placement}}
| image = A mikxture of liverworts from Kunstformen der Natur (1904), plate 82.jpg
{{Taxobox_section_subdivision | color = lightgreen| plural_taxon = Orders}}
| image_caption = "Hepaticae" from ]'s '']'', 1904
'''Jungermanniopsida'''
| display_parents = 2
* ] (simple thalloids)
| taxon = Marchantiophyta
* ] (Calobryales)
| authority = Stotler & Stotl.-Crand., 1977<ref name="Stotlers 1977">{{cite journal | last = Stotler | first = Raymond E. |author2=Barbara J. Candall-Stotler | year = 1977 | title = A checklist of the liverworts and hornworts of North America | journal = The Bryologist | volume=80 | pages=405–428 | doi = 10.2307/3242017 | jstor = 3242017 | issue = 3 | publisher = American Bryological and Lichenological Society }}</ref> emend. 2000<ref name="Stotlers 2000">{{cite book | last1=Crandall-Stotler | first1=Barbara | last2=Stotler | first2=Raymond E. | year=2000 | chapter=Morphology and classification of the Marchantiophyta | page=21 |editor=A. Jonathan Shaw |editor2=Bernard Goffinet | title=Bryophyte Biology | location=Cambridge | publisher=Cambridge University Press | isbn=0-521-66097-1 }}</ref>
* ] (leafy liverworts)
| subdivision_ranks = Classes and orders
'''Marchantiopsida'''
| subdivision =
* ] (bottle liverworts)
* ]
* ] (complex thalloids)
* ] ** ]
** ]
{{Taxobox_end}}
* ]
** ]
** ]
** ]
** ]
** ]
* ]
** ]
** ]
** ]
** ]
** ]
** ]
** ]
** ]
}}


The '''Marchantiophyta''' ({{IPAc-en|m|ɑr|ˌ|k|æ|n|t|i|ˈ|ɒ|f|ə|t|ə|,_|-|oʊ|ˈ|f|aɪ|t|ə|audio=en-us-Marchantiophyta.ogg}}) are a division of ] ]s commonly referred to as '''hepatics''' or '''liverworts'''. Like ] and ], they have a ]-dominant life cycle, in which cells of the plant carry only a single set of genetic information. The division name was derived from the genus name ], named by French botanist ] after his father.
The '''Marchantiophyta''' is a division of plants commonly called '''hepatics''' or '''liverworts'''. They are typically small plants that are often overlooked. They frequently have the appearance of small irregular leaf-like plaques, often covering large areas of the ground but they may also occur on rocks, trees or any other reasonably firm substrate. They can also take on a form very much like flattened ]es. They most often occur in damp locations and are typically found in moderate to deep shade. Some species can be a nuisance in shady green-houses. They do not have flowers or seeds.


It is estimated that there are about 9000 species of liverworts.<ref>{{Cite web |url=https://www.unb.ca/research/liverworts/ |title=Liverworts Homepage {{!}} UNB |access-date=10 June 2020 |archive-date=24 July 2021 |archive-url=https://web.archive.org/web/20210724103956/https://www.unb.ca/research/liverworts/ |url-status=dead }}</ref> Some of the more familiar species grow as a flattened leafless ], but most species are leafy with a form very much like a flattened ]. Leafy species can be distinguished from the apparently similar mosses on the basis of a number of features, including their single-celled ]s. Leafy liverworts also differ from most (but not all) mosses in that their leaves never have a ] (present in many mosses) and may bear marginal ] (very rare in mosses). Other differences are not universal for all mosses and liverworts, but the occurrence of leaves arranged in three ranks, the presence of deep lobes or segmented leaves, or a lack of clearly differentiated stem and leaves all point to the plant being a liverwort. Liverworts are distinguished from mosses in having unique ] of high refractive index.
== Overview ==


Liverworts are typically small, usually from {{cvt|2–20|mm}} wide with individual plants less than {{cvt|10|cm}} long, and are therefore often overlooked. However, certain species may cover large patches of ground, rocks, trees or any other reasonably firm substrate on which they occur. They are distributed globally in almost every available habitat, most often in humid locations although there are desert and Arctic species as well. Some species can be a nuisance in shady greenhouses or a weed in gardens.<ref>{{cite book |last=Schuster |first=Rudolf M. |title=The Hepaticae and Anthocerotae of North America |volume=VI |page=19 |location=Chicago |publisher=Field Museum of Natural History |date=1992 |isbn=0-914868-21-7}}</ref>
Botanically, liverworts are ]s, or ]s. They can most reliably be distinguished from the apparently similar ]es by their single celled rhizoids. Other differences are not universal for all mosses and all liverworts, but the occurrence of leaves arranged in three ranks, the presence of deeply lobes or segmented leaves, or a lack of clearly differentiated stem and leaves all point to the plant being a liverwort.


== Physical characteristics ==
Aside from lacking a vascular system, liverworts have a gametophyte-dominant life cycle, i.e. the plant's cells are haploid for most of its life cycle. Sporophytes (i.e. the diploid body) are short-lived and dependent on the gametophyte. This is in contrast to the pattern exhibited by ]s and by most animals. In vascular plants, for example, the haploid generation is represented by the pollen and the ovule, whilst the diploid generation is the familiar flowering plant.


=== Description ===
Originally, the Marchantiophyta were grouped as class '''Hepaticae''' alongside the ]es in the Division Bryophyta, but the liverworts are now usually given their own division with two classes: '''Jungermanniopsida''' (simple thalloids and leafy liverworts) and the '''Marchantiopsida''' (complex-thallus liverworts and bottle hepatics).


Most liverworts are small, measuring from {{convert|2|-|20|mm|sigfig=1}} wide with individual plants less than {{convert|10|cm|sigfig=1}} long,<ref>Schuster, Rudolf M. ''The Hepaticae and Anthocerotae of North America'', vol. I, pp. 243–244. (New York: Columbia University Press, 1966)</ref> so they are often overlooked. The most familiar liverworts consist of a prostrate, flattened, ribbon-like or branching structure called a ] (plant body); these liverworts are termed ''thallose liverworts''. However, most liverworts produce flattened stems with overlapping scales or leaves in two or more ranks, the middle rank is often conspicuously different from the outer ranks; these are called '']'' or ''scale liverworts''.<ref>Kashyap, Shiv Ram. ''Liverworts of the Western Himalayas and the Panjab Plain'', vol. I, p. 1. (New Delhi: The Chronica Botanica, 1929)</ref><ref name="Schofield 1985">Schofield, W. B. ''Introduction to Bryology'', pp. 135–140. (New York: Macmillan, 1985). {{ISBN|0-02-949660-8}}.</ref> (''See the ] below for examples.'')
Today, liverworts can be found in many ecosystems across the planet except the sea and dry environments or those exposed to high levels of direct solar radiation. As with most groups of living plants, they are most common (both in numbers and species) in moist tropical areas.


], ''Lunularia cruciata'']]
== Description ==
Liverworts can most reliably be distinguished from the apparently similar ]es by their single-celled ]s.<ref>Nehira, Kunito. "Spore Germination, Protonemata Development and Sporeling Development", p. 347 ''in'' Rudolf M. Schuster (Ed.), ''New Manual of Bryology'', volume I. (Nichinan, Miyazaki, Japan: The Hattori Botanical Laboratory, 1983). {{Listed Invalid ISBN|49381633045}}.</ref> Other differences are not universal for all mosses and all liverworts;<ref name="Schofield 1985" /> but the lack of clearly differentiated stem and leaves in thallose species, or in leafy species the presence of deeply lobed or segmented leaves and the presence of leaves arranged in three ranks,<ref>Allison, K. W. & John Child. ''The Liverworts of New Zealand'', pp. 13–14. (Dunedin: University of Otago Press, 1975).</ref><ref>Conard, Henry S. and Paul L. Redfearn, Jr. ''How to Know the Mosses and Liverworts'', revised ed., pp. 12–23. (Dubuque, Iowa: William C. Brown Co., 1979) {{ISBN|0-697-04768-7}}</ref> as well as frequent dichotomous branching, all point to the plant being a liverwort. With a few exceptions, all liverworts undergo polyplastidic meiosis, in contrast to mosses and hornworts which have monoplastidic meiosis.<ref></ref> Unlike any other embryophytes, most liverworts contain ] containing isoprenoids in at least some of their cells, lipid droplets in the cytoplasm of all other plants being unenclosed.<ref name="Bold 1987">Harold C. Bold, C. J. Alexopoulos, and T. Delevoryas. ''Morphology of Plants and Fungi'', 5th ed., p. 189. (New York: Harper-Collins, 1987). {{ISBN|0-06-040839-1}}.</ref> The overall physical similarity of some mosses and leafy liverworts means that confirmation of the identification of some groups can be performed with certainty only with the aid of ] or an experienced ].
The most familiar liverworts consist of a prostrate, flattened, branching structure called a ] (plant body). These liverworts are termed ''thallose liverworts''. However, most liverworts produce flattened stems with overlapping scales or leaves in three or more ranks, the middle rank being conspicously different from the outer ranks. These are called '']'' or ''scale liverworts''.


Liverworts, like other bryophytes, have a ]-dominant life cycle, with the ] dependent on the gametophyte.<ref name="Bold 1987" /> The sporophyte of many liverworts are non-photosynthetic, but there are also several that are photosynthetic to various degrees.<ref></ref> Cells in a typical liverwort plant each contain only a single set of genetic information, so the plant's cells are ] for the majority of its life cycle. This contrasts sharply with the pattern exhibited by nearly all animals and by vascular plants. In the more familiar ]s, the haploid generation is represented only by the tiny ] and the ], while the ] generation is the familiar tree or other plant.<ref>Fosket, Donald E. ''Plant Growth and Development: A Molecular Approach'', p. 27. (San Diego: Academic Press, 1994). {{ISBN|0-12-262430-0}}.</ref> Another unusual feature of the liverwort life cycle is that sporophytes (i.e. the ] body) are very short-lived, withering away not long after releasing spores.<ref>Hicks, Marie L. ''Guide to the Liverworts of North Carolina'', p. 10. (Durham: Duke University Press, 1992). {{ISBN|0-8223-1175-5}}.</ref> In mosses, the sporophyte is more persistent and in hornworts, the sporophyte disperses spores over an extended period.{{citation needed|date=March 2014}}
].]]
They can be distinguished from the apparently similar ]es by their single celled ]s. Other differences are not universal for all mosses and all liverworts, but the lack of clearly differentiated stem and leaves, the presence of deeply lobed or segmented leaves, and the presence of leaves arranged in three ranks all point to the plant being a liverwort. Confirmation of the identifiaction of a moss or a leafy liverwort can only be performed with certainty by ] investigation.


=== Life cycle ===<!-- This section is linked from "Alternation of generations"; be sure to change the link there if you change the title of this section. -->
Aside from lacking a ], liverworts have a ]-dominant ], i.e. the plant's cells are ] for most of its life cycle. ]s (i.e. the ] body) are short-lived and dependent on the gametophyte. This is in contrast to the pattern exhibited by most higher plants and animals. In higher plants, for example, the haploid generation is represented by the ] and the ] while the diplod generation is the familiar flowering plant.


]
== Life cycle ==
]
The life of a liverwort starts from a haploid ], which germinates to produce a ], which is either a mass of filaments or thalloid (flat and thallus-like). This is a transitory stage in the life of a liverwort. From the protonema grows the gametophore ("gamete-bearer") that produces the sex organs of the liverworts. The female organs are known as ] (singular archegonium) and are protected by the ] (plural perichaeta). The archegonia have necks called venters which the male sperm swim down. The male organs are known as ] (singular antheridium) and are enclosed by the ] (plural perigonia).


The life of a liverwort starts from the germination of a haploid ] to produce a ], which is either a mass of thread-like filaments or a flattened thallus.<ref>Nehira, Kunito. "Spore Germination, Protonemata Development and Sporeling Development", pp. 358–374 ''in'' Rudolf M. Schuster (Ed.), ''New Manual of Bryology'', volume I. (Nichinan, Miyazaki, Japan: The Hattori Botanical Laboratory, 1983). {{Listed Invalid ISBN|49381633045}}.</ref><ref>Chopra, R. N. & P. K. Kumra. ''Biology of Bryophytes'', pp. 1–38. (New York: John Wiley & Sons, 1988). {{ISBN|0-470-21359-0}}.</ref> The protonema is a transitory stage in the life of a liverwort, from which will grow the mature gametophore ("]-bearer") plant that produces the sex organs. The male organs are known as ] (''singular:'' antheridium) and produce the sperm cells. Clusters of antheridia are enclosed by a protective layer of cells called the '''perigonium''' (''plural:'' perigonia). As in other land plants, the female organs are known as ] (''singular:'' archegonium) and are protected by the thin surrounding '''perichaetum''' (''plural:'' perichaeta).<ref name="Schofield 1985" /> Each archegonium has a slender hollow tube, the "neck", down which the sperm swim to reach the egg cell.
Liverworts can be either ] or ]. In dioecious liverworts, male and female sex organs are borne on different plants. In monoecious liverworts, they are borne on the same plant. In the presence of water, sperm from the antheridia swim to the archegonia and fertilisation occurs, leading to the production of a diploid sporophyte. The sperm of liverworts is biflagellate, i.e. they have two flagellae that aid in propulsion. Without water, fertilisation cannot occur. After fertilisation, the immature sporophyte pushes its way out of the archegonial venter. It takes about a quarter to half a year for the sporophyte to mature. The sporophyte body comprises a long stalk, called a seta, and a capsule capped by a cap - the ]. The capsule and operculum are in turn sheathed by a haploid calyptra which is the remains of the archegonial venter. The calyptra usually falls off when the capsule is mature. Within the capsule, spore-producing cells undergo ] to form haploid spores, upon which the cycle can start again.

Liverwort species may be either ] or ]. In dioicous liverworts, female and male sex organs are borne on different and separate gametophyte plants. In monoicous liverworts, the two kinds of reproductive structures are borne on different branches of the same plant.<ref>Malcolm, Bill & Nancy Malcolm. ''Mosses and Other Bryophytes: An Illustrated Glossary'', pp. 6 & 128. (New Zealand: Micro-Optics Press, 2000). {{ISBN|0-473-06730-7}}.</ref> In either case, the sperm must move from the antheridia where they are produced to the archegonium where the eggs are held. The ] of liverworts is ''biflagellate'', i.e. they have two tail-like ] that enable them to swim short distances,<ref name="Campbell 1918"></ref> provided that at least a thin film of water is present. Their journey may be assisted by the splashing of raindrops. In 2008, Japanese researchers discovered that some liverworts are able to fire sperm-containing water up to 15&nbsp;cm in the air, enabling them to fertilize female plants growing more than a metre from the nearest male.<ref>{{Cite journal |last=Pain |first=S. |year=2010 |title=Botanical ballistics |journal=New Scientist |volume=208 |issue=2792/3 |pages=45–47 |doi=10.1016/s0262-4079(10)63177-6}}</ref>

When sperm reach the archegonia, ] occurs, leading to the production of a diploid sporophyte. After fertilisation, the immature ] within the archegonium develops three distinct regions: (1) a '''foot''', which both anchors the sporophyte in place and receives nutrients from its "mother" plant, (2) a spherical or ellipsoidal '''capsule''', inside which the spores will be produced for dispersing to new locations, and (3) a '''seta''' (stalk) which lies between the other two regions and connects them.<ref name="Campbell 1918" /> The sporophyte lacks an ], an ]-sensitive point of divergence with other land plants some time in the ]/].<ref name="Cooke-et-al-2004">{{cite book | last1=Cooke | first1=Todd J | last2=Poli | first2=DorothyBelle | last3=Cohen | first3=Jerry D | title=The Evolution of Plant Physiology | chapter=Did auxin play a crucial role in the evolution of novel body plans during the Late Silurian-Early Devonian radiation of land plants? | publisher=] | year=2003 | isbn=978-0-12-339552-8 | doi=10.1016/b978-012339552-8/50006-8 | pages=85–107}}</ref><ref name="Friedman-et-al-2004">{{cite journal | last1=Friedman | first1=William E. | last2=Moore | first2=Richard C. | last3=Purugganan | first3=Michael D. | title=The evolution of plant development | journal=] | publisher=] (]) | volume=91 | issue=10 | year=2004 | issn=0002-9122 | doi=10.3732/ajb.91.10.1726 | pages=1726–1741| pmid=21652320 | doi-access=free }}</ref> When the sporophyte has developed all three regions, the seta elongates, pushing its way out of the archegonium and rupturing it. While the foot remains anchored within the parent plant, the capsule is forced out by the seta and is extended away from the plant and into the air. Within the capsule, cells divide to produce both ] cells and spore-producing cells. The elaters are spring-like, and will push open the wall of the capsule to scatter themselves when the capsule bursts. The spore-producing cells will undergo ] to form haploid ]s to disperse, upon which point the life cycle can start again.

==== Asexual reproduction ====

Some liverworts are capable of ]; in bryophytes in general "it would almost be true to say that vegetative reproduction is the rule and not the exception."<ref name="ANBGveg">{{cite web | url=http://www.anbg.gov.au/bryophyte/vegetative-reproduction.html | title=Vegetative Reproduction | publisher=Australian National Botanic Gardens | work=Australian Bryophytes | date=15 April 2008 | access-date=December 22, 2011 | author=Lepp, Heino}}</ref> For example, in '']'', when the older parts of the forked thalli die, the younger tips become separate individuals.<ref name="ANBGveg"/>

Some thallose liverworts such as '']'' and '']'' produce small disc-shaped ] in shallow cups.<ref>Smith, AJE (1989) ''The Liverworts of Britain and Ireland'', Cambridge University Press, Cambridge.</ref> ''Marchantia'' gemmae can be dispersed up to 120&nbsp;cm by rain splashing into the cups.<ref name="Equihua">{{cite journal | url=http://database.portal.modwest.com/item.php?table=citation&id=1392 | title=Splash-Cup Dispersal Of Gemmae In The Liverwort Marchantia-Polymorpha | author=Equihua, C. | journal=Cryptogamie, Bryologie, Lichénologie | year=1987 | volume=8 | issue=3 | pages=199–217 | url-status=dead | archive-url=https://web.archive.org/web/20120426065619/http://database.portal.modwest.com/item.php?table=citation&id=1392 | archive-date=2012-04-26 }}</ref> In '']'', gemmae grow at thallus margins.<ref name="ANBGsexveg">{{cite web | url=http://www.anbg.gov.au/bryophyte/sexual-vegetative.html | title=Reproduction & Dispersal | publisher=Australian National Botanic Gardens | work=Australian Bryophytes | date=28 February 2008 | access-date=December 22, 2011 | author=Lepp, Heino}}</ref> ''Marchantia polymorpha'' is a common weed in greenhouses, often covering the entire surface of containers;<ref name="Newby"/>{{rp|230}} gemma dispersal is the "primary mechanism by which liverwort spreads throughout a nursery or greenhouse."<ref name="Newby">{{cite journal |date=December 2006 |url=http://www.hriresearch.org/docs/publications/JEH/JEH_2006/JEH_2006_24_4/JEH%2024-4-230-236.pdf |journal=J. Environ. Hort. |volume=24 |issue=4 |pages=230–236 |publisher=Horticultural Research Institute |title=Postemergence Liverwort Control in Container-Grown Nursery Crops1 |access-date=December 24, 2011 |author1=Newby, Adam |author2=Altland, James E.|author3=Gilliam, Charles H.|author4=Wehtje, Glenn|archive-url=https://web.archive.org/web/20120724050605/http://www.hriresearch.org/docs/publications/JEH/JEH_2006/JEH_2006_24_4/JEH%2024-4-230-236.pdf |archive-date=July 24, 2012 |url-status=dead}}</ref>{{rp|231}}

==== Symbiosis ====
Thalloid liverworts typically harbor symbiotic ] fungi which have arbuscular (cilia-bearing) rootlets resembling those in vascular plants. Species in the ], however, associate with ] fungi belonging to the genus '']'', while leafy liverworts typically harbor symbiotic basidiomycete fungi belonging to the genus '']''.<ref>{{cite journal |last1=Bidartondo |first1=Martin I. |last2=Duckett |first2=Jeffrey G. |title=Conservative ecological and evolutionary patterns in liverwort–fungal symbioses |journal=Proceedings of the Royal Society B: Biological Sciences |date=7 February 2010 |volume=277 |issue=1680 |pages=485–492 |doi=10.1098/rspb.2009.1458|pmid=19812075 |pmc=2842645 }}</ref>

== Ecology ==

Today, liverworts can be found in many ecosystems across the planet except the sea and excessively dry environments, or those exposed to high levels of direct solar radiation.<ref>Schuster, Rudolf M. ''The Hepaticae and Anthocerotae of North America'', vol. I, pp. 243–249. (New York: Columbia University Press, 1966).</ref> As with most groups of living plants, they are most common (both in numbers and species) in moist tropical areas.<ref>Pócs, Tamás. "Tropical Forest Bryophytes", p. 59 ''in'' A. J. E. Smith (Ed.) ''Bryophyte Ecology''. (London: Chapman and Hall, 1982). {{ISBN|0-412-22340-6}}.</ref> Liverworts are more commonly found in moderate to deep shade, though desert species may tolerate direct sunlight and periods of total desiccation.


== Classification == == Classification ==
In ancient times, it was believed that liverworts cured diseases of the ], hence the name. In ], the word liverwort literally means ''liver plant''. This probably stemed from the superficial appearance of some thalloid liverworts (which resemble a liver in outline), and led to the common name of the group as ''hepatics'', from the ] word for liver. An unrelated flowering plant, '']'', is sometimes also refered to as liverwort because it was once also used in treating diseases of the liver.


=== Relationship to other plants ===
]s classify liverworts in the division '''Marchantiophyta'''. This divisional name is based on the name of the ] ''] polymorpha''. In addition to this ]-based name, the liverworts are often called '''Hepaticophyta'''. This name is derived from their common Latin name as Latin was the language in which botanists published their descriptions of species. This name has led to some confusion, partly because it appears to be a taxon-based name derived from the ] '']'' which is actually a ] of the buttercup family ]. In addition, the name Hepaticophyta is frequently misspelled in textbooks as '''Hepatophyta''', which only adds to the confusion.

Traditionally, the liverworts were grouped together with other ]s (]es and ]s) in the Division Bryophyta, within which the liverworts made up the class '''Hepaticae''' (also called Marchantiopsida).<ref name="Schofield 1985" /><ref>Crandall-Stotler, Barbara. & Stotler, Raymond E. "Morphology and classification of the Marchantiophyta". pp. 36–38 ''in'' A. Jonathan Shaw & Bernard Goffinet (Eds.), ''Bryophyte Biology''. (Cambridge: Cambridge University Press: 2000). {{ISBN|0-521-66097-1}}</ref> Somewhat more recently, the liverworts were given their own division (Marchantiophyta),<ref>Goffinet, Bernard. "Origin and phylogenetic relationships of bryophytes". pp. 124–149 ''in'' A. Jonathan Shaw & Bernard Goffinet (Eds.), ''Bryophyte Biology''. (Cambridge: Cambridge University Press:!2000). {{ISBN|0-521-66097-1}}</ref> as bryophytes became considered to be ]. However, the most recent phylogenetic evidence indicates that liverworts are indeed likely part of a monophyletic clade ("Bryophyta ''sensu lato''" or "Bryophyta Schimp.") alongside mosses and hornworts.<ref name=CoxLiFostEmbl14>{{cite journal |title=Conflicting Phylogenies for Early Land Plants are Caused by Composition Biases among Synonymous Substitutions |last1 = Cox |first1=Cymon J. |display-authors=etal |journal=Systematic Biology |volume=63 |issue=2 |year=2014 |pages=272–279 |doi=10.1093/sysbio/syt109 |pmid = 24399481 |pmc=3926305 }}</ref><ref name=Puttick2018>{{cite journal |title=The Interrelationships of Land Plants and the Nature of the Ancestral Embryophyte |last1=Puttick |first1=Mark N. |last2=Morris |first2=Jennifer L. |last3=Williams |first3=Tom A. |last4=Cox |first4=Cymon J. |last5=Edwards |first5=Dianne |last6=Kenrick |first6=Paul |last7=Pressel |first7=Silvia |last8=Wellman |first8=Charles H. |last9=Schneider |first9=Harald |last10=Pisani |first10=Davide |last11=Donoghue |first11=Philip C.J. |display-authors=1 |journal=Current Biology |volume=28 |issue=5 |date=March 2018 |pages=733–745.e2 |doi=10.1016/j.cub.2018.01.063 |pmid=29456145 |bibcode=2018CBio...28E.733P |hdl=1983/ad32d4da-6cb3-4ed6-add2-2415f81b46da |s2cid=3269165 |hdl-access=free}}</ref><ref name=Sousa2019>{{cite journal |title=Nuclear protein phylogenies support the monophyly of the three bryophyte groups (Bryophyta Schimp.) |last1 = de Sousa |first1=Filipe |display-authors=etal |journal=New Phytologist |volume=222 |issue=1 |pages=565–575 |year=2019 |doi=10.1111/nph.15587 |pmid=30411803 |hdl=1983/0b471d7e-ce54-4681-b791-1da305d9e53b |s2cid=53240320 |hdl-access=free}}</ref><ref name=Leebens-Mack2019>{{cite journal |title=One thousand plant transcriptomes and the phylogenomics of green plants |last1=Leebens-Mack |first1=James H. |display-authors=etal |journal=Nature |volume=574 |pages=679–685 |year=2019 |issue=7780 |doi =10.1038/s41586-019-1693-2 |pmid=31645766 |pmc=6872490}}</ref><ref name=Zhang2020>{{cite journal |title=The hornwort genome and early land plant evolution |last1=Zhang |first1=Jian |display-authors=etal |journal=Nature Plants |volume=6 |pages=107–118 |year=2020 |issue=2 |doi=10.1038/s41477-019-0588-4 |pmid=32042158 |pmc=7027989 }}</ref><ref name=Harris2020>{{cite journal |title=Phylogenomic Evidence for the Monophyly of Bryophytes and the Reductive Evolution of Stomata |last1=Harris |first1=Brogan J. |display-authors=etal |journal=Current Biology |volume=30 |issue=11 |pages=P2201–2012.E2 |year=2020 |doi=10.1016/j.cub.2020.03.048 |pmid=32302587 |bibcode=2020CBio...30E2001H |hdl=1983/fbf3f371-8085-4e76-9342-e3b326e69edd |s2cid=215798377 |hdl-access=free}}</ref><ref name=Li2020>{{cite journal |title=Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts |last1=Li |first1=Fay-Wei |display-authors=etal |journal=Nature Plants |volume=6 |pages=259–272 |issue=3 |year=2020 |doi=10.1038/s41477-020-0618-2 |pmid=32170292 |pmc=8075897 |hdl=10261/234303 |hdl-access=free}}</ref><ref name=Sousa2020a>{{cite journal |title=The Chloroplast Land Plant Phylogeny: Analyses Employing Better-Fitting Tree- and Site-Heterogeneous Composition Models |last1=Sousa |first1=Filipe |display-authors=etal |journal=Frontiers in Plant Science |volume=11 |page=1062 |year=2020 |doi=10.3389/fpls.2020.01062 |pmid=32760416 |pmc=7373204 |doi-access=free}}</ref><ref name=Su2021>{{cite journal |title=Large-Scale Phylogenomic Analyses Reveal the Monophyly of Bryophytes and Neoproterozoic Origin of Land Plants |last1=Su |first1=Danyan |display-authors=etal |journal=Molecular Biology and Evolution |year=2021 |volume=38 |issue=8 |pages=3332–3344 |doi=10.1093/molbev/msab106 |pmid=33871608 |pmc=8321542}}</ref>{{Excessive citations inline|date=October 2021}} Hence, it has been suggested that the liverworts should be de-ranked to a class called Marchantiopsida.<ref name=Sousa2019 /> In addition, there is strong phylogenetic evidence to suggest that liverworts and mosses form a monophyletic subclade named ].<ref name=Puttick2018 /><ref name=Sousa2020b>{{cite journal |title=The mitochondrial phylogeny of land plants shows support for Setaphyta under composition-heterogeneous substitution models |last1=Sousa |first1=Filipe |display-authors=etal |journal=PeerJ |year=2020 |volume=8 |issue=4 |page=e8995 |doi=10.7717/peerj.8995|pmid=32377448 |pmc=7194085 |doi-access=free }}</ref><ref name=Cox2018>{{cite journal |title=Land Plant Molecular Phylogenetics: A Review with Comments on Evaluating Incongruence Among Phylogenies |journal=Critical Reviews in Plant Sciences |last=Cox |first=Cymon J. |volume=37 |issue=2–3 |pages=113–127 |year=2018 |doi=10.1080/07352689.2018.1482443|bibcode=2018CRvPS..37..113C |hdl=10400.1/14557 |s2cid=92198979 |hdl-access=free }}</ref>
{| cellpadding=5 style="border:1px solid #BBB" cellpadding=10;
! 'Monophyletic bryophytes' model
! 'Liverworts plus mosses{{en dash}}basal' model
|-
|{{Clade|style=line-height:100%;
|label1=]s
|1={{Clade
|1=]s
|label2=]s
|2={{clade
|1=]s
|label2=]
|2={{clade
|1=]es
|2=]s
}}
}}
}}
}}
|{{Barlabel
|size=4
|at1=2
|cladogram=
{{Clade
|label1=embryophytes
|1={{Clade
|1={{Clade
|1=]
|2=]
}}
|label2=]
|2={{Clade
|1=]
|2=]
}}
}}
}}
}}
|-
| colspan="2"|Two of the most likely models for bryophyte evolution.<ref name=Cox2018/>
|}

An important conclusion from these phylogenies is that the ancestral stomata appear to have been lost in the liverwort lineage.<ref name=Puttick2018/><ref name=Harris2020/> Among the earliest ]s believed to be liverworts are ]s of '']'' from the Upper ] of ].<ref>Taylor, Thomas N. & Edith L. Taylor. ''The Biology and Evolution of Fossil Plants'', p. 139. (Englewood Cliffs, NJ: Prentice Hall, 1993). {{ISBN|0-13-651589-4}}.</ref> These fossils resemble modern species in the ].<ref>Oostendorp, Cora. ''The Bryophytes of the Palaeozoic and the Mesozoic'', pp. 70–71. (''Bryophytum Bibliotheca'', Band 34, 1987). {{ISBN|3-443-62006-X}}.</ref> Another Devonian fossil called '']'' also looks like a liverwort, but its relationship to other plants is still uncertain, so it may not belong to the Marchantiophyta. In 2007, the oldest fossils assignable at that time to the liverworts were announced, ''Metzgeriothallus sharonae'' from the ] (Middle ]) of ], United States.<ref name="Hernick 2007">{{cite journal
| last = VanAller Hernick | first = L. |author2=Landing, E. |author3=Bartowski, K.E.
| year = 2008
| title=Earth's oldest liverworts – ''Metzgeriothallus sharonae'' sp. nov. from the Middle Devonian (Givetian) of eastern New York, USA
| doi = 10.1016/j.revpalbo.2007.09.002
|volume=148
| issue = 2–4
|pages=154–162
| journal = Review of Palaeobotany and Palynology | bibcode = 2008RPaPa.148..154H }}</ref> However, in 2010, five different types of fossilized liverwort spores were found in Argentina, dating to the much earlier Middle ], around 470 million years ago.<ref name="Walker 2010">Walker, Matt. "Fossils of earliest land plants discovered in Argentina" . (BBC, Earth News, 2010).</ref><ref>{{Cite journal |last1=Rubinstein |first1=C.V. |last2=Gerrienne |first2=P. |last3=De La Puente |first3=G.S. |last4=Astini |first4=R.A. |author5=Steemans, P. |year=2010 |title=Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana) |journal=New Phytologist |volume=188 |issue=2 |pages=365–369 |doi=10.1111/j.1469-8137.2010.03433.x |pmid=20731783 |doi-access=free |hdl=11336/55341 |hdl-access=free }}</ref>

=== Internal classification ===

]s classify liverworts in the division '''Marchantiophyta'''. This divisional name is based on the name of the most universally recognized liverwort genus '']''.<ref>Crandall-Stotler, Barbara. & Stotler, Raymond E. "Morphology and classification of the Marchantiophyta". p. 63 ''in'' A. Jonathan Shaw & Bernard Goffinet (Eds.), ''Bryophyte Biology''. (Cambridge: Cambridge University Press:2000). {{ISBN|0-521-66097-1}}</ref> In addition to this ]-based name, the liverworts are often called '''Hepaticophyta'''. This name is derived from their common Latin name as Latin was the language in which botanists published their descriptions of species. This name has led to some confusion,{{citation needed|date=March 2015}} partly because it appears to be a taxon-based name derived from the ] '']'' which is actually a ] of the buttercup family ]. In addition, the name Hepaticophyta is frequently misspelled in textbooks as '''Hepatophyta''', which only adds to the confusion.

Although there is no consensus among bryologists as to the classification of liverworts above family rank,<ref>{{Cite book| last=Jones | first=E. W. | year=2004 | title=Liverwort and Hornwort Flora of West Africa | series=Scripta Botnica Belgica | volume=30 | location=Meise | publisher=National Botanic Garden (Belgium) | isbn=90-72619-61-7 | page=30 }}</ref> the Marchantiophyta may be subdivided into three classes:<ref name="Forrest 2006">{{cite journal
| last = Forrest | first = Laura L. |author2=Christine E. Davis |author3=David G. Long |author4=Barbara J. Crandall-Stotler |author5=Alexandra Clark |author6=Michelle L. Hollingsworth
| year = 2006
| title = Unraveling the evolutionary history of the liverworts (Marchantiophyta): multiple taxa, genomes and analyses
| journal = The Bryologist | volume = 109 | issue = 3 | pages = 303–334
| doi = 10.1639/0007-2745(2006)1092.0.CO;2 | s2cid = 85912159 }}</ref><ref name="Heinrichs 2005">{{cite journal
| last = Heinrichs | first = Jochen
|author2=S. Robbert Gradstein |author3=Rosemary Wilson |author4=Harald Schneider
| year = 2005
| title = Towards a natural classification of liverworts (Marchantiophyta) based on the chloroplast gene rbcL
| journal = Cryptogamie Bryologie | volume = 26 | issue = 2 | pages = 131–150 }}</ref><ref name="He-Nygrén 2006">{{cite journal
| last = He-Nygrén | first = Xiaolan
|author2=Aino Juslén |author3=Inkeri Ahonen |author4=David Glenny |author5=Sinikka Piippo
| year = 2006
| title = Illuminating the evolutionary history of liverworts (Marchantiophyta) – towards a natural classification
| journal = Cladistics | volume = 22 | issue = 1 | pages = 1–31
| doi = 10.1111/j.1096-0031.2006.00089.x | pmid = 34892891
| s2cid = 86082381
| doi-access = free }}</ref><ref name="Renzaglia 2007">{{cite journal
| last = Renzaglia | first = Karen S.
|author2=Scott Schuette |author3=R. Joel Duff |author4=Roberto Ligrone |author5=A. Jonathan Shaw |author6=Brent D. Mishler |author7=Jeffrey G. Duckett
| year = 2007
| title = Bryophyte phylogeny: Advancing the molecular and morphological frontiers
| journal = The Bryologist | volume = 110 | issue = 2 | pages = 179–213
| doi = 10.1639/0007-2745(2007)1102.0.CO;2 | s2cid = 85788756
}}</ref>

* The '''Jungermanniopsida''' includes the two ] ] (simple thalloids) and ] (leafy liverworts).
* The '''Marchantiopsida''' includes the three orders ] (complex-thallus liverworts), and ] (bottle hepatics), as well as the ] (previously placed among the Metzgeriales).<ref name="Forrest 2006" /><ref name="Forrest 2004">{{cite journal | last=Forrest | first=Laura L. |author2=Barbara J. Crandall-Stotler | year=2004 | title=A Phylogeny of the Simple Thalloid Liverworts (Jungermanniopsida, Metzgeriidae) as Inferred from Five Chloroplast Genes | series=Molecular Systematics of Bryophytes | journal=Monographs in Systematic Botany | volume=98 | pages=119–140 | publisher= Missouri Botanical Garden Press }}</ref> It also includes the problematic genus '']'', which is sometimes placed in its own order Monocleales.<ref>Schuster, Rudolf M. ''The Hepaticae and Anthocerotae of North America'', vol. VI, p. 26. (Chicago: Field Museum of Natural History, 1992). {{ISBN|0-914868-21-7}}.</ref>
* A third class, the ''']''' is newly recognized as the sister group of the other liverworts;<ref name="Renzaglia 2007" /> it comprises the genera '']'', '']'', and '']''.

{| class="wikitable"
|-
! colspan=1 | Forrest 2006<ref name="Forrest 2006"/>
! colspan=1 | Cole, Hilger & Goffinet 2021 <ref>{{cite web |title=Bryophyte phylogeny poster: systematics and Characteristics of Nonvascular Land Plants (Mosses, Liverworts, Hornworts) |last1=Cole |first1=Theodor C. H. |last2=Hilger |first2=Hartmut H. |last3=Goffinet |first3=Bernard |url=https://www.researchgate.net/publication/257240194 |version=2021 |access-date=6 December 2022}}</ref>
|-
| style="vertical-align:top|
{{Clade | style=font-size:90%;line-height:80%
|label1=Marchantiophyta
|1={{clade
|1={{clade
|label1=]
|1={{clade
|1=]
|2=]
}}
}}
|2={{clade
|label1=Marchantiopsida
|1={{clade
|1=]
|2={{clade
|1=]
|2=]
}}
}}
|label2=Jungermanniopsida
|2={{clade
|1=] (part)
|2={{clade
|1=] (part)
|2=]
}}
}}
}}
}}
}}
|
{{Clade | style=font-size:90%;line-height:80%
|1={{clade
|1={{clade
|label1=]
|1={{clade
|1=]
|2=]
}}
}}
|2={{clade
|label1=]
|1={{clade
|label1=Blasiidae
|1=]
|label2=Marchantiidae
|2={{clade
|1=]
|2={{clade
|1=]
|2={{clade
|1=]
|2=]
}}
}}
}}
}}
|label2=]
|2={{clade
|1={{clade
|label1=Pelliidae
|1={{clade
|1=]
|2={{clade
|1=]
|2=]
}}
}}
}}
|2={{clade
|label1=Metzgeriidae
|1={{clade
|1=]
|2=]
}}
|label2=Jungermanniidae
|2={{clade
|1=]
|2={{clade
|1=]
|2=]
}}
}}
}}
}}
}}
}}
}}
|}

An updated classification by Söderström et al. 2016<ref name="Söderström et al. 2016">{{cite journal |last=Söderström |year=2016 |title=World checklist of hornworts and liverworts |journal=PhytoKeys |issue=59 |pages=1–826 |doi=10.3897/phytokeys.59.6261|display-authors=etal |pmid=26929706 |pmc=4758082 |doi-access=free }}</ref>
* '''Marchantiophyta''' <small>Stotler & Crandall-Stotler 2000</small>
** ] <small>Stotler & Crandall-Stotler 1977</small>
*** ] <small>Hamlin 1972</small>
*** ] <small>Schljakov 1972</small>
** ] <small>Cronquist, Takhtajan & Zimmermann 1966</small>
*** ] <small>He-Nygrén et al. 2006</small>
**** ] <small>Stotler & Crandall-Stotler 2000</small>
*** ] <small>Engler 1893 sensu He-Nygrén et al. 2006</small>
**** ] <small>Long 2006</small>
**** ] <small>Limpricht 1877</small> (complex thalloids)
**** ] <small>Long 2006</small>
**** ] <small>Cavers 1910</small> (bottle liverworts)
** ] <small>Stotler & Crandall-Stotler 1977</small>
*** ] <small>Engler 1893</small> (leafy liverworts)
**** ] <small>von Klinggräff 1858</small>
**** ] <small>Schljakov 1972</small>
**** ] <small>Schljakov 1972</small>
*** ] <small>Bartholomew-Began 1990</small>
**** ] <small>Chalaud 1930</small>
**** ] <small>Schljakov 1972</small>
*** ] <small>He-Nygrén et al. 2006</small>
**** ] <small>Schljakov 1972</small>
**** ] <small>Frey & Stech 2005</small>
**** ] <small>He-Nygrén et al. 2006</small>

It is estimated that there are about 9000 species of liverworts, at least 85% of which belong to the leafy group.<ref name="Stotlers 2000" /><ref name=Sadava2009>{{cite book|last=Sadava|first=David|title=Life: The Science of Biology|year=2009|publisher=W. H. Freeman|location=New York|isbn=978-1429246446|edition=9th|author2=David M. Hillis |author3=H. Craig Heller |author4=May Berenbaum |page=599}}</ref> Despite that fact, no liverwort genomes have been sequenced to date and only few genes identified and characterized.<ref>{{Cite journal| pmid=24939387| pmc=4074843| year=2014
| last1 = Sierocka| first1 = I| title = Female-specific gene expression in dioecious liverwort Pellia endiviifolia is developmentally regulated and connected to archegonia production| journal = BMC Plant Biology| volume = 14| pages = 168| last2 = Kozlowski| first2 = L. P.| last3 = Bujnicki
| first3 = J. M.| last4 = Jarmolowski| first4 = A| last5 = Szweykowska-Kulinska| first5 = Z| doi = 10.1186/1471-2229-14-168| doi-access=free}}</ref>


==Economic importance==
Traditionally, the liverworts were grouped together with other ]s (]es and ]s) in the Division Bryophyta, within which the liverworts made up the class '''Hepaticae''' (also called Marchantiopsida). However, since this grouping makes the Bryophyta ], the liverworts are now usually given their own division. The use of the division name Bryophyta ''sensu latu'' is still found in the literature, but more frequently the ] now is used in a restricted sense to include only the mosses.
In ancient times, it was assumed that liverworts cured diseases of the ], hence the name.<ref>Dittmer, Howard J. ''Phylogeny and Form in the Plant Kingdom'', p. 286. (Toronto: D. Van Nostrand Co., 1964)</ref> In ], the word liverwort literally means ''liver plant''.<ref>Raven, P. H., R. F. Evert, & S. E. Eichhorn. ''Biology of Plants'', 7th ed., p. 351. (New York: W. H. Freeman, 2005). {{ISBN|0-7167-1007-2}}.</ref> This probably stemmed from the superficial appearance of some thalloid liverworts which resemble a liver in outline, and led to the common name of the group as ''hepatics'', from the ] word ''hēpaticus'' for "belonging to the liver". An unrelated flowering plant, '']'', is sometimes also referred to as liverwort because it was once also used in treating diseases of the liver. This archaic relationship of plant form to function was based in the ].<ref>Stern, Kingsley R. ''Introductory Plant Biology'', 5th ed., p. 338. (Dubuque, Iowa: Wm. C. Brown Publishers, 1991) {{ISBN|0-697-09947-4}}.</ref>


Liverworts have little direct economic importance today. Their greatest impact is indirect, through the reduction of erosion along streambanks, their collection and retention of water in tropical forests, and the formation of ]s in deserts and polar regions. However, a few species are used by humans directly. A few species, such as '']'', are aquatic thallose liverworts sold for use in ]s. Their thin, slender branches float on the water's surface and provide habitat for both small invertebrates and the fish that feed on them.
]


== Gallery ==
Another reason that liverworts are now classified separately is that liverworts appear to have diverged from all other ] plants near the beginning of their ]. The strongest line of supporting evidence is that liverworts are the only living group of land plants that do not have ]ta on the ] generation. The earliest ]s believed to be liverworts are ]s of ''Pallaviciniites'' from the Upper ] of ]. These fossils resemble modern species in the ]. Another Devonian fossil called '']'' also looks like a liverwort, but its relationship to other plants is still uncertain, so it may not belong to the Marchantiophyta.


<!-- Please do not add images to this gallery simply because the image exists. The collection of images below was selected to (1) illustrate the overall structural diversity of the two major groups of liverworts, and (2) to show key structures described within the article. Additional images are better placed among the article text or uploaded to Commons. -->
The Marchantiophyta is subdivided into two classes. The '''Jungermanniopsida''' includes primarily the two ] ] (simple thalloids) and ] (leafy liverworts), as well as a smaller order ]. The '''Marchantiopsida''' includes primarily the orders ] (complex-thallus liverworts) and ] (bottle hepatics), as well as the problematic genus '']'', which is sometimes placed in its own order Monocleales.
A small collection of images showing liverwort structure and diversity:
<gallery class=center mode=nolines widths=175px heights=175px>
File:Marchantia.jpg|''] polymorpha'', with antheridial and archegonial stalks.
File:Archegonium.jpg|The ] of ''Porella''.
File:Porella SPT.jpg|A sporophyte of ''Porella'' emerging from its archegonium.
File:Porella platyphylla.jpg|''] platyphylla'' clump growing on a tree.
File:Pellia epiphylla5 ies.jpg|''] epiphylla'', growing on moist soil.
File:Plagiochila aspleniodes0.jpg|''] asplenioides'', a ].
File:RicciaFluitans1.jpg|'']'', an aquatic ].
File:Liverwort.jpg|''] conicum'', a large thallose liverwort.
</gallery>


== See also == == See also ==
Line 60: Line 315:


== References == == References ==
{{Reflist|2}}
* Bold, Alexopoulos, and Delevoryas (1987). ''Morphology of Plants and Fungi''. New York: Harper-Collins.
* Crandall-Stotler, Barbara. & Stotler, Raymond E. (2000). Morphology and classification of the Marchantiophyta. In A. Jonathan Shaw & Bernard Goffinet (Eds.), ''Bryophyte Biology'', pp. 21-70. Cambridge: ]. ISBN 0-521-66097-1.
* Kenrick, Paul & Crane, Peter R. (1997). ''The Origin and Early Diversification of Land Plants: A Cladistic Study''. Washington, D. C.: Smithsonian Institution Press. ISBN 1-56098-730-8.
* Schofield, W. B. (1985). ''Introduction to Bryology''. New York: Macmillan. ISBN 0-02-949660-8.
* Taylor, Thomas N. & Taylor, Edith L. (1993). ''The Biology and Evolution of Fossil Plants''. Englewood Cliffs, NJ: Prentice Hall. ISBN 0-13-651589-4.


== External links == == External links ==
{{Wiktionary|liverwort}}
*
* {{Commons category-inline|Marchantiophyta}}
*
* {{Wikispecies-inline|Marchantiophyta}}
*
*
*
* (note: for 500,000 million years ago read "480 million years ago".)
*
* *
*
*


{{Plant classification}}
]
{{Marchantiophyta}}
{{Life on Earth}}
{{Taxonbar|from=Q189808}}
{{Authority control}}
{{Good article}}


]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

Latest revision as of 13:47, 25 November 2024

Botanical division of non-vascular land plants Not to be confused with the genus of flowering plants, Hepatica, that may also be called "liverwort".

Liverworts
Temporal range: 472–0 Ma PreꞒ O S D C P T J K Pg N Mid-Ordovician to present
"Hepaticae" from Ernst Haeckel's Kunstformen der Natur, 1904
Scientific classification Edit this classification
Kingdom: Plantae
Clade: Embryophytes
Clade: Setaphyta
Division: Marchantiophyta
Stotler & Stotl.-Crand., 1977 emend. 2000
Classes and orders

The Marchantiophyta (/mɑːrˌkæntiˈɒfətə, -oʊˈfaɪtə/ ) are a division of non-vascular land plants commonly referred to as hepatics or liverworts. Like mosses and hornworts, they have a gametophyte-dominant life cycle, in which cells of the plant carry only a single set of genetic information. The division name was derived from the genus name Marchantia, named by French botanist Jean Marchant after his father.

It is estimated that there are about 9000 species of liverworts. Some of the more familiar species grow as a flattened leafless thallus, but most species are leafy with a form very much like a flattened moss. Leafy species can be distinguished from the apparently similar mosses on the basis of a number of features, including their single-celled rhizoids. Leafy liverworts also differ from most (but not all) mosses in that their leaves never have a costa (present in many mosses) and may bear marginal cilia (very rare in mosses). Other differences are not universal for all mosses and liverworts, but the occurrence of leaves arranged in three ranks, the presence of deep lobes or segmented leaves, or a lack of clearly differentiated stem and leaves all point to the plant being a liverwort. Liverworts are distinguished from mosses in having unique complex oil bodies of high refractive index.

Liverworts are typically small, usually from 2–20 mm (0.079–0.787 in) wide with individual plants less than 10 cm (3.9 in) long, and are therefore often overlooked. However, certain species may cover large patches of ground, rocks, trees or any other reasonably firm substrate on which they occur. They are distributed globally in almost every available habitat, most often in humid locations although there are desert and Arctic species as well. Some species can be a nuisance in shady greenhouses or a weed in gardens.

Physical characteristics

Description

Most liverworts are small, measuring from 2–20 millimetres (0.08–0.8 in) wide with individual plants less than 10 centimetres (4 in) long, so they are often overlooked. The most familiar liverworts consist of a prostrate, flattened, ribbon-like or branching structure called a thallus (plant body); these liverworts are termed thallose liverworts. However, most liverworts produce flattened stems with overlapping scales or leaves in two or more ranks, the middle rank is often conspicuously different from the outer ranks; these are called leafy liverworts or scale liverworts. (See the gallery below for examples.)

A thallose liverwort, Lunularia cruciata

Liverworts can most reliably be distinguished from the apparently similar mosses by their single-celled rhizoids. Other differences are not universal for all mosses and all liverworts; but the lack of clearly differentiated stem and leaves in thallose species, or in leafy species the presence of deeply lobed or segmented leaves and the presence of leaves arranged in three ranks, as well as frequent dichotomous branching, all point to the plant being a liverwort. With a few exceptions, all liverworts undergo polyplastidic meiosis, in contrast to mosses and hornworts which have monoplastidic meiosis. Unlike any other embryophytes, most liverworts contain unique membrane-bound oil bodies containing isoprenoids in at least some of their cells, lipid droplets in the cytoplasm of all other plants being unenclosed. The overall physical similarity of some mosses and leafy liverworts means that confirmation of the identification of some groups can be performed with certainty only with the aid of microscopy or an experienced bryologist.

Liverworts, like other bryophytes, have a gametophyte-dominant life cycle, with the sporophyte dependent on the gametophyte. The sporophyte of many liverworts are non-photosynthetic, but there are also several that are photosynthetic to various degrees. Cells in a typical liverwort plant each contain only a single set of genetic information, so the plant's cells are haploid for the majority of its life cycle. This contrasts sharply with the pattern exhibited by nearly all animals and by vascular plants. In the more familiar seed plants, the haploid generation is represented only by the tiny pollen and the ovule, while the diploid generation is the familiar tree or other plant. Another unusual feature of the liverwort life cycle is that sporophytes (i.e. the diploid body) are very short-lived, withering away not long after releasing spores. In mosses, the sporophyte is more persistent and in hornworts, the sporophyte disperses spores over an extended period.

Life cycle

Sexual life cycle of a Marchantia-like liverwort

The life of a liverwort starts from the germination of a haploid spore to produce a protonema, which is either a mass of thread-like filaments or a flattened thallus. The protonema is a transitory stage in the life of a liverwort, from which will grow the mature gametophore ("gamete-bearer") plant that produces the sex organs. The male organs are known as antheridia (singular: antheridium) and produce the sperm cells. Clusters of antheridia are enclosed by a protective layer of cells called the perigonium (plural: perigonia). As in other land plants, the female organs are known as archegonia (singular: archegonium) and are protected by the thin surrounding perichaetum (plural: perichaeta). Each archegonium has a slender hollow tube, the "neck", down which the sperm swim to reach the egg cell.

Liverwort species may be either dioicous or monoicous. In dioicous liverworts, female and male sex organs are borne on different and separate gametophyte plants. In monoicous liverworts, the two kinds of reproductive structures are borne on different branches of the same plant. In either case, the sperm must move from the antheridia where they are produced to the archegonium where the eggs are held. The sperm of liverworts is biflagellate, i.e. they have two tail-like flagellae that enable them to swim short distances, provided that at least a thin film of water is present. Their journey may be assisted by the splashing of raindrops. In 2008, Japanese researchers discovered that some liverworts are able to fire sperm-containing water up to 15 cm in the air, enabling them to fertilize female plants growing more than a metre from the nearest male.

When sperm reach the archegonia, fertilisation occurs, leading to the production of a diploid sporophyte. After fertilisation, the immature sporophyte within the archegonium develops three distinct regions: (1) a foot, which both anchors the sporophyte in place and receives nutrients from its "mother" plant, (2) a spherical or ellipsoidal capsule, inside which the spores will be produced for dispersing to new locations, and (3) a seta (stalk) which lies between the other two regions and connects them. The sporophyte lacks an apical meristem, an auxin-sensitive point of divergence with other land plants some time in the Late Silurian/Early Devonian. When the sporophyte has developed all three regions, the seta elongates, pushing its way out of the archegonium and rupturing it. While the foot remains anchored within the parent plant, the capsule is forced out by the seta and is extended away from the plant and into the air. Within the capsule, cells divide to produce both elater cells and spore-producing cells. The elaters are spring-like, and will push open the wall of the capsule to scatter themselves when the capsule bursts. The spore-producing cells will undergo meiosis to form haploid spores to disperse, upon which point the life cycle can start again.

Asexual reproduction

Some liverworts are capable of asexual reproduction; in bryophytes in general "it would almost be true to say that vegetative reproduction is the rule and not the exception." For example, in Riccia, when the older parts of the forked thalli die, the younger tips become separate individuals.

Some thallose liverworts such as Marchantia polymorpha and Lunularia cruciata produce small disc-shaped gemmae in shallow cups. Marchantia gemmae can be dispersed up to 120 cm by rain splashing into the cups. In Metzgeria, gemmae grow at thallus margins. Marchantia polymorpha is a common weed in greenhouses, often covering the entire surface of containers; gemma dispersal is the "primary mechanism by which liverwort spreads throughout a nursery or greenhouse."

Symbiosis

Thalloid liverworts typically harbor symbiotic glomeromycete fungi which have arbuscular (cilia-bearing) rootlets resembling those in vascular plants. Species in the Aneuraceae, however, associate with basidiomycete fungi belonging to the genus Tulasnella, while leafy liverworts typically harbor symbiotic basidiomycete fungi belonging to the genus Serendipita.

Ecology

Today, liverworts can be found in many ecosystems across the planet except the sea and excessively dry environments, or those exposed to high levels of direct solar radiation. As with most groups of living plants, they are most common (both in numbers and species) in moist tropical areas. Liverworts are more commonly found in moderate to deep shade, though desert species may tolerate direct sunlight and periods of total desiccation.

Classification

Relationship to other plants

Traditionally, the liverworts were grouped together with other bryophytes (mosses and hornworts) in the Division Bryophyta, within which the liverworts made up the class Hepaticae (also called Marchantiopsida). Somewhat more recently, the liverworts were given their own division (Marchantiophyta), as bryophytes became considered to be paraphyletic. However, the most recent phylogenetic evidence indicates that liverworts are indeed likely part of a monophyletic clade ("Bryophyta sensu lato" or "Bryophyta Schimp.") alongside mosses and hornworts. Hence, it has been suggested that the liverworts should be de-ranked to a class called Marchantiopsida. In addition, there is strong phylogenetic evidence to suggest that liverworts and mosses form a monophyletic subclade named Setaphyta.

'Monophyletic bryophytes' model 'Liverworts plus mosses–basal' model
embryophytes

vascular plants

bryophytes

hornworts

setaphytes

mosses

liverworts

embryophytes

vascular plants

hornworts

setaphytes

mosses

liverworts

Two of the most likely models for bryophyte evolution.

An important conclusion from these phylogenies is that the ancestral stomata appear to have been lost in the liverwort lineage. Among the earliest fossils believed to be liverworts are compression fossils of Pallaviciniites from the Upper Devonian of New York. These fossils resemble modern species in the Metzgeriales. Another Devonian fossil called Protosalvinia also looks like a liverwort, but its relationship to other plants is still uncertain, so it may not belong to the Marchantiophyta. In 2007, the oldest fossils assignable at that time to the liverworts were announced, Metzgeriothallus sharonae from the Givetian (Middle Devonian) of New York, United States. However, in 2010, five different types of fossilized liverwort spores were found in Argentina, dating to the much earlier Middle Ordovician, around 470 million years ago.

Internal classification

Bryologists classify liverworts in the division Marchantiophyta. This divisional name is based on the name of the most universally recognized liverwort genus Marchantia. In addition to this taxon-based name, the liverworts are often called Hepaticophyta. This name is derived from their common Latin name as Latin was the language in which botanists published their descriptions of species. This name has led to some confusion, partly because it appears to be a taxon-based name derived from the genus Hepatica which is actually a flowering plant of the buttercup family Ranunculaceae. In addition, the name Hepaticophyta is frequently misspelled in textbooks as Hepatophyta, which only adds to the confusion.

Although there is no consensus among bryologists as to the classification of liverworts above family rank, the Marchantiophyta may be subdivided into three classes:

Forrest 2006 Cole, Hilger & Goffinet 2021
Marchantiophyta
Haplomitriopsida

Haplomitriales

Treubiales

Marchantiopsida

Blasiales

Marchantiales

Sphaerocarpales

Jungermanniopsida

Metzgeriales (part)

Metzgeriales (part)

Jungermanniales

Haplomitriopsida

Haplomitriales

Treubiales

Marchantiopsida
Blasiidae

Blasiales

Marchantiidae

Neohodgsoniales

Sphaerocarpales

Lunulariales

Marchantiales

Jungermanniopsida
Pelliidae

Pelliales

Fossombroniales

Pallaviciniales

Metzgeriidae

Metzgeriales

Pleuroziales

Jungermanniidae

Jungermanniales

Porellales

Ptilidiales

An updated classification by Söderström et al. 2016

It is estimated that there are about 9000 species of liverworts, at least 85% of which belong to the leafy group. Despite that fact, no liverwort genomes have been sequenced to date and only few genes identified and characterized.

Economic importance

In ancient times, it was assumed that liverworts cured diseases of the liver, hence the name. In Old English, the word liverwort literally means liver plant. This probably stemmed from the superficial appearance of some thalloid liverworts which resemble a liver in outline, and led to the common name of the group as hepatics, from the Latin word hēpaticus for "belonging to the liver". An unrelated flowering plant, Hepatica, is sometimes also referred to as liverwort because it was once also used in treating diseases of the liver. This archaic relationship of plant form to function was based in the "Doctrine of Signatures".

Liverworts have little direct economic importance today. Their greatest impact is indirect, through the reduction of erosion along streambanks, their collection and retention of water in tropical forests, and the formation of soil crusts in deserts and polar regions. However, a few species are used by humans directly. A few species, such as Riccia fluitans, are aquatic thallose liverworts sold for use in aquariums. Their thin, slender branches float on the water's surface and provide habitat for both small invertebrates and the fish that feed on them.

Gallery

A small collection of images showing liverwort structure and diversity:

See also

References

  1. ^ Walker, Matt. "Fossils of earliest land plants discovered in Argentina" . (BBC, Earth News, 2010).
  2. Stotler, Raymond E.; Barbara J. Candall-Stotler (1977). "A checklist of the liverworts and hornworts of North America". The Bryologist. 80 (3). American Bryological and Lichenological Society: 405–428. doi:10.2307/3242017. JSTOR 3242017.
  3. ^ Crandall-Stotler, Barbara; Stotler, Raymond E. (2000). "Morphology and classification of the Marchantiophyta". In A. Jonathan Shaw; Bernard Goffinet (eds.). Bryophyte Biology. Cambridge: Cambridge University Press. p. 21. ISBN 0-521-66097-1.
  4. "Liverworts Homepage | UNB". Archived from the original on 24 July 2021. Retrieved 10 June 2020.
  5. Schuster, Rudolf M. (1992). The Hepaticae and Anthocerotae of North America. Vol. VI. Chicago: Field Museum of Natural History. p. 19. ISBN 0-914868-21-7.
  6. Schuster, Rudolf M. The Hepaticae and Anthocerotae of North America, vol. I, pp. 243–244. (New York: Columbia University Press, 1966)
  7. Kashyap, Shiv Ram. Liverworts of the Western Himalayas and the Panjab Plain, vol. I, p. 1. (New Delhi: The Chronica Botanica, 1929)
  8. ^ Schofield, W. B. Introduction to Bryology, pp. 135–140. (New York: Macmillan, 1985). ISBN 0-02-949660-8.
  9. Nehira, Kunito. "Spore Germination, Protonemata Development and Sporeling Development", p. 347 in Rudolf M. Schuster (Ed.), New Manual of Bryology, volume I. (Nichinan, Miyazaki, Japan: The Hattori Botanical Laboratory, 1983). ISBN 49381633045.
  10. Allison, K. W. & John Child. The Liverworts of New Zealand, pp. 13–14. (Dunedin: University of Otago Press, 1975).
  11. Conard, Henry S. and Paul L. Redfearn, Jr. How to Know the Mosses and Liverworts, revised ed., pp. 12–23. (Dubuque, Iowa: William C. Brown Co., 1979) ISBN 0-697-04768-7
  12. Sporogenesis in Physcomitrium patens: Intergenerational collaboration and the development of the spore wall and aperture
  13. ^ Harold C. Bold, C. J. Alexopoulos, and T. Delevoryas. Morphology of Plants and Fungi, 5th ed., p. 189. (New York: Harper-Collins, 1987). ISBN 0-06-040839-1.
  14. Volume 1, Chapter 11-1: Photosynthesis: The Process
  15. Fosket, Donald E. Plant Growth and Development: A Molecular Approach, p. 27. (San Diego: Academic Press, 1994). ISBN 0-12-262430-0.
  16. Hicks, Marie L. Guide to the Liverworts of North Carolina, p. 10. (Durham: Duke University Press, 1992). ISBN 0-8223-1175-5.
  17. Nehira, Kunito. "Spore Germination, Protonemata Development and Sporeling Development", pp. 358–374 in Rudolf M. Schuster (Ed.), New Manual of Bryology, volume I. (Nichinan, Miyazaki, Japan: The Hattori Botanical Laboratory, 1983). ISBN 49381633045.
  18. Chopra, R. N. & P. K. Kumra. Biology of Bryophytes, pp. 1–38. (New York: John Wiley & Sons, 1988). ISBN 0-470-21359-0.
  19. Malcolm, Bill & Nancy Malcolm. Mosses and Other Bryophytes: An Illustrated Glossary, pp. 6 & 128. (New Zealand: Micro-Optics Press, 2000). ISBN 0-473-06730-7.
  20. ^ Campbell, Douglas H. The Structure and Development of Mosses and Ferns, pp. 73–74. (London: The Macmillan Co., 1918)
  21. Pain, S. (2010). "Botanical ballistics". New Scientist. 208 (2792/3): 45–47. doi:10.1016/s0262-4079(10)63177-6.
  22. Cooke, Todd J; Poli, DorothyBelle; Cohen, Jerry D (2003). "Did auxin play a crucial role in the evolution of novel body plans during the Late Silurian-Early Devonian radiation of land plants?". The Evolution of Plant Physiology. Elsevier. pp. 85–107. doi:10.1016/b978-012339552-8/50006-8. ISBN 978-0-12-339552-8.
  23. Friedman, William E.; Moore, Richard C.; Purugganan, Michael D. (2004). "The evolution of plant development". American Journal of Botany. 91 (10). Botanical Society of America (Wiley): 1726–1741. doi:10.3732/ajb.91.10.1726. ISSN 0002-9122. PMID 21652320.
  24. ^ Lepp, Heino (15 April 2008). "Vegetative Reproduction". Australian Bryophytes. Australian National Botanic Gardens. Retrieved 22 December 2011.
  25. Smith, AJE (1989) The Liverworts of Britain and Ireland, Cambridge University Press, Cambridge.
  26. Equihua, C. (1987). "Splash-Cup Dispersal Of Gemmae In The Liverwort Marchantia-Polymorpha". Cryptogamie, Bryologie, Lichénologie. 8 (3): 199–217. Archived from the original on 26 April 2012.
  27. Lepp, Heino (28 February 2008). "Reproduction & Dispersal". Australian Bryophytes. Australian National Botanic Gardens. Retrieved 22 December 2011.
  28. ^ Newby, Adam; Altland, James E.; Gilliam, Charles H.; Wehtje, Glenn (December 2006). "Postemergence Liverwort Control in Container-Grown Nursery Crops1" (PDF). J. Environ. Hort. 24 (4). Horticultural Research Institute: 230–236. Archived from the original (PDF) on 24 July 2012. Retrieved 24 December 2011.
  29. Bidartondo, Martin I.; Duckett, Jeffrey G. (7 February 2010). "Conservative ecological and evolutionary patterns in liverwort–fungal symbioses". Proceedings of the Royal Society B: Biological Sciences. 277 (1680): 485–492. doi:10.1098/rspb.2009.1458. PMC 2842645. PMID 19812075.
  30. Schuster, Rudolf M. The Hepaticae and Anthocerotae of North America, vol. I, pp. 243–249. (New York: Columbia University Press, 1966).
  31. Pócs, Tamás. "Tropical Forest Bryophytes", p. 59 in A. J. E. Smith (Ed.) Bryophyte Ecology. (London: Chapman and Hall, 1982). ISBN 0-412-22340-6.
  32. Crandall-Stotler, Barbara. & Stotler, Raymond E. "Morphology and classification of the Marchantiophyta". pp. 36–38 in A. Jonathan Shaw & Bernard Goffinet (Eds.), Bryophyte Biology. (Cambridge: Cambridge University Press: 2000). ISBN 0-521-66097-1
  33. Goffinet, Bernard. "Origin and phylogenetic relationships of bryophytes". pp. 124–149 in A. Jonathan Shaw & Bernard Goffinet (Eds.), Bryophyte Biology. (Cambridge: Cambridge University Press:!2000). ISBN 0-521-66097-1
  34. Cox, Cymon J.; et al. (2014). "Conflicting Phylogenies for Early Land Plants are Caused by Composition Biases among Synonymous Substitutions". Systematic Biology. 63 (2): 272–279. doi:10.1093/sysbio/syt109. PMC 3926305. PMID 24399481.
  35. ^ Puttick, Mark N.; et al. (March 2018). "The Interrelationships of Land Plants and the Nature of the Ancestral Embryophyte". Current Biology. 28 (5): 733–745.e2. Bibcode:2018CBio...28E.733P. doi:10.1016/j.cub.2018.01.063. hdl:1983/ad32d4da-6cb3-4ed6-add2-2415f81b46da. PMID 29456145. S2CID 3269165.
  36. ^ de Sousa, Filipe; et al. (2019). "Nuclear protein phylogenies support the monophyly of the three bryophyte groups (Bryophyta Schimp.)". New Phytologist. 222 (1): 565–575. doi:10.1111/nph.15587. hdl:1983/0b471d7e-ce54-4681-b791-1da305d9e53b. PMID 30411803. S2CID 53240320.
  37. Leebens-Mack, James H.; et al. (2019). "One thousand plant transcriptomes and the phylogenomics of green plants". Nature. 574 (7780): 679–685. doi:10.1038/s41586-019-1693-2. PMC 6872490. PMID 31645766.
  38. Zhang, Jian; et al. (2020). "The hornwort genome and early land plant evolution". Nature Plants. 6 (2): 107–118. doi:10.1038/s41477-019-0588-4. PMC 7027989. PMID 32042158.
  39. ^ Harris, Brogan J.; et al. (2020). "Phylogenomic Evidence for the Monophyly of Bryophytes and the Reductive Evolution of Stomata". Current Biology. 30 (11): P2201–2012.E2. Bibcode:2020CBio...30E2001H. doi:10.1016/j.cub.2020.03.048. hdl:1983/fbf3f371-8085-4e76-9342-e3b326e69edd. PMID 32302587. S2CID 215798377.
  40. Li, Fay-Wei; et al. (2020). "Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts". Nature Plants. 6 (3): 259–272. doi:10.1038/s41477-020-0618-2. hdl:10261/234303. PMC 8075897. PMID 32170292.
  41. Sousa, Filipe; et al. (2020). "The Chloroplast Land Plant Phylogeny: Analyses Employing Better-Fitting Tree- and Site-Heterogeneous Composition Models". Frontiers in Plant Science. 11: 1062. doi:10.3389/fpls.2020.01062. PMC 7373204. PMID 32760416.
  42. Su, Danyan; et al. (2021). "Large-Scale Phylogenomic Analyses Reveal the Monophyly of Bryophytes and Neoproterozoic Origin of Land Plants". Molecular Biology and Evolution. 38 (8): 3332–3344. doi:10.1093/molbev/msab106. PMC 8321542. PMID 33871608.
  43. Sousa, Filipe; et al. (2020). "The mitochondrial phylogeny of land plants shows support for Setaphyta under composition-heterogeneous substitution models". PeerJ. 8 (4): e8995. doi:10.7717/peerj.8995. PMC 7194085. PMID 32377448.
  44. ^ Cox, Cymon J. (2018). "Land Plant Molecular Phylogenetics: A Review with Comments on Evaluating Incongruence Among Phylogenies". Critical Reviews in Plant Sciences. 37 (2–3): 113–127. Bibcode:2018CRvPS..37..113C. doi:10.1080/07352689.2018.1482443. hdl:10400.1/14557. S2CID 92198979.
  45. Taylor, Thomas N. & Edith L. Taylor. The Biology and Evolution of Fossil Plants, p. 139. (Englewood Cliffs, NJ: Prentice Hall, 1993). ISBN 0-13-651589-4.
  46. Oostendorp, Cora. The Bryophytes of the Palaeozoic and the Mesozoic, pp. 70–71. (Bryophytum Bibliotheca, Band 34, 1987). ISBN 3-443-62006-X.
  47. VanAller Hernick, L.; Landing, E.; Bartowski, K.E. (2008). "Earth's oldest liverworts – Metzgeriothallus sharonae sp. nov. from the Middle Devonian (Givetian) of eastern New York, USA". Review of Palaeobotany and Palynology. 148 (2–4): 154–162. Bibcode:2008RPaPa.148..154H. doi:10.1016/j.revpalbo.2007.09.002.
  48. Rubinstein, C.V.; Gerrienne, P.; De La Puente, G.S.; Astini, R.A.; Steemans, P. (2010). "Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana)". New Phytologist. 188 (2): 365–369. doi:10.1111/j.1469-8137.2010.03433.x. hdl:11336/55341. PMID 20731783.
  49. Crandall-Stotler, Barbara. & Stotler, Raymond E. "Morphology and classification of the Marchantiophyta". p. 63 in A. Jonathan Shaw & Bernard Goffinet (Eds.), Bryophyte Biology. (Cambridge: Cambridge University Press:2000). ISBN 0-521-66097-1
  50. Jones, E. W. (2004). Liverwort and Hornwort Flora of West Africa. Scripta Botnica Belgica. Vol. 30. Meise: National Botanic Garden (Belgium). p. 30. ISBN 90-72619-61-7.
  51. ^ Forrest, Laura L.; Christine E. Davis; David G. Long; Barbara J. Crandall-Stotler; Alexandra Clark; Michelle L. Hollingsworth (2006). "Unraveling the evolutionary history of the liverworts (Marchantiophyta): multiple taxa, genomes and analyses". The Bryologist. 109 (3): 303–334. doi:10.1639/0007-2745(2006)109[303:UTEHOT]2.0.CO;2. S2CID 85912159.
  52. Heinrichs, Jochen; S. Robbert Gradstein; Rosemary Wilson; Harald Schneider (2005). "Towards a natural classification of liverworts (Marchantiophyta) based on the chloroplast gene rbcL". Cryptogamie Bryologie. 26 (2): 131–150.
  53. He-Nygrén, Xiaolan; Aino Juslén; Inkeri Ahonen; David Glenny; Sinikka Piippo (2006). "Illuminating the evolutionary history of liverworts (Marchantiophyta) – towards a natural classification". Cladistics. 22 (1): 1–31. doi:10.1111/j.1096-0031.2006.00089.x. PMID 34892891. S2CID 86082381.
  54. ^ Renzaglia, Karen S.; Scott Schuette; R. Joel Duff; Roberto Ligrone; A. Jonathan Shaw; Brent D. Mishler; Jeffrey G. Duckett (2007). "Bryophyte phylogeny: Advancing the molecular and morphological frontiers". The Bryologist. 110 (2): 179–213. doi:10.1639/0007-2745(2007)110[179:BPATMA]2.0.CO;2. S2CID 85788756.
  55. Forrest, Laura L.; Barbara J. Crandall-Stotler (2004). "A Phylogeny of the Simple Thalloid Liverworts (Jungermanniopsida, Metzgeriidae) as Inferred from Five Chloroplast Genes". Monographs in Systematic Botany. Molecular Systematics of Bryophytes. 98. Missouri Botanical Garden Press: 119–140.
  56. Schuster, Rudolf M. The Hepaticae and Anthocerotae of North America, vol. VI, p. 26. (Chicago: Field Museum of Natural History, 1992). ISBN 0-914868-21-7.
  57. Cole, Theodor C. H.; Hilger, Hartmut H.; Goffinet, Bernard. "Bryophyte phylogeny poster: systematics and Characteristics of Nonvascular Land Plants (Mosses, Liverworts, Hornworts)". 2021. Retrieved 6 December 2022.
  58. Söderström; et al. (2016). "World checklist of hornworts and liverworts". PhytoKeys (59): 1–826. doi:10.3897/phytokeys.59.6261. PMC 4758082. PMID 26929706.
  59. Sadava, David; David M. Hillis; H. Craig Heller; May Berenbaum (2009). Life: The Science of Biology (9th ed.). New York: W. H. Freeman. p. 599. ISBN 978-1429246446.
  60. Sierocka, I; Kozlowski, L. P.; Bujnicki, J. M.; Jarmolowski, A; Szweykowska-Kulinska, Z (2014). "Female-specific gene expression in dioecious liverwort Pellia endiviifolia is developmentally regulated and connected to archegonia production". BMC Plant Biology. 14: 168. doi:10.1186/1471-2229-14-168. PMC 4074843. PMID 24939387.
  61. Dittmer, Howard J. Phylogeny and Form in the Plant Kingdom, p. 286. (Toronto: D. Van Nostrand Co., 1964)
  62. Raven, P. H., R. F. Evert, & S. E. Eichhorn. Biology of Plants, 7th ed., p. 351. (New York: W. H. Freeman, 2005). ISBN 0-7167-1007-2.
  63. Stern, Kingsley R. Introductory Plant Biology, 5th ed., p. 338. (Dubuque, Iowa: Wm. C. Brown Publishers, 1991) ISBN 0-697-09947-4.

External links

Classification of Archaeplastida or Plantae s.l.
Domain
Archaea
Bacteria
Eukaryota
(major groups
Excavata
Diaphoretickes
Hacrobia
Cryptista
Rhizaria
Alveolata
Stramenopiles
Plants
Amorphea
Amoebozoa
Opisthokonta
Animals
Fungi
Mesomycetozoea)
Archaeplastida
Picozoa
Rhodelphidia
Rhodophyta
(red algae)
Glaucophyta
incertae sedis
Viridiplantae
or Plantae s.s.
(green algae &
land plants)
Prasinodermophyta
 Chlorophyta
Prasinophytina
Chlorophytina
Streptophyta
Phragmoplastophyta
Anydrophyta
Embryophyta
(land plants)
  • (see below↓)
Embryophytes or Plantae sensu strictissimo
Bryophytes
Marchantiophyta
(liverworts)
Anthocerotophyta
(hornworts)
Bryophyta
(mosses)
 Polysporangiophytes
†Protracheophytes*
Tracheophytes
(vascular plants)
†Paratracheophytes*
Eutracheophytes
Lycophytes
Euphyllophytes
Moniliformopses
Lignophytes
Progymnosperms*
Spermatophytes
(seed plants)
Pteridosperms*
(seed ferns)
and other extinct
seed plant groups
Acrogymnospermae
(living gymnosperms)
Angiospermae
(flowering plants)
Classification of Marchantiophyta
Haplomitriopsida
Haplomitriales
Treubiales
Marchantiopsida
Blasiidae
Blasiales
Marchantiidae
Naiaditales
Neohodgsoniales
Lunulariales
Sphaerocarpales
Marchantiales
Jungermanniopsida
Pelliidae
Pelliales
Pallaviciniales
Fossombroniales
Metzgeriidae
Pleuroziales
Metzgeriales
Jungermanniidae
Porellales
Ptilidiales
Jungermanniales
Diettertiineae
Perssoniellineae
Myliineae
Lophocoleineae
Cephaloziineae
Jungermanniineae
Extant life phyla/divisions by domain
Bacteria
Archaea
Eukaryote
"Protist"
Fungi
Plant
Animal
Incertae sedisParakaryon
Taxon identifiers
Marchantiophyta

Categories: