Misplaced Pages

Oleic acid: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 19:37, 3 March 2011 editCheMoBot (talk | contribs)Bots141,565 edits Updating {{chembox}} (no changed fields - added verified revid - updated 'UNII_Ref', 'ChemSpiderID_Ref', 'StdInChI_Ref', 'StdInChIKey_Ref', 'ChEMBL_Ref', 'KEGG_Ref') per Chem/Drugbox validation (← Previous edit Latest revision as of 01:34, 31 December 2024 edit undoRnanfe (talk | contribs)27 editsm add link to lipid numbers nomenclature, to standardize across other lipid pages 
(379 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Short description|Monounsaturated omega-9 fatty acid}}
{{chembox {{chembox
|Verifiedfields=changed
| verifiedrevid = 407321707
|Watchedfields=changed
| Name = Oleic acid
|verifiedrevid=416953907
| ImageFile = Oleic-acid-skeletal.svg
|Name=Oleic acid
| ImageSize = 250px
| ImageFile2 = Oleic-acid-3D-vdW.png |ImageFile=Oleic-acid-skeletal.svg
| ImageSize2 = 250px |ImageSize=250px
| ImageName = Oleic acid |ImageFile2=Oleic-acid-3D-vdW.png
|ImageSize2=250px
| IUPACName = (9''Z'')-Octadec-9-enoic acid
|ImageName=Oleic acid
| OtherNames = (9''Z'')-Octadecenoic acid<br />(''Z'')-Octadec-9-enoic acid<br />''cis''-9-Octadecenoic acid<br />''cis''-Δ<sup>9</sup>-Octadecenoic acid<br />Oleic acid<br />18:1 cis-9
|PIN=(9''Z'')-Octadec-9-enoic acid <!-- Nomenclature of Organic Chemistry – IUPAC Recommendations and Preferred Names 2013 (Blue Book) -->
| Section1 = {{Chembox Identifiers
|SystematicName=
| SMILES = CCCCCCCC\C=C/CCCCCCCC(O)=O
|OtherNames=Oleic acid<br />(9''Z'')-Octadecenoic acid<br />(''Z'')-Octadec-9-enoic acid<br />''cis''-9-Octadecenoic acid<br />''cis''-Δ<sup>9</sup>-Octadecenoic acid<br />18:1 cis-9 (])
| CASNo_Ref = {{cascite}}
|IUPACName=
|Section1={{Chembox Identifiers
| IUPHAR_ligand = 1054
| SMILES = CCCCCCCC\C=C/CCCCCCCC(O)=O
| CASNo_Ref = {{cascite|correct|CAS}}
| PubChem = 445639
| ChEMBL_Ref = {{ebicite|changed|EBI}}
| ChEMBL = 8659
| CASNo = 112-80-1 | CASNo = 112-80-1
| UNII_Ref = {{fdacite|correct|FDA}}
| RTECS =
| UNII = 2UMI9U37CP
| ChemSpiderID_Ref = {{chemspidercite|changed|chemspider}}
| ChemSpiderID = 393217
| DrugBank = DB04224
| InChI = 1/C18H34O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h9-10H,2-8,11-17H2,1H3,(H,19,20)/b10-9-
| InChIKey = ZQPPMHVWECSIRJ-KTKRTIGZBB
| StdInChI_Ref = {{stdinchicite|changed|chemspider}}
| StdInChI = 1S/C18H34O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h9-10H,2-8,11-17H2,1H3,(H,19,20)/b10-9-
| StdInChIKey_Ref = {{stdinchicite|changed|chemspider}}
| StdInChIKey = ZQPPMHVWECSIRJ-KTKRTIGZSA-N
| RTECS =
}} }}
| Section2 = {{Chembox Properties |Section2={{Chembox Properties
| C=18|H=34|O=2
| Formula = C<sub>18</sub>H<sub>34</sub>O<sub>2</sub>
| Appearance = colorless oily liquid with lard-like odor
| MolarMass = 282.4614 g/mol
| Density = 0.895 g/mL
| Appearance = Pale yellow or brownish yellow oily liquid with lard-like odor
| Solubility = Insoluble
| Density = 0.895 g/mL
| SolubleOther = Soluble
| Solubility = Insoluble
| Solvent = ]
| SolubleOther = Soluble
| MeltingPtC = 13 to 14
| Solvent = ]
| BoilingPtC = 360
| MeltingPt = 13-14 °C (286 K)
| BoilingPt_ref = <ref>{{Cite journal |last=Young |first=Jay A. |year=2002 |title=Chemical Laboratory Information Profile: Oleic Acid |journal=Journal of Chemical Education |volume=79 |issue=1 |pages=24 |bibcode=2002JChEd..79...24Y |doi=10.1021/ed079p24}}</ref>
| BoilingPt = 360 °C (633 K) (760mm Hg)<ref>, Chemical Laboratory Information Profile, ]</ref>
| pKa = | pKa =
| pKb = | pKb =
| Viscosity = | Viscosity =
| MagSus = -208.5·10<sup>−6</sup> cm<sup>3</sup>/mol
}} }}
| Section3 = {{Chembox Structure |Section3={{Chembox Structure
| MolShape = | MolShape =
| Coordination = | Coordination =
| CrystalStruct = | CrystalStruct =
| Dipole = | Dipole =
}} }}
| Section7 = {{Chembox Hazards |Section7={{Chembox Hazards
| ExternalMSDS = | ExternalSDS =
| MainHazards = | MainHazards =
| FlashPt = | FlashPt =
| RPhrases = | NFPA-H = 0
| SPhrases = | NFPA-F = 1
| NFPA-R = 0
}} }}
| Section8 = {{Chembox Related |Section8={{Chembox Related
| OtherAnions = | OtherAnions =
| OtherCations = | OtherCations =
| OtherCompounds = ]
| OtherCpds =
}} }}
}} }}


'''Oleic acid''' is a ] that occurs naturally in various ] and ]. It is an odorless, colorless oil, although commercial samples may be yellowish due to the presence of impurities. In chemical terms, oleic acid is classified as a ] ], abbreviated with a ] of 18:1 ]-9, and a main product of ].<ref>{{Cite journal |last1=Nakamura |first1=Manabu T. |last2=Nara |first2=Takayuki Y. |date=2004 |title=Structure, function, and dietary regulation of Δ6, Δ5, and Δ9 desaturases |url=https://www.annualreviews.org/doi/10.1146/annurev.nutr.24.121803.063211 |journal=] |volume=24 |pages=345–376 |doi=10.1146/annurev.nutr.24.121803.063211 |pmid=15189125 |url-access=subscription}}</ref> It has the formula {{chem2|CH3\s(CH2)7\sCH\dCH\s(CH2)7\sCOOH}}.<ref name=Ullmann />{{Page needed|date=February 2023}} The name derives from the Latin word '']'', which means oil.<ref>{{Cite journal |last=Bailey and Bailey |first=Dorothy and Kenneth |year=1929 |title=An Etymological Dictionary of Chemistry and Mineralogy |journal=Nature |volume=124 |issue=3134 |pages=789–790 |bibcode=1929Natur.124..789V |doi=10.1038/124789b0|s2cid=4024133 }}</ref> It is the most common fatty acid in nature.<ref>{{Cite web |url=https://pubchem.ncbi.nlm.nih.gov/compound/965#section=Top |title=9-Octadecenoic acid |date=14 July 2018 |publisher=PubChem, National Center for Biotechnology Information, US National Library of Medicine |access-date=19 July 2018}}</ref> The salts and esters of oleic acid are called '''oleates'''. It is a common component of oils, and thus occurs in many types of food, as well as in soap.
'''Oleic acid''' is a ] ] ] found in various animal and vegetable fats. It has the formula CH<sub>3</sub>(CH<sub>2</sub>)<sub>7</sub>CH=CH(CH<sub>2</sub>)<sub>7</sub>COOH.<ref name=Ullmann/> It is an odorless, colourless oil. The ] of oleic acid is called ] (hence the name ] for a reaction that switches ''cis'' isomers to ''trans'' isomers). The term "oleic" means related to, or derived from, ] or ].


==Occurrence== == Occurrence ==
Fatty acids (or their salts) often do not occur as such in biological systems. Instead fatty acids such as oleic acid occur as their ]s, commonly ]s, which are the greasy materials in many natural oils. Oleic acid is the most common monounsaturated fatty acid in nature. It is found in fats (triglycerides), the phospholipids that make membranes, ]s, and ]s.<ref name=Ntambi />
Triglyceride esters of oleic acid compose the majority of ], although there may be less than 2.0% as actual free acid in the virgin olive oil, with higher concentrations making the olive oil inedible. It also makes up 59-75% of ],<ref>{{cite journal
| author = Villarreal, J.E., L. Lombardini, and L. Cisneros-Zevallos| title = Phytochemical constituents and antioxidant capacity of different pecan cultivars| journal = Food Chemistry
| volume = 102| issue = 4| pages = 1241–1249| year = 2007| doi = 10.1016/j.foodchem.2006.07.024| url = http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6R-4M1DB79-2&_user=952835&_coverDate=12%2F31%2F2007&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1412335994&_rerunOrigin=google&_acct=C000049198&_version=1&_urlVersion=0&_userid=952835&md5=589de1e394ce2412a09767a3b5f542be}}</ref> 36-67% of ],<ref>http://jhered.oxfordjournals.org/cgi/pdf_extract/80/3/252</ref> 15-20% of ], ], and ],<ref name=Ullmann>{{cite encyclopedia|author=Alfred Thomas |title=Fats and Fatty Oils|encyclopedia=Ullmann's Encyclopedia of Industrial Chemistry|publisher=Wiley-VCH|place=Weinheim|year=2002|doi=10.1002/14356007.a10_173}}</ref> and 14% of ].<ref name="pmid17093176">{{cite journal
| author = Untoro J, Schultink W, West CE, Gross R, Hautvast JG
| title = Efficacy of oral iodized peanut oil is greater than that of iodized poppy seed oil among Indonesian schoolchildren
| journal = The American Journal of Clinical Nutrition
| volume = 84
| issue = 5
| pages = 1208–14
| year = 2006
| month = November
| pmid = 17093176
| doi =
| url =
| issn =
}}</ref>
It is also abundantly present in many animal fats, constituting 37 to 56% of chicken and turkey fat,<ref>http://www.springerlink.com/content/0837289583682243/</ref> and 44 to 47% of ], etc.


]s of oleic acid comprise the majority of ] (about 70%).<ref name=oleic>{{Cite web |url=http://www.ams.usda.gov/grades-standards/olive-oil-and-olive-pomace-oil-grades-and-standards |title=Olive Oil and Olive-Pomace Oil Grades and Standards {{!}} Agricultural Marketing Service |website=www.ams.usda.gov |access-date=2016-01-20}}</ref> It also makes up 59–75% of ],<ref>{{Cite journal |last1=Villarreal-Lozoya |first1=Jose E. |last2=Lombardini |first2=Leonardo |last3=Cisneros-Zevallos |first3=Luis |year=2007 |title=Phytochemical constituents and antioxidant capacity of different pecan Carya illinoinensis (Wangenh.) K. Koch cultivars |journal=Food Chemistry |volume=102 |issue=4 |pages=1241–1249 |doi=10.1016/j.foodchem.2006.07.024}}{{closed access}}</ref> 61% of ] oil,<ref name="ccc">{{Cite web |url=http://www.canola-council.org/canola_resources/product45.aspx |title=Comparison of Dietary Fats Chart |publisher=Canola Council of Canada |url-status=dead |archive-url=https://web.archive.org/web/20080606083831/http://www.canola-council.org/canola_resources/product45.aspx |archive-date=2008-06-06 |access-date=2008-09-03}}</ref> 36–67% of ],<ref name="hopeanut">{{Cite journal |last1=Moore |first1=K. M. |last2=Knauft |first2=D. A. |year=1989 |title=The Inheritance of High Oleic Acid in Peanut |journal=The Journal of Heredity |volume=80 |issue=3 |pages=252–3 |doi=10.1093/oxfordjournals.jhered.a110845}}{{closed access}}</ref> 60% of ], 20–80% of ],<ref name="USDA">{{Cite web |url=https://fdc.nal.usda.gov |title=Nutrient database, Release 25 |publisher=United States Department of Agriculture}}(NDB ID: 04678, 04584)</ref> 15–20% of ], ], 40% of ],<ref name="Ullmann">{{Cite book |last=Thomas |first=Alfred |url=https://onlinelibrary.wiley.com/doi/10.1002/14356007.a10_173 |title=Ullmann's Encyclopedia of Industrial Chemistry |year=2000 |isbn=978-3-527-30673-2 |chapter=Fats and Fatty Oils |doi=10.1002/14356007.a10_173 |url-access=subscription}}</ref> and 14% of ]. High oleic variants of plant sources such as sunflower (~80%) and canola oil (70%) also have been developed.<ref name="USDA" /> ] contains 52.39% oleic acid.<ref name="Purwanto">{{Cite journal |last1=Purwanto |first1=Y. |last2=Munawaroh |first2=Esti |date=2010 |title=Etnobotani Jenis-Jenis Pandanaceae Sebagai Bahan Pangan di Indonesia |trans-title=Ethnobotany Types of Pandanaceae as Foodstuffs in Indonesia |url=https://rin.lipi.go.id/file.xhtml;jsessionid=ccb24f0a337710227d6d5cecae10?fileId=1258&version=RELEASED&version=.1 |url-status=dead |format=PDF |journal=Berkala Penelitian Hayati |language=id |volume=5A |pages=97–108 |doi=10.5072/FK2/Z6P0OQ |issn=2337-389X |oclc=981032990 |archive-url=https://web.archive.org/web/20181029232426/https://rin.lipi.go.id/file.xhtml;jsessionid=ccb24f0a337710227d6d5cecae10?fileId=1258&version=RELEASED&version=.1 |archive-date=29 October 2018 |access-date=25 October 2018}}</ref> It is abundantly present in many animal fats, constituting 37 to 56% of chicken and turkey fat,<ref>{{Cite journal |last1=Nutter |first1=Mary K. |last2=Lockhart |first2=Ernest E. |last3=Harris |first3=Robert S. |year=1943 |title=The chemical composition of depot fats in chickens and turkeys |journal=Oil & Soap |volume=20 |issue=11 |pages=231–4 |doi=10.1007/BF02630880|s2cid=84893770 }}{{closed access}}</ref> and 44 to 47% of ].
Oleic acid is the most abundant fatty acid in human ].<ref>{{cite journal
|journal=American Journal of Clinical Nutrition
|title=Fatty acid composition of human adipose tissue from two anatomical sites in a biracial community
|author=MG Kokatnur, MC Oalmann, WD Johnson, GT Malcom and JP Strong
|volume=32
|pages=2198–2205
|url=http://www.ajcn.org/cgi/content/abstract/32/11/2198
|pmid=495536
|issue=11
|pages=2198–205
|date= November 1, 1979 }}</ref>


Free oleic acid occurs in oils and fats as a product of the breakdown of triglycerides. Olive oil exceeding 2% ] is graded unfit for human consumption. See {{section link|Fatty acid|Free fatty acids}}.<ref name=oleic/>
===As an insect pheromone===
Oleic acid is emitted by the decaying corpses of a number of insects, including ]s and '']'' ]s, and triggers the instincts of living workers to remove the dead bodies from the ]. If a live bee<ref name=Anies2005>{{cite journal
| author = Anies Hannawati Purnamadjaja, R. Andrew Russell
| year = 2005
| title = Pheromone communication in a robot swarm: necrophoric bee behaviour and its replication
| journal = Robotica
| volume = 23
| issue = 6
| pages = 731–742
| doi = 10.1017/S0263574704001225
}}</ref> or ant<ref name="BroodProt">Ayasse, M, Paxton, R (2002) Brood protection in social insects. In: Hilker, M, Meiners, T (eds.). Chemoecology of Insect Eggs and Egg Deposition. Blackwell, Berlin, 117-148.</ref><ref name="imdead">Krulwich, Robert (2009). "Hey I'm Dead! The Story Of The Very Lively Ant" http://www.npr.org/templates/story/story.php?storyId=102601823</ref> is daubed with oleic acid, it is dragged off as if it were dead. The oleic acid smell indicates to living insects how to avoid others that have succumbed to disease or places where predators lurk.<ref>
{{Cite web
| last = Walker
| first = Matt
| date = 2009-09-09
| title = Ancient 'smell of death' revealed
| work = BBC - Earth News
| accessdate = 2009-09-13
| url = http://news.bbc.co.uk/earth/hi/earth_news/newsid_8232000/8232607.stm
}}</ref>


Oleic acid is the most abundant fatty acid in human ],<ref>{{Cite journal |last1=Kokatnur |first1=MG |last2=Oalmann |first2=MC |last3=Johnson |first3=WD |last4=Malcom |first4=GT |last5=Strong |first5=JP |year=1979 |title=Fatty acid composition of human adipose tissue from two anatomical sites in a biracial community |journal=The American Journal of Clinical Nutrition |volume=32 |issue=11 |pages=2198–205 |doi=10.1093/ajcn/32.11.2198 |pmid=495536}}{{open access}}</ref> and second in abundance in human tissues overall, following ].
==Production and chemical behavior==


== Production and chemical behavior ==
Oleic acid exhibits many of the reactions of carboxylic acids and ]s. It is soluble in aqueous base to give ] called oleates. Iodine adds across the double bond. Hydrogenation of the double bond yields the ] derivative called ]. ] at the ] occurs slowly in air, and is known as ] in foodstuffs or ] in coatings. ] of the ] group yields ]. ] of oleic acid is an important route to ]. The coproduct is nonanoic acid:<ref>Boy Cornils, Peter Lappe "Dicarboxylic Acids, Aliphatic" in Ullmann's Encyclopedia of Industrial Chemistry 2006, Wiley-VCH, Weinheim. {{DOI|10.1002/14356007.a08_523}}</ref>
The ] of oleic acid involves the action of the enzyme ] acting on ]. In effect, ] is ] to give the monounsaturated derivative, oleic acid.<ref name="Ntambi">{{Cite journal |author=Ntambi, James M. |author2=Miyazaki, Makoto |year=2003 |title=Recent insights into stearoyl-CoA desaturase-1 |journal=Current Opinion in Lipidology |volume=14 |issue=3 |pages=255–61 |doi=10.1097/00041433-200306000-00005 |pmid=12840656|s2cid=45954457 }}</ref>
:H<sub>17</sub>C<sub>8</sub>CH=CHC<sub>7</sub>H<sub>14</sub>CO<sub>2</sub>H + 4"O" → H<sub>17</sub>C<sub>8</sub>CO<sub>2</sub>H + HO<sub>2</sub>CC<sub>7</sub>H<sub>14</sub>CO<sub>2</sub>H

Oleic acid undergoes the typical reactions of carboxylic acids and ]s. It is soluble in ] to give ]s called oleates. Iodine adds across the double bond. Hydrogenation of the double bond yields the ] derivative ]. ] at the ] occurs slowly in air, and is known as ] in foodstuffs and as ] in coatings.

] of the ] group yields ]. ] of oleic acid is an important route to ]. The coproduct is nonanoic acid:<ref>{{Cite book |last1=Cornils |first1=Boy |title=Ullmann's Encyclopedia of Industrial Chemistry |last2=Lappe |first2=Peter |year=2000 |isbn=978-3-527-30673-2 |chapter=Dicarboxylic Acids, Aliphatic |doi=10.1002/14356007.a08_523}}</ref>
:{{chem2|H17C8CH\dCHC7H14CO2H + 4"O" → HO2CC7H14CO2H + H17C8CO2H}}
Esters of azelaic acid find applications in lubrication and plasticizers. Esters of azelaic acid find applications in lubrication and plasticizers.


Neutralizing oleic acid with ]s gives the ] ].<ref>{{cite journal |doi=10.1021/acs.jpcb.7b01384 |title=Phase Behavior and Physical Properties of New Biobased Ionic Liquid Crystals |date=2017 |last1=Toledo Hijo |first1=Ariel A. C. |last2=Maximo |first2=Guilherme J. |last3=Costa |first3=Mariana C. |last4=Cunha |first4=Rosiane L. |last5=Pereira |first5=Jorge F. B. |last6=Kurnia |first6=Kiki A. |last7=Batista |first7=Eduardo A. C. |last8=Meirelles |first8=Antonio J. A. |journal=The Journal of Physical Chemistry B |volume=121 |issue=14 |pages=3177–3189 |pmid=28332847 }}</ref>
==Uses==
As an ] in pharmaceuticals, oleic acid is used as an emulsifying or solubilizing agent in aerosol products.<ref>
{{Cite book
| isbn = 084933585X, 9780849335853
| pages = 247–248
| last = Smolinske
| first = Susan C.
| title = Handbook of Food, Drug, and Cosmetic Excipients
| year = 1992
}}</ref>


== Related compounds ==
==Health effects==
The ] of oleic acid is called ] or ''trans''-9-octadecenoic acid. These isomers have distinct physical properties and biochemical properties. Elaidic acid, the most abundant trans fatty acid in diet, appears to have an adverse effect on health.<ref>{{cite journal | last1 = Tardy | first1 = Anne-Laure | last2 = Morio | first2 = Beatrice | last3 = Chardigny | first3 = Jean-Michel | last4 = Malpuech-Brugere | first4 = Corinne | year = 2011 | title = Ruminant and industrial sources of trans-fat and cardiovascular and diabetic diseases | journal = Nutrition Research Reviews | volume = 24 | issue = 1| pages = 111–117 | doi = 10.1017/S0954422411000011 | pmid = 21320382 | doi-access = free }}</ref> A reaction that converts oleic acid to elaidic acid is called ].
Oleic acid may hinder the progression of ] (ALD), a fatal disease that affects the brain and adrenal glands.<ref name=NS_Zakeruga>{{cite web
| coauthors = Rizzo WB, Watkins PA, Phillips MW, Cranin D, Campbell B, Avigan J
| title = Adrenoleukodystrophy: oleic acid lowers fibroblast saturated C22-26 fatty acids
| publisher = National Center for Biotechnology Information
| date = 1986-03-03
| url = http://www.ncbi.nlm.nih.gov/pubmed/3951702
| accessdate = 2008-10-07 }}
</ref> Oleic and ]ty acid levels in the membranes of red blood cells have been associated with increased risk of ].<ref>{{cite journal |author=Valeria Pala, Vittorio Krogh, Paola Muti, Véronique Chajès, Elio Riboli, Andrea Micheli, Mitra Saadatian, Sabina Sieri, Franco Berrino |title=Erythrocyte Membrane Fatty Acids and Subsequent Breast Cancer: a Prospective Italian Study |journal=JNCL |volume=93 |date= July 18, 2001 |url=http://jnci.oxfordjournals.org/cgi/content/full/93/14/1088 |accessdate=2008-11-30 |pmid=11459870 |issue=14 |pages=1088–95 |doi=10.1093/jnci/93.14.1088}}</ref> Oleic acid may be responsible for the ] (] reducing) effects of olive oil.<ref>{{cite journal |doi=10.1073/pnas.0807500105 |year=2008 |month=September |author=Terés, S; Barceló-Coblijn, G; Benet, M; Alvarez, R; Bressani, R; Halver, Je; Escribá, Pv |title=Oleic acid content is responsible for the reduction in blood pressure induced by olive oil |volume= 105|issue= 37|pages= 13811–6|pmid=18772370 |journal=Proceedings of the National Academy of Sciences of the United States of America |pmc=2544536}}</ref>


Another naturally occurring isomer of oleic acid is ].
==References==
{{reflist}}


In chemical analysis, fatty acids are separated by gas chromatography of their methyl ester derivatives. Alternatively, separation of unsaturated isomers is possible by ].<ref>{{Cite journal |last1=Breuer |first1=B. |last2=Fock |first2=H. P. |year=1987 |title=Separation of fatty acids or methyl esters including positional and geometric isomers by alumina argentation thin-layer chromatography |journal=J. Chromatogr. Sci. |volume=25 |issue=7 |pages=302–306 |doi=10.1093/chromsci/25.7.302 |pmid=3611285}}</ref>
==External links==

*
In ], '''methyl oleate''', the ''methyl ester'' of the acid, converts to ] and methyl 9-]:<ref>{{ cite journal | last1 = Marinescu | first1 = Smaranda C. | last2 = Schrock | first2 = Richard R. | last3 = Müller | first3 = Peter | last4 = Hoveyda | first4 = Amir H. | title = Ethenolysis Reactions Catalyzed by Imido Alkylidene Monoaryloxide Monopyrrolide (MAP) Complexes of Molybdenum | journal = J. Am. Chem. Soc. | year = 2009 | volume = 131 | issue = 31 | pages = 10840–10841 | doi = 10.1021/ja904786y | pmid=19618951}}</ref>
:{{chem2|CH3(CH2)7CH\dCH(CH2)7CO2Me + '''CH2\dCH2''' -> CH3(CH2)7CH\d'''CH2''' + MeO2C(CH2)7CH\d'''CH2'''}}

==Dietary sources==
{{Vegetable oils, composition}}

== Uses ==
]
Oleic acid is used as a component in many foods, in the form of its triglycerides. It is a component of the normal human diet, being a part of animal fats and vegetable oils.

Oleic acid as its sodium salt is a major component of soap as an ]. It is also used as an ].<ref name="Carrasco">{{Cite book |last=Carrasco |first=F. |title=Diccionario de Ingredientes |year=2009 |isbn=978-84-613-4979-1 |edition=4th |page=428 |chapter=Ingredientes Cosméticos|publisher=Francisco Carrasco Otero }}</ref> Small amounts of oleic acid are used as an ] in pharmaceuticals, and it is used as an emulsifying or solubilizing agent in aerosol products.<ref>{{Cite book |last=Smolinske |first=Susan C. |title=Handbook of Food, Drug, and Cosmetic Excipients |year=1992 |isbn=978-0-8493-3585-3 |pages=247–8|publisher=CRC Press }}</ref>

] found that oleic acid is used by ants; when a dead ant's corpse begins to emit oleic acid, other ants in the ] transport it away to the ant refuse pile.<ref>{{Cite journal |last1=Wilson |first1=E. O. |last2=Durlach |first2=N. I. |last3=Roth |first3=L. M. |date=December 1958 |title=Chemical Releasers of Necrophoric Behavior in Ants |journal=Psyche: A Journal of Entomology |language=en |volume=65 |issue=4 |pages=108–114 |doi=10.1155/1958/69391 |issn=0033-2615 |doi-access=free}}</ref><ref>{{Cite web |title='Hey I'm Dead!' The Story Of The Very Lively Ant |website=] |url=https://www.npr.org/sections/krulwich/2009/04/01/102601823/hey-im-dead-the-story-of-the-very-lively-ant}}</ref><ref>{{Cite web |title=How ants determine the death of another ant {{!}} Britannica |url=https://www.britannica.com/video/193428/Edward-O-Wilson-ants-research-ant |access-date=2023-07-03 |website=www.britannica.com |language=en}}</ref><ref>{{Cite journal |last1=Diez |first1=Lise |last2=Moquet |first2=Laura |last3=Detrain |first3=Claire |date=2013-12-01 |title=Post-mortem Changes in Chemical Profile and their Influence on Corpse Removal in Ants |url=https://doi.org/10.1007/s10886-013-0365-1 |journal=Journal of Chemical Ecology |language=en |volume=39 |issue=11 |pages=1424–1432 |doi=10.1007/s10886-013-0365-1 |pmid=24242873 |bibcode=2013JCEco..39.1424D |s2cid=254654298 |issn=1573-1561}}</ref>

=== Niche uses ===
Oleic acid is used to induce lung damage in certain types of animals for the purpose of testing new drugs and other means to treat lung diseases. Specifically in sheep, intravenous administration of oleic acid causes acute lung injury with corresponding ].<ref name="sheep">{{Cite journal |last1=Julien |first1=M |last2=Hoeffel |first2=JM |last3=Flick |first3=MR |year=1986 |title=Oleic acid lung injury in sheep |journal=Journal of Applied Physiology |volume=60 |issue=2 |pages=433–40 |doi=10.1152/jappl.1986.60.2.433 |pmid=3949648}}</ref>

Oleic acid is used as a soldering flux in stained glass work for joining ].<ref>{{Cite book |last=Duncan |first=Alastair |title=The Technique of Leaded Glass |year=2003 |isbn=978-0-486-42607-5 |pages=77|publisher=Dover Publications }}</ref>

== Health effects ==

Oleic acid is the most common ] in the human diet (~90% of all monounsaturated fats).<ref>{{cite journal|vauthors=Schwingshackl L, Hoffmann G|year=2014|title=Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies|journal=Lipids in Health and Disease|volume=13|issue=|pages=154|pmid=25274026|doi=10.1186/1476-511X-13-154|pmc=4198773 |doi-access=free }}</ref> Monounsaturated fat consumption has been associated with decreased ] (LDL) cholesterol, and possibly with increased ] (HDL) cholesterol.<ref>{{Cite web |url=http://www.mercksource.com/pp/us/cns/cns_krames_template.jspzQzpgzEzzSzppdocszSzuszSzcnszSzcontentzSzkrameszSz1292_01zPzhtm |title=You Can Control Your Cholesterol: A Guide to Low-Cholesterol Living |publisher=] Inc. |url-status=dead |archive-url=https://web.archive.org/web/20090303124418/http://www.mercksource.com/pp/us/cns/cns_krames_template.jspzQzpgzEzzSzppdocszSzuszSzcnszSzcontentzSzkrameszSz1292_12zPzhtm |archive-date=2009-03-03 |access-date=2009-03-14}}</ref> Oleic acid may be responsible for the ] (] reducing) effects of ] that is considered a health benefit.<ref>{{Cite journal |last1=Teres |first1=S. |last2=Barcelo-Coblijn |first2=G. |last3=Benet |first3=M. |last4=Alvarez |first4=R. |last5=Bressani |first5=R. |last6=Halver |first6=J. E. |last7=Escriba |first7=P. V. |year=2008 |title=Oleic acid content is responsible for the reduction in blood pressure induced by olive oil |journal=Proceedings of the National Academy of Sciences |volume=105 |issue=37 |pages=13811–6 |bibcode=2008PNAS..10513811T |doi=10.1073/pnas.0807500105 |jstor=25464133 |pmc=2544536 |pmid=18772370|doi-access=free }}</ref> A 2017 review found that diets enriched in oleic acid are beneficial for regulating body weight.<ref>{{cite journal|last1=Tutunchi|first1=Helda|last2=Ostadrahimi|first2=Alireza|last3=Saghafi-Asl|first3=Maryam|year=2020|title=The Effects of Diets Enriched in Monounsaturated Oleic Acid on the Management and Prevention of Obesity: a Systematic Review of Human Intervention Studies|journal=Advances in Nutrition|url=https://academic.oup.com/advances/article/11/4/864/5782385|volume=11|issue=4|pages=864–877|pmid=32135008|doi=10.1093/advances/nmaa013|pmc=7360458}}</ref>

The United States ] has approved a health claim on reduced risk of coronary heart disease for high oleic (> 70% oleic acid) oils.<ref>{{cite web |last1=Nutrition |first1=Center for Food Safety and Applied |title=FDA Completes Review of Qualified Health Claim Petition for Oleic Acid and the Risk of Coronary Heart Disease |url=https://www.fda.gov/food/cfsan-constituent-updates/fda-completes-review-qualified-health-claim-petition-oleic-acid-and-risk-coronary-heart-disease |website=FDA |language=en |date=20 December 2019}}</ref> Some oil plants have cultivars bred to increase the amount of oleic acid in the oils. In addition to providing a health claim, the heat stability and shelf life may also be improved, but only if the increase in monounsaturated oleic acid levels correspond to a substantial reduction in polyunsaturated fatty acid (especially ]) content.<ref>{{cite journal |last1=Aladedunye |first1=Felix |last2=Przybylski |first2=Roman |title=Frying stability of high oleic sunflower oils as affected by composition of tocopherol isomers and linoleic acid content |journal=Food Chemistry |date=December 2013 |volume=141 |issue=3 |pages=2373–2378 |doi=10.1016/j.foodchem.2013.05.061|pmid=23870970 }}</ref><ref>{{cite web |title=Properties of High Oleic Seed Oils |url=https://extension.okstate.edu/fact-sheets/properties-of-high-oleic-seed-oils.html |website=Oklahoma State University Extension |language=en |date=19 November 2020}}</ref> When the saturated fat or trans fat in a ] is replaced with a stable high oleic oil, consumers may be able to avoid certain ] and ].<ref>{{cite web |title=High-oleic canola oils and their food applications |url=https://www.aocs.org/stay-informed/inform-magazine/featured-articles/high-oleic-canola-oils-and-their-food-applications-september-2012 |website=The American Oil Chemists' Society}}</ref><ref name=Canada>{{cite book|isbn=0-662-43689-X|author=Trans Fat Task Force|title=TRANSforming the Food Supply|date=June 2006|publisher=Trans Fat Task Force |url=http://www.hc-sc.gc.ca/fn-an/nutrition/gras-trans-fats/tf-ge/tf-gt_rep-rap_e.html|access-date=7 January 2007}}</ref>

== See also ==
* ] – the corresponding amine
* ] – the corresponding amide

== References ==
{{Reflist|30em}}

== External links ==
* (The AOCS Lipid Library)
* (NIST Chemistry Webbook)


{{Fatty acids}} {{Fatty acids}}
{{Authority control}}


]
] ]
] ]
] ]
] ]
] ]
]

]

{{biochem-stub}}

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

Latest revision as of 01:34, 31 December 2024

Monounsaturated omega-9 fatty acid
Oleic acid
Oleic acid
Names
Preferred IUPAC name (9Z)-Octadec-9-enoic acid
Other names Oleic acid
(9Z)-Octadecenoic acid
(Z)-Octadec-9-enoic acid
cis-9-Octadecenoic acid
cis-Δ-Octadecenoic acid
18:1 cis-9 (Lipid numbers)
Identifiers
CAS Number
3D model (JSmol)
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.003.643 Edit this at Wikidata
IUPHAR/BPS
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C18H34O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h9-10H,2-8,11-17H2,1H3,(H,19,20)/b10-9-Key: ZQPPMHVWECSIRJ-KTKRTIGZSA-N
  • InChI=1/C18H34O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h9-10H,2-8,11-17H2,1H3,(H,19,20)/b10-9-Key: ZQPPMHVWECSIRJ-KTKRTIGZBB
SMILES
  • CCCCCCCC\C=C/CCCCCCCC(O)=O
Properties
Chemical formula C18H34O2
Molar mass 282.468 g·mol
Appearance colorless oily liquid with lard-like odor
Density 0.895 g/mL
Melting point 13 to 14 °C (55 to 57 °F; 286 to 287 K)
Boiling point 360 °C (680 °F; 633 K)
Solubility in water Insoluble
Solubility in Ethanol Soluble
Magnetic susceptibility (χ) -208.5·10 cm/mol
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 0: Exposure under fire conditions would offer no hazard beyond that of ordinary combustible material. E.g. sodium chlorideFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
0 1 0
Safety data sheet (SDS) JT Baker
Related compounds
Related compounds Elaidic acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Oleic acid is a fatty acid that occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish due to the presence of impurities. In chemical terms, oleic acid is classified as a monounsaturated omega-9 fatty acid, abbreviated with a lipid number of 18:1 cis-9, and a main product of Δ9-desaturase. It has the formula CH3−(CH2)7−CH=CH−(CH2)7−COOH. The name derives from the Latin word oleum, which means oil. It is the most common fatty acid in nature. The salts and esters of oleic acid are called oleates. It is a common component of oils, and thus occurs in many types of food, as well as in soap.

Occurrence

Fatty acids (or their salts) often do not occur as such in biological systems. Instead fatty acids such as oleic acid occur as their esters, commonly triglycerides, which are the greasy materials in many natural oils. Oleic acid is the most common monounsaturated fatty acid in nature. It is found in fats (triglycerides), the phospholipids that make membranes, cholesteryl esters, and wax esters.

Triglycerides of oleic acid comprise the majority of olive oil (about 70%). It also makes up 59–75% of pecan oil, 61% of canola oil, 36–67% of peanut oil, 60% of macadamia oil, 20–80% of sunflower oil, 15–20% of grape seed oil, sea buckthorn oil, 40% of sesame oil, and 14% of poppyseed oil. High oleic variants of plant sources such as sunflower (~80%) and canola oil (70%) also have been developed. Karuka contains 52.39% oleic acid. It is abundantly present in many animal fats, constituting 37 to 56% of chicken and turkey fat, and 44 to 47% of lard.

Free oleic acid occurs in oils and fats as a product of the breakdown of triglycerides. Olive oil exceeding 2% free oleic acid is graded unfit for human consumption. See Fatty acid § Free fatty acids.

Oleic acid is the most abundant fatty acid in human adipose tissue, and second in abundance in human tissues overall, following palmitic acid.

Production and chemical behavior

The biosynthesis of oleic acid involves the action of the enzyme stearoyl-CoA 9-desaturase acting on stearoyl-CoA. In effect, stearic acid is dehydrogenated to give the monounsaturated derivative, oleic acid.

Oleic acid undergoes the typical reactions of carboxylic acids and alkenes. It is soluble in aqueous base to give soaps called oleates. Iodine adds across the double bond. Hydrogenation of the double bond yields the saturated derivative stearic acid. Oxidation at the double bond occurs slowly in air, and is known as rancidification in foodstuffs and as drying in coatings.

Reduction of the carboxylic acid group yields oleyl alcohol. Ozonolysis of oleic acid is an important route to azelaic acid. The coproduct is nonanoic acid:

H17C8CH=CHC7H14CO2H + 4"O" → HO2CC7H14CO2H + H17C8CO2H

Esters of azelaic acid find applications in lubrication and plasticizers.

Neutralizing oleic acid with ethanolamines gives the protic ionic liquid monoethanolamine oleate.

Related compounds

The trans isomer of oleic acid is called elaidic acid or trans-9-octadecenoic acid. These isomers have distinct physical properties and biochemical properties. Elaidic acid, the most abundant trans fatty acid in diet, appears to have an adverse effect on health. A reaction that converts oleic acid to elaidic acid is called elaidinization.

Another naturally occurring isomer of oleic acid is petroselinic acid.

In chemical analysis, fatty acids are separated by gas chromatography of their methyl ester derivatives. Alternatively, separation of unsaturated isomers is possible by argentation thin-layer chromatography.

In ethenolysis, methyl oleate, the methyl ester of the acid, converts to 1-decene and methyl 9-decenoate:

CH3(CH2)7CH=CH(CH2)7CO2Me + CH2=CH2 → CH3(CH2)7CH=CH2 + MeO2C(CH2)7CH=CH2

Dietary sources

Properties of vegetable oils
The nutritional values are expressed as percent (%) by mass of total fat.
Type Processing
treatment
Saturated
fatty acids
Monounsaturated
fatty acids
Polyunsaturated
fatty acids
Smoke point
Total Oleic
acid
(ω−9)
Total α-Linolenic
acid
(ω−3)
Linoleic
acid
(ω−6)
ω−6:3
ratio
Avocado 11.6 70.6 52–66
13.5 1 12.5 12.5:1 250 °C (482 °F)
Brazil nut 24.8 32.7 31.3 42.0 0.1 41.9 419:1 208 °C (406 °F)
Canola 7.4 63.3 61.8 28.1 9.1 18.6 2:1 204 °C (400 °F)
Coconut 82.5 6.3 6 1.7 0.019 1.68 88:1 175 °C (347 °F)
Corn 12.9 27.6 27.3 54.7 1 58 58:1 232 °C (450 °F)
Cottonseed 25.9 17.8 19 51.9 1 54 54:1 216 °C (420 °F)
Cottonseed hydrogenated 93.6 1.5 0.6 0.2 0.3 1.5:1
Flaxseed/linseed 9.0 18.4 18 67.8 53 13 0.2:1 107 °C (225 °F)
Grape seed   10.4 14.8 14.3   74.9 0.15 74.7 very high 216 °C (421 °F)
Hemp seed 7.0 9.0 9.0 82.0 22.0 54.0 2.5:1 166 °C (330 °F)
High-oleic safflower oil 7.5 75.2 75.2 12.8 0 12.8 very high 212 °C (414 °F)
Olive (extra virgin) 13.8 73.0 71.3 10.5 0.7 9.8 14:1 193 °C (380 °F)
Palm 49.3 37.0 40 9.3 0.2 9.1 45.5:1 235 °C (455 °F)
Palm hydrogenated 88.2 5.7 0
Peanut 16.2 57.1 55.4 19.9 0.318 19.6 61.6:1 232 °C (450 °F)
Rice bran oil 25 38.4 38.4 36.6 2.2 34.4 15.6:1 232 °C (450 °F)
Sesame 14.2 39.7 39.3 41.7 0.3 41.3 138:1
Soybean 15.6 22.8 22.6 57.7 7 51 7.3:1 238 °C (460 °F)
Soybean partially hydrogenated 14.9 43.0 42.5 37.6 2.6 34.9 13.4:1
Sunflower 8.99 63.4 62.9 20.7 0.16 20.5 128:1 227 °C (440 °F)
Walnut oil unrefined 9.1 22.8 22.2 63.3 10.4 52.9 5:1 160 °C (320 °F)

Uses

Safflower and olive oil have one of the highest levels of oleic acid among dietary fats

Oleic acid is used as a component in many foods, in the form of its triglycerides. It is a component of the normal human diet, being a part of animal fats and vegetable oils.

Oleic acid as its sodium salt is a major component of soap as an emulsifying agent. It is also used as an emollient. Small amounts of oleic acid are used as an excipient in pharmaceuticals, and it is used as an emulsifying or solubilizing agent in aerosol products.

E.O. Wilson found that oleic acid is used by ants; when a dead ant's corpse begins to emit oleic acid, other ants in the colony transport it away to the ant refuse pile.

Niche uses

Oleic acid is used to induce lung damage in certain types of animals for the purpose of testing new drugs and other means to treat lung diseases. Specifically in sheep, intravenous administration of oleic acid causes acute lung injury with corresponding pulmonary edema.

Oleic acid is used as a soldering flux in stained glass work for joining lead came.

Health effects

Oleic acid is the most common monounsaturated fat in the human diet (~90% of all monounsaturated fats). Monounsaturated fat consumption has been associated with decreased low-density lipoprotein (LDL) cholesterol, and possibly with increased high-density lipoprotein (HDL) cholesterol. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil that is considered a health benefit. A 2017 review found that diets enriched in oleic acid are beneficial for regulating body weight.

The United States FDA has approved a health claim on reduced risk of coronary heart disease for high oleic (> 70% oleic acid) oils. Some oil plants have cultivars bred to increase the amount of oleic acid in the oils. In addition to providing a health claim, the heat stability and shelf life may also be improved, but only if the increase in monounsaturated oleic acid levels correspond to a substantial reduction in polyunsaturated fatty acid (especially α-linolenic acid) content. When the saturated fat or trans fat in a fried food is replaced with a stable high oleic oil, consumers may be able to avoid certain health risks associated with consuming saturated fat and trans fat.

See also

References

  1. Young, Jay A. (2002). "Chemical Laboratory Information Profile: Oleic Acid". Journal of Chemical Education. 79 (1): 24. Bibcode:2002JChEd..79...24Y. doi:10.1021/ed079p24.
  2. Nakamura, Manabu T.; Nara, Takayuki Y. (2004). "Structure, function, and dietary regulation of Δ6, Δ5, and Δ9 desaturases". Annual Review of Nutrition. 24: 345–376. doi:10.1146/annurev.nutr.24.121803.063211. PMID 15189125.
  3. ^ Thomas, Alfred (2000). "Fats and Fatty Oils". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a10_173. ISBN 978-3-527-30673-2.
  4. Bailey and Bailey, Dorothy and Kenneth (1929). "An Etymological Dictionary of Chemistry and Mineralogy". Nature. 124 (3134): 789–790. Bibcode:1929Natur.124..789V. doi:10.1038/124789b0. S2CID 4024133.
  5. "9-Octadecenoic acid". PubChem, National Center for Biotechnology Information, US National Library of Medicine. 14 July 2018. Retrieved 19 July 2018.
  6. ^ Ntambi, James M.; Miyazaki, Makoto (2003). "Recent insights into stearoyl-CoA desaturase-1". Current Opinion in Lipidology. 14 (3): 255–61. doi:10.1097/00041433-200306000-00005. PMID 12840656. S2CID 45954457.
  7. ^ "Olive Oil and Olive-Pomace Oil Grades and Standards | Agricultural Marketing Service". www.ams.usda.gov. Retrieved 2016-01-20.
  8. Villarreal-Lozoya, Jose E.; Lombardini, Leonardo; Cisneros-Zevallos, Luis (2007). "Phytochemical constituents and antioxidant capacity of different pecan Carya illinoinensis (Wangenh.) K. Koch cultivars". Food Chemistry. 102 (4): 1241–1249. doi:10.1016/j.foodchem.2006.07.024.Closed access icon
  9. "Comparison of Dietary Fats Chart". Canola Council of Canada. Archived from the original on 2008-06-06. Retrieved 2008-09-03.
  10. Moore, K. M.; Knauft, D. A. (1989). "The Inheritance of High Oleic Acid in Peanut". The Journal of Heredity. 80 (3): 252–3. doi:10.1093/oxfordjournals.jhered.a110845.Closed access icon
  11. ^ "Nutrient database, Release 25". United States Department of Agriculture.(NDB ID: 04678, 04584)
  12. Purwanto, Y.; Munawaroh, Esti (2010). "Etnobotani Jenis-Jenis Pandanaceae Sebagai Bahan Pangan di Indonesia" [Ethnobotany Types of Pandanaceae as Foodstuffs in Indonesia]. Berkala Penelitian Hayati (in Indonesian). 5A: 97–108. doi:10.5072/FK2/Z6P0OQ. ISSN 2337-389X. OCLC 981032990. Archived from the original (PDF) on 29 October 2018. Retrieved 25 October 2018.
  13. Nutter, Mary K.; Lockhart, Ernest E.; Harris, Robert S. (1943). "The chemical composition of depot fats in chickens and turkeys". Oil & Soap. 20 (11): 231–4. doi:10.1007/BF02630880. S2CID 84893770.Closed access icon
  14. Kokatnur, MG; Oalmann, MC; Johnson, WD; Malcom, GT; Strong, JP (1979). "Fatty acid composition of human adipose tissue from two anatomical sites in a biracial community". The American Journal of Clinical Nutrition. 32 (11): 2198–205. doi:10.1093/ajcn/32.11.2198. PMID 495536.Open access icon
  15. Cornils, Boy; Lappe, Peter (2000). "Dicarboxylic Acids, Aliphatic". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a08_523. ISBN 978-3-527-30673-2.
  16. Toledo Hijo, Ariel A. C.; Maximo, Guilherme J.; Costa, Mariana C.; Cunha, Rosiane L.; Pereira, Jorge F. B.; Kurnia, Kiki A.; Batista, Eduardo A. C.; Meirelles, Antonio J. A. (2017). "Phase Behavior and Physical Properties of New Biobased Ionic Liquid Crystals". The Journal of Physical Chemistry B. 121 (14): 3177–3189. doi:10.1021/acs.jpcb.7b01384. PMID 28332847.
  17. Tardy, Anne-Laure; Morio, Beatrice; Chardigny, Jean-Michel; Malpuech-Brugere, Corinne (2011). "Ruminant and industrial sources of trans-fat and cardiovascular and diabetic diseases". Nutrition Research Reviews. 24 (1): 111–117. doi:10.1017/S0954422411000011. PMID 21320382.
  18. Breuer, B.; Fock, H. P. (1987). "Separation of fatty acids or methyl esters including positional and geometric isomers by alumina argentation thin-layer chromatography". J. Chromatogr. Sci. 25 (7): 302–306. doi:10.1093/chromsci/25.7.302. PMID 3611285.
  19. Marinescu, Smaranda C.; Schrock, Richard R.; Müller, Peter; Hoveyda, Amir H. (2009). "Ethenolysis Reactions Catalyzed by Imido Alkylidene Monoaryloxide Monopyrrolide (MAP) Complexes of Molybdenum". J. Am. Chem. Soc. 131 (31): 10840–10841. doi:10.1021/ja904786y. PMID 19618951.
  20. ^ "US National Nutrient Database, Release 28". United States Department of Agriculture. May 2016. All values in this table are from this database unless otherwise cited or when italicized as the simple arithmetic sum of other component columns.
  21. "Fats and fatty acids contents per 100 g (click for "more details"). Example: Avocado oil (user can search for other oils)". Nutritiondata.com, Conde Nast for the USDA National Nutrient Database, Standard Release 21. 2014. Retrieved 7 September 2017. Values from Nutritiondata.com (SR 21) may need to be reconciled with most recent release from the USDA SR 28 as of Sept 2017.
  22. "USDA Specifications for Vegetable Oil Margarine Effective August 28, 1996" (PDF).
  23. "Avocado oil, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  24. Ozdemir, Feramuz; Topuz, Ayhan (June 2004). "Changes in dry matter, oil content and fatty acids composition of avocado during harvesting time and post-harvesting ripening period". Food Chemistry. 86 (1): 79–83. doi:10.1016/j.foodchem.2003.08.012.
  25. Wong M, Requejo-Jackman C, Woolf A (April 2010). "What is unrefined, extra virgin cold-pressed avocado oil?". Aocs.org. The American Oil Chemists' Society. Retrieved 26 December 2019.
  26. "Brazil nut oil, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  27. ^ Katragadda, Harinageswara Rao; Fullana, Andrés; Sidhu, Sukh; Carbonell-Barrachina, Ángel A. (May 2010). "Emissions of volatile aldehydes from heated cooking oils". Food Chemistry. 120 (1): 59–65. doi:10.1016/j.foodchem.2009.09.070.
  28. "Canola oil, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  29. ^ Wolke RL (May 16, 2007). "Where There's Smoke, There's a Fryer". The Washington Post. Retrieved March 5, 2011.
  30. "Coconut oil, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  31. "Corn oil, industrial and retail, all purpose salad or cooking, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  32. "Cottonseed oil, salad or cooking, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  33. "Cottonseed oil, industrial, fully hydrogenated, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  34. "Linseed/Flaxseed oil, cold pressed, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  35. Garavaglia J, Markoski MM, Oliveira A, Marcadenti A (2016). "Grape Seed Oil Compounds: Biological and Chemical Actions for Health". Nutrition and Metabolic Insights. 9: 59–64. doi:10.4137/NMI.S32910. PMC 4988453. PMID 27559299.
  36. Callaway, James; Schwab, Ursula; Harvima, Ilkka; Halonen, Pirjo; Mykkänen, Otto; Hyvönen, Pekka; Järvinen, Tomi (April 2005). "Efficacy of dietary hempseed oil in patients with atopic dermatitis". Journal of Dermatological Treatment. 16 (2): 87–94. doi:10.1080/09546630510035832. PMID 16019622.
  37. Melina V. "Smoke points of oils" (PDF). veghealth.com. The Vegetarian Health Institute.
  38. "Safflower oil, salad or cooking, high oleic, primary commerce, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  39. "Olive oil, salad or cooking, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  40. "Palm oil, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  41. "Palm oil, industrial, fully hydrogenated, filling fat, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  42. "Oil, peanut". FoodData Central. usda.gov.
  43. Orthoefer, Frank T. (2020). "Rice Bran Oil". Bailey's Industrial Oil and Fat Products. pp. 1–25. doi:10.1002/047167849X.bio015.pub2. ISBN 978-0-471-38460-1.
  44. "Rice bran oil". RITO Partnership. Retrieved 22 January 2021.
  45. "Oil, sesame, salad or cooking". FoodData Central. fdc.nal.usda.gov. 1 April 2019.
  46. "Soybean oil, salad or cooking, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  47. "Soybean oil, salad or cooking, (partially hydrogenated), fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  48. "FoodData Central". fdc.nal.usda.gov.
  49. "Walnut oil, fat composition, 100 g". US National Nutrient Database, United States Department of Agriculture.
  50. "Smoke Point of Oils". Baseline of Health. Jonbarron.org.
  51. Carrasco, F. (2009). "Ingredientes Cosméticos". Diccionario de Ingredientes (4th ed.). Francisco Carrasco Otero. p. 428. ISBN 978-84-613-4979-1.
  52. Smolinske, Susan C. (1992). Handbook of Food, Drug, and Cosmetic Excipients. CRC Press. pp. 247–8. ISBN 978-0-8493-3585-3.
  53. Wilson, E. O.; Durlach, N. I.; Roth, L. M. (December 1958). "Chemical Releasers of Necrophoric Behavior in Ants". Psyche: A Journal of Entomology. 65 (4): 108–114. doi:10.1155/1958/69391. ISSN 0033-2615.
  54. "'Hey I'm Dead!' The Story Of The Very Lively Ant". NPR.
  55. "How ants determine the death of another ant | Britannica". www.britannica.com. Retrieved 2023-07-03.
  56. Diez, Lise; Moquet, Laura; Detrain, Claire (2013-12-01). "Post-mortem Changes in Chemical Profile and their Influence on Corpse Removal in Ants". Journal of Chemical Ecology. 39 (11): 1424–1432. Bibcode:2013JCEco..39.1424D. doi:10.1007/s10886-013-0365-1. ISSN 1573-1561. PMID 24242873. S2CID 254654298.
  57. Julien, M; Hoeffel, JM; Flick, MR (1986). "Oleic acid lung injury in sheep". Journal of Applied Physiology. 60 (2): 433–40. doi:10.1152/jappl.1986.60.2.433. PMID 3949648.
  58. Duncan, Alastair (2003). The Technique of Leaded Glass. Dover Publications. p. 77. ISBN 978-0-486-42607-5.
  59. Schwingshackl L, Hoffmann G (2014). "Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies". Lipids in Health and Disease. 13: 154. doi:10.1186/1476-511X-13-154. PMC 4198773. PMID 25274026.
  60. "You Can Control Your Cholesterol: A Guide to Low-Cholesterol Living". Merck & Co. Inc. Archived from the original on 2009-03-03. Retrieved 2009-03-14.
  61. Teres, S.; Barcelo-Coblijn, G.; Benet, M.; Alvarez, R.; Bressani, R.; Halver, J. E.; Escriba, P. V. (2008). "Oleic acid content is responsible for the reduction in blood pressure induced by olive oil". Proceedings of the National Academy of Sciences. 105 (37): 13811–6. Bibcode:2008PNAS..10513811T. doi:10.1073/pnas.0807500105. JSTOR 25464133. PMC 2544536. PMID 18772370.
  62. Tutunchi, Helda; Ostadrahimi, Alireza; Saghafi-Asl, Maryam (2020). "The Effects of Diets Enriched in Monounsaturated Oleic Acid on the Management and Prevention of Obesity: a Systematic Review of Human Intervention Studies". Advances in Nutrition. 11 (4): 864–877. doi:10.1093/advances/nmaa013. PMC 7360458. PMID 32135008.
  63. Nutrition, Center for Food Safety and Applied (20 December 2019). "FDA Completes Review of Qualified Health Claim Petition for Oleic Acid and the Risk of Coronary Heart Disease". FDA.
  64. Aladedunye, Felix; Przybylski, Roman (December 2013). "Frying stability of high oleic sunflower oils as affected by composition of tocopherol isomers and linoleic acid content". Food Chemistry. 141 (3): 2373–2378. doi:10.1016/j.foodchem.2013.05.061. PMID 23870970.
  65. "Properties of High Oleic Seed Oils". Oklahoma State University Extension. 19 November 2020.
  66. "High-oleic canola oils and their food applications". The American Oil Chemists' Society.
  67. Trans Fat Task Force (June 2006). TRANSforming the Food Supply. Trans Fat Task Force. ISBN 0-662-43689-X. Retrieved 7 January 2007.

External links

Lipids: fatty acids
Saturated
ω−3 Unsaturated
ω−5 Unsaturated
ω−6 Unsaturated
ω−7 Unsaturated
ω−9 Unsaturated
ω−10 Unsaturated
ω−11 Unsaturated
ω−12 Unsaturated
Categories: