Misplaced Pages

Dichlorotris(triphenylphosphine)ruthenium(II): Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 12:04, 8 December 2011 edit188.104.110.65 (talk) edited the doi number of reference 2; missing "1" at the beginning; reference now leads to correct article.← Previous edit Latest revision as of 06:16, 11 December 2024 edit undoItMarki (talk | contribs)107 edits fix refTag: 2017 wikitext editor 
(36 intermediate revisions by 24 users not shown)
Line 1: Line 1:
{{Chembox {{Chembox
| Watchedfields = changed |Watchedfields = changed
| verifiedrevid = 396340478 |verifiedrevid = 440893139
| Name = '''Dichlorotris(triphenylphosphine)ruthenium(II)''' |Name = Dichlorotris(triphenylphosphine){{SHY}}ruthenium(II)
|ImageFile1 = RuCl2P3Ibers.png
| ImageFile2 = Dichlorotris(triphenylphosphine)ruthenium(II).png
|ImageSize1 = 180px
| ImageSize2 = 240px
| ImageName = Dichlorotris(triphenylphosphine)ruthenium(II) |ImageName1 = Dichlorotris(triphenylphosphine)ruthenium(II)
| IUPACName = Dichlorotris(triphenylphosphine)ruthenium(II) |ImageFile2 = Dichlorotris(triphenylphosphine)ruthenium(II)-from-xtal-3D-bs-17.png
| OtherNames = Ruthenium tris(triphenylphosphine) dichloride; Tris(triphenylphosphine)dichlororuthenium; Tris(triphenylphosphine)ruthenium dichloride;Tris(triphenylphosphine)ruthenium(II) dichloride |IUPACName = Dichlorotris(triphenylphosphine)ruthenium(II)
|OtherNames = Ruthenium tris(triphenylphosphine) dichloride; Tris(triphenylphosphine)dichlororuthenium; Tris(triphenylphosphine)ruthenium dichloride;Tris(triphenylphosphine)ruthenium(II) dichloride
| Section1 = {{Chembox Identifiers |Section1 = {{Chembox Identifiers
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}} |ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 76650 |ChemSpiderID = 76650
|PubChem = 11007548
| InChI = 1/3C18H15P.2ClH.Ru/c3*1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18;;;/h3*1-15H;2*1H;/q;;;;;+2/p-2 |InChI = 1/3C18H15P.2ClH.Ru/c3*1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18;;;/h3*1-15H;2*1H;/q;;;;;+2/p-2
| SMILES = ...c3c(P(c1ccccc1)c2ccccc2)cccc3.c1ccccc1P(c2ccccc2)c3ccccc3.c1ccccc1P(c2ccccc2)c3ccccc3 |SMILES = ...c3c(P(c1ccccc1)c2ccccc2)cccc3.c1ccccc1P(c2ccccc2)c3ccccc3.c1ccccc1P(c2ccccc2)c3ccccc3
| InChIKey = WIWBLJMBLGWSIN-NUQVWONBAX |InChIKey = WIWBLJMBLGWSIN-NUQVWONBAX
| StdInChI_Ref = {{stdinchicite|correct|chemspider}} |StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/3C18H15P.2ClH.Ru/c3*1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18;;;/h3*1-15H;2*1H;/q;;;;;+2/p-2 |StdInChI = 1S/3C18H15P.2ClH.Ru/c3*1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18;;;/h3*1-15H;2*1H;/q;;;;;+2/p-2
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}} |StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = WIWBLJMBLGWSIN-UHFFFAOYSA-L |StdInChIKey = WIWBLJMBLGWSIN-UHFFFAOYSA-L
| CASNo = 15529-49-4
| CASNo_Ref = {{cascite|correct|CAS}} |CASNo = 15529-49-4
|CASNo_Ref = {{cascite|correct|CAS}}
| EINECS = 239-569-7 |EINECS = 239-569-7
}} }}
| Section2 = {{Chembox Properties |Section2 = {{Chembox Properties
| Formula = C<sub>54</sub>H<sub>45</sub>Cl<sub>2</sub>P<sub>3</sub>Ru |Formula = C<sub>54</sub>H<sub>45</sub>Cl<sub>2</sub>P<sub>3</sub>Ru
| MolarMass = 958.83 g/mol |MolarMass = 958.83 g/mol
| Appearance = Black Crystals or Red-Brown |Appearance = Black Crystals or Red-Brown
| Density = 1.43 g/cm<sub>3</sub> |Density = 1.43 g cm<sup>−3</sup>
| MeltingPtK = 406 |MeltingPtK = 406
| Air Sensitive
}} }}
| Section3 = {{Chembox Structure |Section3 = {{Chembox Structure
| Crystal Structure = Monoclinic |CrystalStruct = Monoclinic
|LattConst_a = 18.01 Å
| Crystal Parameters = a = 18.01 Å, b = 20.22 Å, c = 12.36 Å, β = 90.5<sup>o</sup>
|LattConst_b = 20.22 Å
| Space Group = C<sub>2h</sub><sup>5</sup>-P2<sub>1/c</sub>
|LattConst_c = 12.36 Å
| Coordination Geometry = Octahedral
|LattConst_beta = 90.5
|SpaceGroup = C<sub>2h</sub><sup>5</sup>-P2<sub>1/c</sub>
|Coordination = Octahedral
}}
|Section4 ={{Chembox Hazards
|GHSPictograms = {{GHS07}}
|GHSSignalWord = Warning
|HPhrases = {{H-phrases|302|312|332}}
|PPhrases = {{P-phrases|261|264|270|271|280|301+312|302+352|304+312|304+340|312|322|330|363|501}}
}} }}
}} }}


'''Dichlorotris(triphenylphosphine)ruthenium(II)''' is a ] of ]. This chocolate brown solid is a precursor to other complexes including those used as ]. '''Dichlorotris(triphenylphosphine)ruthenium(II)''' is a ] of ]. It is a chocolate brown solid that is soluble in organic solvents such as ]. The compound is used as a precursor to other complexes including those used in ].


==Synthesis and basic properties== ==Synthesis and basic properties==
RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> is the product of the reaction of ] trihydrate with a methanolic solution of ].<ref>Stephenson, T. A.; Wilkinson, G. “New Complexes of Ruthenium (II) and (III) with Triphenylphosphine, Triphenylarsine, Trichlorostannate, Pyridine, and other Ligands”, ''J. Inorg. Nucl. Chem.'', '''1966''', ''28'', 945-956. {{DOI|10.1016/0022-1902(66)80191-4}}</ref><ref>P. S. Hallman, T. A. Stephenson, G. Wilkinson "Tetrakis(Triphenylphosphine)Dichloro-Ruthenium(II) and Tris(Triphenylphosphine)-Dichlororuthenium(II)" Inorganic Syntheses, 1970 Volume 12, . {{DOI|10.1002/9780470132432.ch40}}</ref> RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> is the product of the reaction of ] trihydrate with a ]ic solution of ].<ref>Stephenson, T. A.; Wilkinson, G. "New Complexes of Ruthenium (II) and (III) with Triphenylphosphine, Triphenylarsine, Trichlorostannate, Pyridine, and other Ligands", ''J. Inorg. Nucl. Chem.'', '''1966''', ''28'', 945-956. {{doi|10.1016/0022-1902(66)80191-4}}</ref><ref>P. S. Hallman, T. A. Stephenson, G. Wilkinson "Tetrakis(Triphenylphosphine)Dichloro-Ruthenium(II) and Tris(Triphenylphosphine)-Dichlororuthenium(II)" ''Inorganic Syntheses'', 1970 volume 12 {{doi|10.1002/9780470132432.ch40}}</ref>


:2 RuCl<sub>3</sub>(H<sub>2</sub>O)<sub>3</sub> + 7 PPh<sub>3</sub> 2 RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> + 2 HCl + 5 H<sub>2</sub>O + 1 OPPh<sub>3</sub> :2 RuCl<sub>3</sub>(H<sub>2</sub>O)<sub>3</sub> + 7 PPh<sub>3</sub> → 2 RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> + 2 HCl + 5 H<sub>2</sub>O + OPPh<sub>3</sub>
When conducted in the presence of larger excess of triphenylphosphine, the synthesis affords black RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>4</sub>.


The coordination sphere of RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> can be viewed as either five-coordinate or octahedral. One coordination site is occupied by one of the hydrogen atoms of a phenyl group.<ref>Sabo-Etienne, S.; Gellier, M., “Ruthenium: Inorganic and Coordination Chemistry”, ''Encyclopedia of Inorganic Chemistry'', '''2006''', John Wiley & Sons. {{DOI|10.1002/0470862106.ia208}}</ref> This Ru---H ] is long (2.59 Å) and weak. The low symmetry of the compound is reflected by the differing lengths of the Ru-P bonds: 2.374, 2.412, and 2.230 Å.<ref>La Placa, S. J.; Ibers, J.A., “A Five-Coordinated d<sup>6</sup> Complex: Structure of Dichlorotris(triphenylphosphine)ruthenium(II)”, ''Inorganic Chemistry'', '''1965''', 4, 778-78. {{DOI|10.1021/ic50028a002}}</ref> The Ru-Cl bond lengths are both 2.387 Å. The coordination sphere of RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> can be viewed as either five-coordinate or octahedral. One coordination site is occupied by one of the hydrogen atoms of a phenyl group.<ref>{{cite book|doi=10.1002/0470862106.ia208|chapter=Ruthenium: Inorganic & Coordination Chemistry ''Based'' in part on the article Ruthenium: Inorganic & Coordination Chemistry by Bruno Chaudret & Sylviane Sabo-Etienne which appeared in the ''Encyclopedia'' of Inorganic Chemistry, First Edition|title=Encyclopedia of Inorganic Chemistry|year=2006|last1=Sabo-Etienne|first1=Sylviane|last2=Grellier|first2=Mary|isbn=0470860782}}</ref> This Ru---H ] is long (2.59 Å) and weak. The low symmetry of the compound is reflected by the differing lengths of the Ru-P bonds: 2.374, 2.412, and 2.230 Å.<ref>{{cite journal|doi = 10.1021/ic50028a002|title = A Five-Coordinated d6 Complex: Structure of Dichlorotris(triphenylphosphine)ruthenium (II)|year = 1965|last1 = La Placa|first1 = Sam J.|last2 = Ibers|first2 = James A.|journal = Inorganic Chemistry|volume = 4|issue = 6|pages = 778–783}}</ref> The Ru-Cl bond lengths are both 2.387 Å.


==Reactions==
==Substitution reactions==
In the presence of excess of triphenylphosphine, RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> binds a fourth phosphine to give black RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>4</sub>. The triphenylphosphine ligands in both the tris(phosphine) and tetrakis(phosphine) complexes are readily substituted by other ligands. The tetrakis(phosphine) complex is a precursor to the ]s.<ref>{{cite journal|doi=10.1021/cr9002424|title=Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts|year=2010|last1=Vougioukalakis|first1=Georgios C.|last2=Grubbs|first2=Robert H.|journal=Chemical Reviews|volume=110|issue=3|pages=1746–1787|pmid=20000700}}</ref>
The triphenylphosphine ligands are labile and are readily substituted by other ligands. Dichlorotris(triphenylphosphine)ruthenium(II) reacts with ] to produce the all trans isomer of dichloro(dicarbonyl)bis(triphenylphosphine)ruthenium(II).


Dichlorotris(triphenylphosphine)ruthenium(II) reacts with hydrogen in the presence of base to give the purple-colored monohydride HRuCl(PPh<sub>3</sub>)<sub>3</sub>.<ref>{{cite book|chapter=Chlorohydridotris(triphenylphosphine)ruthenium(II)|first1=R. A.|last1=Schunn|first2=E. R.|last2=Wonchoba|title=Inorganic Syntheses|page=131|doi=10.1002/9780470132449.ch26|volume=13|year=1972|isbn=9780470132449}}</ref>
:RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> + 2 CO → ''trans,trans,trans''-RuCl<sub>2</sub>(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> + PPh<sub>3</sub> :RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> + H<sub>2</sub> + NEt<sub>3</sub> → HRuCl(PPh<sub>3</sub>)<sub>3</sub> + Cl


Dichlorotris(triphenylphosphine)ruthenium(II) reacts with ] to produce the all trans isomer of dichloro(dicarbonyl)bis(triphenylphosphine)ruthenium(II).
This kinetic product isomerizes to the cis adduct during ]. ''trans''-RuCl<sub>2</sub>(dppe)<sub>2</sub> forms upon treating RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> with ].
:RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> + 2 dppe RuCl<sub>2</sub>(dppe)<sub>2</sub> + 3 PPh<sub>3</sub> :RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> + 2 CO''trans,trans,trans''-RuCl<sub>2</sub>(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> + PPh<sub>3</sub>
This kinetic product isomerizes to the cis adduct during ]. ''trans''-RuCl<sub>2</sub>(dppe)<sub>2</sub> forms upon treating RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> with ].
:RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> + 2 dppe → RuCl<sub>2</sub>(dppe)<sub>2</sub> + 3 PPh<sub>3</sub>

RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> catalyzes the decomposition of ] into ] and ] gas in the presence of an ].<ref>{{cite journal| doi=10.1002/anie.200705972| title=Controlled Generation of Hydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H2/O2Fuel Cells| year=2008| last1=Loges| first1=Björn| last2=Boddien| first2=Albert| last3=Junge| first3=Henrik| last4=Beller| first4=Matthias| journal=Angewandte Chemie International Edition| volume=47| issue=21| pages=3962–3965| pmid=18457345}}</ref> Since ] can be trapped and hydrogenated on an industrial scale, ] represents a potential storage and transportation medium.


==Use in organic synthesis== ==Use in organic synthesis==
RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> facilitates oxidations, reductions, cross-couplings, cyclizations, and isomerization. It is used in the ] of chlorocarbons to alkenes.<ref name=eEROS>Plummer, J. S.; Shun-Ichi, M.; Changjia, Z. “Dichlorotris(triphenylphosphine)ruthenium(II), ''e-EROS Encyclopedia of Reagents for Organic Synthesis'', '''2010''', John Wiley. {{DOI|10.1002/047084289X.rd137.pub2}}</ref> RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> facilitates oxidations, reductions, cross-couplings, cyclizations, and isomerization. It is used in the ] of chlorocarbons to alkenes.<ref name=eEROS>Plummer, J. S.; Shun-Ichi, M.; Changjia, Z. "Dichlorotris(triphenylphosphine)ruthenium(II)", ''e-EROS Encyclopedia of Reagents for Organic Synthesis'', '''2010''', John Wiley {{doi|10.1002/047084289X.rd137.pub2}}</ref>


] :]


Dichlorotris(triphenylphosphine)ruthenium(II) serves as a precatalyst for the ] of ], ], ], ], and ]. On the other hand, it catalyzes the oxidation of alkanes to tertiary alcohols, amides to t-butyldioxyamides, and tertiary amines to α-(t-butyldioxyamides) using tert-butyl hydroperoxide. Using other peroxides, oxygen, and acetone, the catalyst can oxidize alcohols to aldehydes or ketones. Using dichlorotris(triphenylphosphine)ruthenium(II) the N-alkylation of amines with alcohols is also possible (see "]").<ref name=eEROS/> Dichlorotris(triphenylphosphine)ruthenium(II) serves as a precatalyst for the ] of ], ], ], ], and ]. On the other hand, it catalyzes the oxidation of alkanes to tertiary alcohols, amides to t-butyldioxyamides, and tertiary amines to α-(t-butyldioxyamides) using tert-butyl hydroperoxide. Using other peroxides, oxygen, and acetone, the catalyst can oxidize alcohols to aldehydes or ketones. Using dichlorotris(triphenylphosphine)ruthenium(II) the N-alkylation of amines with alcohols is also possible (see "]").<ref name=eEROS/>


] :]


RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> efficiently catalyzes carbon-carbon bond formation from cross couplings of alcohols through C-H activation of sp3 carbons in the presence of a ].<ref>Shu-Yu, Z.; Yong-Qiang, T.; Chun-An, F.; Yi-Jun, J.; Lei, S.; Ke, C.; En, Z.; “Cross-Coupling Reactions between alcohols through sp<sup>3</sup> C-H Activation Catalyzed by a Ruthenium/Lewis Acid System” ''Chem. Eur. J.'', '''2008''', ''14'', 10201-10205. {{DOI|10.1002/chem.200801317}}</ref> RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> efficiently catalyzes carbon-carbon bond formation from cross couplings of alcohols through C-H activation of sp<sup>3</sup> carbon atoms in the presence of a ].<ref>{{cite journal|doi=10.1002/chem.200801317|title=Cross-Coupling Reaction between Alcohols through sp<sup>3</sup> C−H Activation Catalyzed by a Ruthenium/Lewis Acid System|year=2008|last1=Zhang|first1=Shu-Yu|last2=Tu|first2=Yong-Qiang|last3=Fan|first3=Chun-An|last4=Jiang|first4=Yi-Jun|last5=Shi|first5=Lei|last6=Cao|first6=Ke|last7=Zhang|first7=En|journal=Chemistry - A European Journal|volume=14|issue=33|pages=10201–10205|pmid=18844197}}</ref>


] :]

RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> efficiently catalyzes the decomposition of ] into ] and ] gas in the presence of an ].<ref>Loges, B.; Boddien, A.; Junge, H.; Beller, M., “Controlled Generation of Hydrogen from Formic Acid Amine Adducs at Room Temperature and Application in H<sub>2</sub>/O<sub>2</sub> Fuel Cells”, ''Angew. Chem. Int. Ed.'', '''2008''', ''47'', 3962-3965. {{DOI| 10.1002/anie.200705972}}</ref> Since ] can be trapped and hydrogenated on an industrial scale, ] represents a potential storage and transportation medium.


==References== ==References==
<references /> <references />
{{Ruthenium compounds}} {{Ruthenium compounds}}
] ]
]

]
]
]
]

Latest revision as of 06:16, 11 December 2024

Dichlorotris(triphenylphosphine)­ruthenium(II)
Dichlorotris(triphenylphosphine)ruthenium(II)
Names
IUPAC name Dichlorotris(triphenylphosphine)ruthenium(II)
Other names Ruthenium tris(triphenylphosphine) dichloride; Tris(triphenylphosphine)dichlororuthenium; Tris(triphenylphosphine)ruthenium dichloride;Tris(triphenylphosphine)ruthenium(II) dichloride
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.035.957 Edit this at Wikidata
EC Number
  • 239-569-7
PubChem CID
CompTox Dashboard (EPA)
InChI
  • InChI=1S/3C18H15P.2ClH.Ru/c3*1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18;;;/h3*1-15H;2*1H;/q;;;;;+2/p-2Key: WIWBLJMBLGWSIN-UHFFFAOYSA-L
  • InChI=1/3C18H15P.2ClH.Ru/c3*1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18;;;/h3*1-15H;2*1H;/q;;;;;+2/p-2Key: WIWBLJMBLGWSIN-NUQVWONBAX
SMILES
  • ...c3c(P(c1ccccc1)c2ccccc2)cccc3.c1ccccc1P(c2ccccc2)c3ccccc3.c1ccccc1P(c2ccccc2)c3ccccc3
Properties
Chemical formula C54H45Cl2P3Ru
Molar mass 958.83 g/mol
Appearance Black Crystals or Red-Brown
Density 1.43 g cm
Melting point 133 °C; 271 °F; 406 K
Structure
Crystal structure Monoclinic
Space group C2h-P21/c
Lattice constant a = 18.01 Å, b = 20.22 Å, c = 12.36 Åα = 90°, β = 90.5°, γ = 90°
Coordination geometry Octahedral
Hazards
GHS labelling:
Pictograms GHS07: Exclamation mark
Signal word Warning
Hazard statements H302, H312, H332
Precautionary statements P261, P264, P270, P271, P280, P301+P312, P302+P352, P304+P312, P304+P340, P312, P322, P330, P363, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Dichlorotris(triphenylphosphine)ruthenium(II) is a coordination complex of ruthenium. It is a chocolate brown solid that is soluble in organic solvents such as benzene. The compound is used as a precursor to other complexes including those used in homogeneous catalysis.

Synthesis and basic properties

RuCl2(PPh3)3 is the product of the reaction of ruthenium trichloride trihydrate with a methanolic solution of triphenylphosphine.

2 RuCl3(H2O)3 + 7 PPh3 → 2 RuCl2(PPh3)3 + 2 HCl + 5 H2O + OPPh3

The coordination sphere of RuCl2(PPh3)3 can be viewed as either five-coordinate or octahedral. One coordination site is occupied by one of the hydrogen atoms of a phenyl group. This Ru---H agostic interaction is long (2.59 Å) and weak. The low symmetry of the compound is reflected by the differing lengths of the Ru-P bonds: 2.374, 2.412, and 2.230 Å. The Ru-Cl bond lengths are both 2.387 Å.

Reactions

In the presence of excess of triphenylphosphine, RuCl2(PPh3)3 binds a fourth phosphine to give black RuCl2(PPh3)4. The triphenylphosphine ligands in both the tris(phosphine) and tetrakis(phosphine) complexes are readily substituted by other ligands. The tetrakis(phosphine) complex is a precursor to the Grubbs catalysts.

Dichlorotris(triphenylphosphine)ruthenium(II) reacts with hydrogen in the presence of base to give the purple-colored monohydride HRuCl(PPh3)3.

RuCl2(PPh3)3 + H2 + NEt3 → HRuCl(PPh3)3 + Cl

Dichlorotris(triphenylphosphine)ruthenium(II) reacts with carbon monoxide to produce the all trans isomer of dichloro(dicarbonyl)bis(triphenylphosphine)ruthenium(II).

RuCl2(PPh3)3 + 2 CO → trans,trans,trans-RuCl2(CO)2(PPh3)2 + PPh3

This kinetic product isomerizes to the cis adduct during recrystallization. trans-RuCl2(dppe)2 forms upon treating RuCl2(PPh3)3 with dppe.

RuCl2(PPh3)3 + 2 dppe → RuCl2(dppe)2 + 3 PPh3

RuCl2(PPh3)3 catalyzes the decomposition of formic acid into carbon dioxide and hydrogen gas in the presence of an amine. Since carbon dioxide can be trapped and hydrogenated on an industrial scale, formic acid represents a potential storage and transportation medium.

Use in organic synthesis

RuCl2(PPh3)3 facilitates oxidations, reductions, cross-couplings, cyclizations, and isomerization. It is used in the Kharasch addition of chlorocarbons to alkenes.

Dichlorotris(triphenylphosphine)ruthenium(II) serves as a precatalyst for the hydrogenation of alkenes, nitro compounds, ketones, carboxylic acids, and imines. On the other hand, it catalyzes the oxidation of alkanes to tertiary alcohols, amides to t-butyldioxyamides, and tertiary amines to α-(t-butyldioxyamides) using tert-butyl hydroperoxide. Using other peroxides, oxygen, and acetone, the catalyst can oxidize alcohols to aldehydes or ketones. Using dichlorotris(triphenylphosphine)ruthenium(II) the N-alkylation of amines with alcohols is also possible (see "borrowing hydrogen").

RuCl2(PPh3)3 efficiently catalyzes carbon-carbon bond formation from cross couplings of alcohols through C-H activation of sp carbon atoms in the presence of a Lewis acid.

References

  1. Stephenson, T. A.; Wilkinson, G. "New Complexes of Ruthenium (II) and (III) with Triphenylphosphine, Triphenylarsine, Trichlorostannate, Pyridine, and other Ligands", J. Inorg. Nucl. Chem., 1966, 28, 945-956. doi:10.1016/0022-1902(66)80191-4
  2. P. S. Hallman, T. A. Stephenson, G. Wilkinson "Tetrakis(Triphenylphosphine)Dichloro-Ruthenium(II) and Tris(Triphenylphosphine)-Dichlororuthenium(II)" Inorganic Syntheses, 1970 volume 12 doi:10.1002/9780470132432.ch40
  3. Sabo-Etienne, Sylviane; Grellier, Mary (2006). "Ruthenium: Inorganic & Coordination Chemistry Based in part on the article Ruthenium: Inorganic & Coordination Chemistry by Bruno Chaudret & Sylviane Sabo-Etienne which appeared in the Encyclopedia of Inorganic Chemistry, First Edition". Encyclopedia of Inorganic Chemistry. doi:10.1002/0470862106.ia208. ISBN 0470860782.
  4. La Placa, Sam J.; Ibers, James A. (1965). "A Five-Coordinated d6 Complex: Structure of Dichlorotris(triphenylphosphine)ruthenium (II)". Inorganic Chemistry. 4 (6): 778–783. doi:10.1021/ic50028a002.
  5. Vougioukalakis, Georgios C.; Grubbs, Robert H. (2010). "Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts". Chemical Reviews. 110 (3): 1746–1787. doi:10.1021/cr9002424. PMID 20000700.
  6. Schunn, R. A.; Wonchoba, E. R. (1972). "Chlorohydridotris(triphenylphosphine)ruthenium(II)". Inorganic Syntheses. Vol. 13. p. 131. doi:10.1002/9780470132449.ch26. ISBN 9780470132449.
  7. Loges, Björn; Boddien, Albert; Junge, Henrik; Beller, Matthias (2008). "Controlled Generation of Hydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H2/O2Fuel Cells". Angewandte Chemie International Edition. 47 (21): 3962–3965. doi:10.1002/anie.200705972. PMID 18457345.
  8. ^ Plummer, J. S.; Shun-Ichi, M.; Changjia, Z. "Dichlorotris(triphenylphosphine)ruthenium(II)", e-EROS Encyclopedia of Reagents for Organic Synthesis, 2010, John Wiley doi:10.1002/047084289X.rd137.pub2
  9. Zhang, Shu-Yu; Tu, Yong-Qiang; Fan, Chun-An; Jiang, Yi-Jun; Shi, Lei; Cao, Ke; Zhang, En (2008). "Cross-Coupling Reaction between Alcohols through sp C−H Activation Catalyzed by a Ruthenium/Lewis Acid System". Chemistry - A European Journal. 14 (33): 10201–10205. doi:10.1002/chem.200801317. PMID 18844197.
Ruthenium compounds
Ru(0)
Ru(I)
Ru(II)
Ru(II,III)
Ru(III)
Ru(IV)
Ru(V)
Ru(VI)
Ru(VII)
Ru(VIII)
Categories: