Misplaced Pages

Bis(triphenylphosphine)iminium chloride: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 22:13, 30 August 2011 editCheMoBot (talk | contribs)Bots141,565 edits Updating {{chembox}} (no changed fields - added verified revid - updated 'DrugBank_Ref', 'UNII_Ref', 'ChEMBL_Ref', 'ChEBI_Ref', 'KEGG_Ref', 'ChEBI_Ref') per Chem/Drugbox validation (report [[Wikipedia_talk:WikiProject_Chemicals|error← Previous edit Latest revision as of 06:48, 22 June 2024 edit undoCitation bot (talk | contribs)Bots5,424,114 edits Altered chapter. | Use this bot. Report bugs. | #UCB_CommandLine 
(59 intermediate revisions by 30 users not shown)
Line 1: Line 1:
{{chembox {{chembox
| Watchedfields = changed
| verifiedrevid = 447419712 | verifiedrevid = 447561260
| ImageFile = PPNCl.png
| Name =
<!-- | ImageSize = 250px -->
| ImageFile = PPNCl.png
| ImageName =
<!-- | ImageSize = 250px -->| ImageName =
| IUPACName = &mu;-nitrido-Bis(triphenylphosphorus) chloride
| PIN = Hexaphenyl-1λ<sup>5</sup>-diphosphaz-1-en-3-ium chloride
| OtherNames = PPN chloride<br />Bis(triphenylphosphine)iminium chloride<br />Bis(triphenylphosphoranylidene)iminium chloride<br />Bis(triphenylphosphoranylidene)ammonium chloride<br />Hexaphenyldiphosphazenium chloride<br />Selectophore
| OtherNames = PNP chloride <br />
PPN chloride<br />Bis(triphenylphosphine)iminium chloride<br />Bis(triphenylphosphoranylidene)iminium chloride<br />Bis(triphenylphosphoranylidene)ammonium chloride<br />Hexaphenyldiphosphazenium chloride<br />Selectophore
| SystematicName =
| Section1 = {{Chembox Identifiers | Section1 = {{Chembox Identifiers
| SMILES = .N((c1ccccc1)(c2ccccc2)c3ccccc3)=P(c4ccccc4)(c5ccccc5)c6ccccc6 | SMILES = .N((c1ccccc1)(c2ccccc2)c3ccccc3)=P(c4ccccc4)(c5ccccc5)c6ccccc6
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}} | ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 2300634 | ChemSpiderID = 2300634
| PubChem = 3036656 | PubChem = 3036656
| EC_number = 244-170-6
| InChI = 1/C36H30NP2.ClH/c1-7-19-31(20-8-1)38(32-21-9-2-10-22-32,33-23-11-3-12-24-33)37-39(34-25-13-4-14-26-34,35-27-15-5-16-28-35)36-29-17-6-18-30-36;/h1-30H;1H/q+1;/p-1 | InChI = 1/C36H30NP2.ClH/c1-7-19-31(20-8-1)38(32-21-9-2-10-22-32,33-23-11-3-12-24-33)37-39(34-25-13-4-14-26-34,35-27-15-5-16-28-35)36-29-17-6-18-30-36;/h1-30H;1H/q+1;/p-1
| InChIKey = LVRCYPYRKNAAMX-REWHXWOFAO | InChIKey = LVRCYPYRKNAAMX-REWHXWOFAO
Line 17: Line 21:
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}} | StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = LVRCYPYRKNAAMX-UHFFFAOYSA-M | StdInChIKey = LVRCYPYRKNAAMX-UHFFFAOYSA-M
| CASNo_Ref = {{cascite|correct|??}}
| CASNo = 21050-13-5 | CASNo = 21050-13-5
}} }}
| Section2 = {{Chembox Properties | Section2 = {{Chembox Properties
| Formula = C<sub>36</sub>H<sub>30</sub>ClNP<sub>2</sub> | Formula = {{chem2|Cl}}
| MolarMass = 574.03 g/mol | MolarMass = 574.03 g/mol
| Appearance = colourless solid | Appearance = colourless solid
| Solubility = moderate
| Density = ?? g/cm<sup>3</sup>, solid
| MeltingPtC = 260 to 262
| Solubility = moderate
| MeltingPt_notes =
| MeltingPt = 260-2 °C
}} }}
| Section3 =
| Section4 =
| Section5 =
| Section6 =
| Section7 = {{Chembox Hazards | Section7 = {{Chembox Hazards
| GHSPictograms = {{GHS07}}
| RPhrases = 36/37/38
| GHSSignalWord = Warning
| SPhrases = 26-36
| HPhrases = {{H-phrases|315|319|332|335}}
| PPhrases = {{P-phrases|261|264|271|280|302+352|304+312|304+340|305+351+338|312|321|332+313|337+313|362|403+233|405|501}}
}} }}
| Section8 = {{Chembox Other | Section8 = {{Chembox Related
| OtherCpds = Tetraphenylarsonium chloride<br />Tetrabutylammonium chloride<br />tetrabutylammonium chloride}} | OtherCompounds = ]<br />]}}
}} }}
'''Bis(triphenylphosphine)iminium chloride''' is the ] with the formula Cl, often written Cl and abbreviated PPNCl. This ]less salt is a source of the PPN<sup>+</sup> cation, which is used to isolate reactive anions. PPN<sup>+</sup> is a ]. '''Bis(triphenylphosphine)iminium chloride''' is the ] with the formula {{chem2|Cl}}, often abbreviated {{chem2|Cl}}, where Ph is ] {{chem2|C6H5}}, or even abbreviated Cl or Cl or PPNCl or PNPCl, where PPN or PNP stands for {{chem2|(Ph3P)2N}}. This ]less salt is a source of the {{chem2|+}} cation (abbreviated {{chem2|PPN+}} or {{chem2|PNP+}}), which is used as an unreactive and weakly coordinating cation to isolate reactive anions. {{chem2|+}} is a ].


==Synthesis and structure== ==Synthesis and structure==
PPNCl is prepared in two steps from ]:<ref>{{cite journal | author = J. K. Ruff; W. J. Schlientz; R. E. Dessy; J. M. Malm; G. R. Dobson; M. N. Memering | title = &mu;-nitrido-Bis(triphenylphosphorus)(1+ (“PPN”) Salts with Metal Carbonyl Anions | journal = ] | volume = 15 | year = 1974 | pages = 84–90 | doi = 10.1002/9780470132463.ch19}}</ref> {{chem2|Cl}} is prepared in two steps from ] {{chem2|Ph3P}}:<ref name=Ruff>{{cite book | last1 = Ruff|first1=J.K.|last2=Schlientz|first2=W.J. |title=Inorganic Syntheses |chapter=μ-Nitridobis(triphenylphosphorus)(l+) ("PPN") Salts with Metal Carbonyl Anions | journal = ] | volume = 15 | year = 1974 | pages = 84–90 | doi = 10.1002/9780470132463.ch19|isbn=9780470132463}}</ref>


:{{chem2|Ph3P + Cl2 → Ph3PCl2}}
:Ph<sub>3</sub>P + Cl<sub>2</sub> &rarr; Ph<sub>3</sub>PCl<sub>2</sub>


This ] is related to ]. Treatment of this species with ] in the presence of Ph<sub>3</sub>P results in replacement of the P-Cl bonds by P=N bonds: This ] {{chem2|Ph3PCl2}} is related to ] {{chem2|PCl5}}. Treatment of this species with ] in the presence of {{chem2|Ph3P}} results in replacement of the two single P–Cl bonds in {{chem2|Ph3PCl2}} by one double P=N bond:


:{{chem2|2 Ph3PCl2 + NH2OH*HCl + Ph3P → Cl + 4HCl + Ph3PO}}
:2 Ph<sub>3</sub>PCl<sub>2</sub> + NH<sub>2</sub>OH&middot;HCl + Ph<sub>3</sub>P &rarr; {<sub>2</sub>N}Cl + 4HCl + ]
] {{chem2|Ph3PO}} is a by-product.


Bis(triphenylphosphine)iminium chloride is described as {{chem2|+Cl-}}. The structure of the bis(triphenylphosphine)iminium cation {{chem2|+}} is {{chem2|+}}. The P=N=P angle in the cation is flexible, ranging from ~130 to 180° depending on the salt. Bent and linear forms of the P=N=P connections have been observed in the same unit cell.<ref>{{cite journal|last1=Hardy|first1=Gordon E.|last2=Zink|first2=Jeffrey I.|last3=Kaska|first3=W. C.|last4=Baldwin|first4=J. C. | name-list-style = vanc |date= December 1978|title=Structure and triboluminescence of polymorphs of hexaphenylcarbodiphosphorane |journal=Journal of the American Chemical Society |volume=100|issue=25|pages=8001–8002|doi=10.1021/ja00493a035 }}</ref> The same shallow potential well for bending is observed in the isoelectronic species ], {{chem2|Ph3P\dC\dPPH3}}, as well as the more distantly related molecule ], {{chem2|O\dC\dC\dC\dO}}. For the solvent-free chloride salt {{chem2|Cl}}, the P=N=P bond angle was determined to be 133°.<ref>{{cite journal | vauthors = Knapp C, Uzun R | title = Solvate-free bis-(triphenylphosphine)iminium chloride | journal = Acta Crystallographica Section E | volume = 66 | issue = Pt 12 | pages = o3185 | date = November 2010 | pmid = 21589480 | pmc = 3011587 | doi = 10.1107/S1600536810046325 }}</ref> The two P=N bonds are equivalent, and their length is 1.597(2) Å.
In PPN<sup>+</sup> salts, P-N bond lengths are equivalent, 1.58 Å. The cation is bent at the central nitrogen, and has no inversion centre. Its connectivity is indicated by Ph<sub>3</sub>P=N=PPh<sub>3</sub><sup>+</sup>.


<center>]</center> ]


==Applications== ==Use as reagent==
In the laboratory, PPN chloride is the main precursor to PPN<sup>+</sup> salts. Using salt metathesis reactions, ], ], and other small inorganic anions can be obtained with PPN<sup>+</sup> cations. The resulting salts PPNNO<sub>2</sub>, PPNN<sub>3</sub> etc are soluble in polar organic solvents. In the laboratory, {{chem2|Cl}} is the main precursor to {{chem2|+}} salts. Using salt metathesis reactions, ], ], and other small inorganic anions can be obtained with {{chem2|+}} cations. The resulting salts {{chem2|+NO2-}}, {{chem2|+N3-}}, etc. are soluble in polar organic solvents.


PPN<sup>+</sup> forms crystalline salts with a range of anions that are otherwise difficult to crystallize. Its effectiveness is partially attributable to its rigidity, reflecting the presence of six phenyl rings. Often PPN<sup>+</sup> forms salts that are more air-stable than salts with smaller cations such as those containing ] or alkali metal cations. This effect is attributed to the steric shielding provided by this voluminous cation. Illustrative PPN<sup>+</sup> salts of reactive anions include PPN, PPN, and PPN. The role of ]ing in chemical reactions is often clarified by examination of the related salt derived from PPN<sup>+</sup>. {{chem2|+}} forms crystalline salts with a range of anions that are otherwise difficult to crystallize. Its effectiveness is partially attributable to its rigidity, reflecting the presence of six phenyl rings. Often {{chem2|+}} forms salts that are more air-stable than salts with smaller cations such as those containing ] cation {{chem2|+}}, or ] cations. This effect is attributed to the steric shielding provided by this voluminous cation. Illustrative {{chem2|+}} salts of reactive anions include {{chem2|+-}}, {{chem2|+-}}, {{chem2|(+)2(2+)}} (M = Cr, Mo, W), and {{chem2|+-}}.<ref name=Ruff/> The role of ]ing in chemical reactions is often clarified by examination of the related salt derived from {{chem2|+}}.


==References== ==Related cations==
A phosphazenium cation related to {{chem2|+}} is {{chem2|+}}.<ref>{{cite encyclopedia|author=Schwesinger, Reinhard|title=1,1,1,3,3,3-Hexakis(dimethylamino)-1λ5,3λ5-diphosphazenium fluoride|encyclopedia=e-EROS Encyclopedia of Reagents for Organic Synthesis|year=2001|pages=1–2|doi=10.1002/047084289X.rh014m|isbn=0471936235}}</ref>
<references/>


== References ==
]
{{reflist}}


]
]
]
]
]

Latest revision as of 06:48, 22 June 2024

Bis(triphenylphosphine)iminium chloride
Names
Preferred IUPAC name Hexaphenyl-1λ-diphosphaz-1-en-3-ium chloride
Other names PNP chloride
PPN chloride
Bis(triphenylphosphine)iminium chloride
Bis(triphenylphosphoranylidene)iminium chloride
Bis(triphenylphosphoranylidene)ammonium chloride
Hexaphenyldiphosphazenium chloride
Selectophore
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.040.139 Edit this at Wikidata
EC Number
  • 244-170-6
PubChem CID
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C36H30NP2.ClH/c1-7-19-31(20-8-1)38(32-21-9-2-10-22-32,33-23-11-3-12-24-33)37-39(34-25-13-4-14-26-34,35-27-15-5-16-28-35)36-29-17-6-18-30-36;/h1-30H;1H/q+1;/p-1Key: LVRCYPYRKNAAMX-UHFFFAOYSA-M
  • InChI=1/C36H30NP2.ClH/c1-7-19-31(20-8-1)38(32-21-9-2-10-22-32,33-23-11-3-12-24-33)37-39(34-25-13-4-14-26-34,35-27-15-5-16-28-35)36-29-17-6-18-30-36;/h1-30H;1H/q+1;/p-1Key: LVRCYPYRKNAAMX-REWHXWOFAO
SMILES
  • .N((c1ccccc1)(c2ccccc2)c3ccccc3)=P(c4ccccc4)(c5ccccc5)c6ccccc6
Properties
Chemical formula [((C6H5)3P)2N]Cl
Molar mass 574.03 g/mol
Appearance colourless solid
Melting point 260 to 262 °C (500 to 504 °F; 533 to 535 K)
Solubility in water moderate
Hazards
GHS labelling:
Pictograms GHS07: Exclamation mark
Signal word Warning
Hazard statements H315, H319, H332, H335
Precautionary statements P261, P264, P271, P280, P302+P352, P304+P312, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P403+P233, P405, P501
Related compounds
Related compounds Tetraphenylarsonium chloride
Tetrabutylammonium chloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Bis(triphenylphosphine)iminium chloride is the chemical compound with the formula [((C6H5)3P)2N]Cl, often abbreviated [(Ph3P)2N]Cl, where Ph is phenyl C6H5, or even abbreviated Cl or Cl or PPNCl or PNPCl, where PPN or PNP stands for (Ph3P)2N. This colorless salt is a source of the [(Ph3P)2N] cation (abbreviated PPN or PNP), which is used as an unreactive and weakly coordinating cation to isolate reactive anions. [(Ph3P)2N] is a phosphazene.

Synthesis and structure

[(Ph3P)2N]Cl is prepared in two steps from triphenylphosphine Ph3P:

Ph3P + Cl2 → Ph3PCl2

This triphenylphosphine dichloride Ph3PCl2 is related to phosphorus pentachloride PCl5. Treatment of this species with hydroxylamine in the presence of Ph3P results in replacement of the two single P–Cl bonds in Ph3PCl2 by one double P=N bond:

2 Ph3PCl2 + NH2OH·HCl + Ph3P → [(Ph3P)2N]Cl + 4HCl + Ph3PO

Triphenylphosphine oxide Ph3PO is a by-product.

Bis(triphenylphosphine)iminium chloride is described as [(Ph3P)2N]Cl. The structure of the bis(triphenylphosphine)iminium cation [(Ph3P)2N] is [Ph3P=N=PPh3]. The P=N=P angle in the cation is flexible, ranging from ~130 to 180° depending on the salt. Bent and linear forms of the P=N=P connections have been observed in the same unit cell. The same shallow potential well for bending is observed in the isoelectronic species bis(triphenylphosphoranylidene)methane, Ph3P=C=PPH3, as well as the more distantly related molecule carbon suboxide, O=C=C=C=O. For the solvent-free chloride salt [(Ph3P)2N]Cl, the P=N=P bond angle was determined to be 133°. The two P=N bonds are equivalent, and their length is 1.597(2) Å.

thermal ellipsoid model the bis(triphenylphosphine)iminium cation
thermal ellipsoid model the bis(triphenylphosphine)iminium cation

Use as reagent

In the laboratory, [(Ph3P)2N]Cl is the main precursor to [(Ph3P)2N] salts. Using salt metathesis reactions, nitrite, azide, and other small inorganic anions can be obtained with [(Ph3P)2N] cations. The resulting salts [(Ph3P)2N]NO−2, [(Ph3P)2N]N−3, etc. are soluble in polar organic solvents.

[(Ph3P)2N] forms crystalline salts with a range of anions that are otherwise difficult to crystallize. Its effectiveness is partially attributable to its rigidity, reflecting the presence of six phenyl rings. Often [(Ph3P)2N] forms salts that are more air-stable than salts with smaller cations such as those containing quaternary ammonium cation [NR4], or alkali metal cations. This effect is attributed to the steric shielding provided by this voluminous cation. Illustrative [(Ph3P)2N] salts of reactive anions include [(Ph3P)2N][HFe(CO)4], [(Ph3P)2N][Co(CO)4], ([(Ph3P)2N])2[M2(CO)10] (M = Cr, Mo, W), and [(Ph3P)2N][Fe(CO)3(NO)]. The role of ion pairing in chemical reactions is often clarified by examination of the related salt derived from [(Ph3P)2N].

Related cations

A phosphazenium cation related to [(Ph3P)2N] is [(((CH3)2N)3P)2N].

References

  1. ^ Ruff, J.K.; Schlientz, W.J. (1974). "μ-Nitridobis(triphenylphosphorus)(l+) ("PPN") Salts with Metal Carbonyl Anions". Inorganic Syntheses. Vol. 15. pp. 84–90. doi:10.1002/9780470132463.ch19. ISBN 9780470132463. {{cite book}}: |journal= ignored (help)
  2. Hardy GE, Zink JI, Kaska WC, Baldwin JC (December 1978). "Structure and triboluminescence of polymorphs of hexaphenylcarbodiphosphorane". Journal of the American Chemical Society. 100 (25): 8001–8002. doi:10.1021/ja00493a035.
  3. Knapp C, Uzun R (November 2010). "Solvate-free bis-(triphenylphosphine)iminium chloride". Acta Crystallographica Section E. 66 (Pt 12): o3185. doi:10.1107/S1600536810046325. PMC 3011587. PMID 21589480.
  4. Schwesinger, Reinhard (2001). "1,1,1,3,3,3-Hexakis(dimethylamino)-1λ5,3λ5-diphosphazenium fluoride". e-EROS Encyclopedia of Reagents for Organic Synthesis. pp. 1–2. doi:10.1002/047084289X.rh014m. ISBN 0471936235.
Categories: