Misplaced Pages

Ancient Egyptian units of measurement: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 10:26, 23 September 2012 editSmalljim (talk | contribs)Edit filter managers, Administrators94,142 editsm Reverted edits by 94.195.147.41 (talk) to last revision by Paul August (HG)← Previous edit Latest revision as of 16:45, 28 November 2024 edit undoMonkbot (talk | contribs)Bots3,695,952 editsm Task 20: replace {lang-??} templates with {langx|??} ‹See Tfd› (Replaced 2);Tag: AWB 
(280 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Short description|System of measurement used in Ancient Egypt}}The '''ancient Egyptian units of measurement''' are those used by the ] of ] prior to its incorporation in the ] and general adoption of ], ], and ]. The units of length seem to have originally been ], based on various parts of the ], although these were standardized using cubit rods, strands of rope, and official measures maintained at some temples.
'''Ancient Egyptian units of measure''' include units for length, area and volume.


Following ]'s ] of ] and subsequent death, his ] and ] ] assumed control in ], partially reforming its measurements, introducing some new units and hellenized names for others.
==Length==
Units of length date back to at least the ]. In the ], for instance, the level of the ] river is recorded. During the reign of ] ] the height of the river Nile was given as measuring 6 cubits and 1 palm. This is equivalent to approximately 320&nbsp;cm (roughly 10 feet 6&nbsp;inches).<ref name="MC"/>


==Length==
A ] diagram shows how to construct an elliptical vault using simple measures along an arc. The ] depicting this diagram was found in the area of the ] in ]. A curve is divided into five sections and the height of the curve is given in cubits, palms and fingers in each of the sections.<ref name="CR"/>
Egyptian units of length are attested from the ]. Although it dates to the 5th dynasty, the ] recorded the level of the ] during the reign of the Early Dynastic ] ], when the height of the Nile was recorded as 6 cubits and 1 palm{{sfn|Clagett|1999|p=3}} (about {{convert|3.217|m|ftin|abbr=on|sp=us|disp=or}}). A ] diagram shows how to construct an elliptical vault using simple measures along an arc. The ] was found near the ] of ]. A curve is divided into five sections and the height of the curve is given in cubits, palms, and digits in each of the sections.<ref name="CR"/>
<ref name="EG">{{cite book|last=Englebach|first=Clarke|title=Ancient Egyptian Construction and Architecture|year=1990|publisher=Dover|location=New York|isbn=0486264858}}</ref>


Lengths could be measured by ] rods, examples of which have been found in the tombs of officials. Fourteen such rods, including one double cubit rod, were described and compared by Lepsius in 1865.<ref name=lepsius>{{cite book|last=Lepsius|first=Richard|title=Die altaegyptische Elle und ihre Eintheilung|year=1865|publisher=Dümmler|location=Berlin|url=http://books.google.com/books?id=PRQGAAAAQAAJ|language=German}}</ref> Two examples are known from the tomb of ] the treasurer of ] – in ]. Another was found in the tomb of Kha (]) in ]. These cubits are ca 52,5&nbsp;cm long and are divided into seven palms, each palm is divided into four fingers and the fingers are further subdivided.<ref name="MC">{{cite book|last=Clagett|first=Marshall|title=Ancient Egyptian science, a Source Book. Volume Three: Ancient Egyptian Mathematics.|year=1999|publisher=American Philosophical Society| location=Philadelphia| isbn=978-0-87169-232-0| url=http://books.google.com/books?id=8c10QYoGa4UC}}</ref> At some point, lengths were standardized by ] rods. Examples have been found in the tombs of officials, noting lengths up to remen. Royal cubits were used for land measures such as roads and fields. Fourteen rods, including one double-cubit rod, were described and compared by ].{{sfnp|Lepsius|1865|pp=57 ff}} Two examples are known from the ] tomb of ], the treasurer of ]. Another was found in the tomb of Kha (]) in ]. These cubits are about {{convert|52.5|cm|sp=us|abbr=on}} long and are divided into palms and hands: each palm is divided into four fingers from left to right and the fingers are further subdivided into ro from right to left. The rules are also divided into hands<ref name="AE"/> so that for example one foot is given as three hands and fifteen fingers and also as four palms and sixteen fingers.<ref name="MC">{{harvp|Clagett|1999}}.</ref><ref name="EG"/><ref>{{cite book|last=Gardiner|first=Allen|title=Egyptian Grammar 3rd Edition|year=1994|publisher=Griffith Institute|location=Oxford|isbn=0900416351}}</ref><ref name="ME">{{cite book|last=Faulkner|first=Raymond|title=A Concise Dictionary of Middle Egyptian|publisher=Griffith Institute Asmolean Museum, Oxford|year=1991|isbn=0900416327}}</ref><ref name="MTP">{{cite book|last=Gillings|first=Richard|title=Mathematics in the Time of the Pharaohs|year=1972|publisher=MIT|isbn=0262070456|url-access=registration|url=https://archive.org/details/mathematicsintim0000gill_o9t9}}</ref><ref name="AE">{{cite book|last=Loprieno|first=Antonio|title=Ancient Egyptian|publisher=CUP|location=New York|year=1996|isbn=0521448492}}</ref>


] ]


For longer distances, such as land measurements, the Ancient Egyptians used rope. A scene in the tomb of ] in ] shows surveyors measuring a plot of land using rope with knots ties at regular intervals. Similar scenes can be found in the tombs of Amenhotep-Sesi, Khaemhat and Djeserkareseneb. The balls of rope are also shown in ] statues of officials such as ], Amenemhet-Surer and Penanhor.<ref name="CR">Corinna Rossi, Architecture and Mathematics in Ancient Egypt, Cambridge University Press, 2007</ref> Surveying and itinerant measurement were undertaken using rods, poles, and knotted cords of rope. A scene in the tomb of ] in ] shows surveyors measuring a plot of land using rope with knots tied at regular intervals. Similar scenes can be found in the tombs of Amenhotep-Sesi, Khaemhat and Djeserkareseneb. The balls of rope are also shown in ] statues of officials such as ], Amenemhet-Surer, and Penanhor.<ref name="CR">], Architecture and Mathematics in Ancient Egypt, Cambridge University Press, 2007</ref>


{| class="wikitable" border="1" cellpadding="5" align="center" | style="margin: 1em auto 1em auto; width: 75%" {| class="wikitable" style="margin: 1em auto 1em auto; text-align: center"
|+'''Units of Length<ref name="MC"/><ref name="CR"/> ''' |+ Units of Length<ref name="MC"/><ref name="CR"/>
! colspan=5 | Names
!|Name!! |Egyptian name!!align="center" |Equivalent Egyptian values!! |Metric Equivalent
! colspan=3 | Equivalents
|- |-
! English
| Royal cubit || <small><hiero>M23-t:n-D42</hiero> </small> ''meh niswt'' || 1 royal cubit = 7 palms = 28 fingers || c. 52.5&nbsp;cm
! colspan=2 | Egyptian
! colspan=2 | Coptic
!Palms
!Digits
!Metric{{refn|Gardiner, §266, pp. 199–200.<ref name="EG"/><ref name="ME"/><ref name="MTP"/>}}
|- |-
| ]<ref name=mc7/><br>Finger<ref name=mc9/><br>Fingerbreadth<ref name=mc7/><br>Tebā<ref name=leper>{{harvp|Lepsius|1865|p=}}.</ref>
|Standard cubit || <small><hiero>D42-G36</hiero> </small> ''meh nedjes'' || 1 standard cubit = 6 palms = 24 fingers ||c. 45&nbsp;cm
| <hiero>D50</hiero>{{efn|Alternative representations for the Egyptian digit include <hiero>D50-Z1</hiero> and <hiero>I10-D58-D36-D50</hiero>.<ref name=vygus>{{citation |last=Vygus |first=Mark |date=2015 |title=Middle Egyptian Dictionary |url=http://www.pyramidtextsonline.com/documents/VygusDictionaryApril2015.pdf }}.</ref>}}
| '']b]'' || {{lang|cop|ⲧⲏⲏⲃⲉ}}{{sfnp|Crum|1939|p=597}}<ref name=jea/> || ''tēēbe''
| style="text-align: right" | {{1/4}}
| style="text-align: right" | 1
| style="text-align: right" | 1.875&nbsp;cm
|- |-
| ]<ref name=mc7/><br>Hand<ref name=hp86/><br>Shesep<ref name=mc8/>
|Remen || <small><hiero>D41</hiero> </small> ''remen'' ||1 remen = 5 palms = 20 fingers || c. 37.5&nbsp;cm
| <hiero>D48</hiero>{{efn|Alternative representations for the Egyptian palm include <hiero>D46</hiero>, <hiero>N11</hiero>, <hiero>O42</hiero> and <hiero>O42-Q3:N11</hiero>.<ref name=vygus/>}}
| '']sp'' || {{lang|cop|ϣⲟⲡ}}{{sfnp|Crum|1939|p=574}}<ref name=jea/><br>{{lang|cop|ϣⲟⲟⲡ}}{{sfnp|Crum|1939|p=574}}<br>{{lang|cop|ϣⲱⲡ}}{{sfnp|Crum|1939|p=574}}<br>{{lang|cop|ϣⲁⲡ}}{{sfnp|Crum|1939|p=574}} ||''shop''<br>''shoop''<br>''shōp''<br>''shap''
| style="text-align: right" | 1
| style="text-align: right" | 4
| style="text-align: right" |7.5&nbsp;cm
|- |-
| ]<ref name=cnm/><br>Handsbreadth<ref name=mc8/>
|Djeser || <small><hiero>D44</hiero> </small> ''djeser'' ||1 djeser = 4 palms = 16 fingers ||c. 30&nbsp;cm
| <hiero>D46</hiero>{{efn|Alternative representations for the Egyptian hand include <hiero>D46:X1*F51</hiero>, <hiero>D46:X1*Z1</hiero>, and <hiero>U28-X1:D47</hiero>.<ref name=vygus/>}}
| '']rt'' || {{lang|cop|ϩⲱϩϥ}}{{sfnp|Crum|1939|p=742}}<ref name=gtown>{{citation |url=https://corpling.uis.georgetown.edu/coptic-dictionary/ |title=Online Coptic Dictionary |publisher=Georgetown |location=] |last=Feder |first=Frank |author2=Maxim Kupreyev |author3=Sonja Dahlgren |author4=Julien Delhez |author5=Lena Krastel |author6=Tonio Sebastian Richter |author7=Anne Sörgel |display-authors=1 }}.</ref> || ''hōhf''
| style="text-align: right" | {{frac|1|1|4}}
| style="text-align: right" | 5
| style="text-align: right" |9.38&nbsp;cm
|- |-
| Fist<ref name=mc8/>
|Span (large) || <small><hiero>H7-O29</hiero> </small> ''pedj-aa'' ||1 large span = 3.5 palms = 14 fingers ||c. 25&nbsp;cm
| <hiero>D49</hiero>{{efn|Alternative representations for the Egyptian fist include <hiero>Aa1:I9-D36:D49</hiero> and <hiero>Aa1:I9-D36-D49:Z1</hiero> as '']f]'' and <hiero>G1-G17-G17-D49</hiero>, <hiero>G1-G17-G17-X1:D49</hiero>, and <hiero>M17-G17-D49</hiero> as '']mm''.<ref name=vygus/>}}
| '']f]''<ref name=mc8/><br>'']mm''<ref name=vygus/> || ϭⲁϫⲙⲏ{{sfnp|Crum|1939|p=842}}<br>ϫⲁⲙⲏ{{sfnp|Crum|1939|p=842}} || ''qajmē''<br>''jamē''
| style="text-align: right" | {{frac|1|1|2}}
| style="text-align: right" | 6
| style="text-align: right" |11.25&nbsp;cm
|- |-
| Double Handbreadth<ref name=vygus/>
|Span (small) || <small><hiero>H7-G36</hiero> </small> ''pedj-sheser'' || 1 small span = 3 palms = 12 fingers ||c. 22.5&nbsp;cm
| <hiero>D48:D48</hiero>{{efn|Alternative representations for the Egyptian double handbreadth include <hiero>D48-D48</hiero>.<ref name=vygus/>}}
| '']spwy'' || ||
| style="text-align: right" | 2
| style="text-align: right" | 8
| style="text-align: right" | 15{{nbsp}}cm<ref name=vygus/>
|- |-
| Small ]<ref name=mc8/><br>Pedj-Sheser<br>Shat Nedjes<ref name=mc8/><br>Little Shat<ref name=mc9>{{harvp|Clagett|1999|p=}}.</ref>
|Fist || <!---<small><hiero>?</hiero> </small> '' ??? ''---> || 1 fist = 6 fingers ||c. 10.75&nbsp;cm
| <hiero>H7-G37</hiero>
| ''p] ]sr''<br>'']]t n]s''<ref name=mc8/>
| rowspan=2 | {{lang|cop|ⲣⲧⲱ}}{{sfnp|Crum|1939|p=305}}<ref name=gtown/><br>{{lang|cop|ⲉⲣⲧⲱ}}{{sfnp|Crum|1939|p=58}}
| rowspan=2 | ''rtō''<br>''ertō''
| style="text-align: right" | 3
| style="text-align: right" | 12
| style="text-align: right" |22.5&nbsp;cm
|- |-
| Great ]<ref name=mc8/><br>Half-Cubit<ref name=vygus/><br>Pedj-Aa<br>Shat Aa<ref name=mc8/><br>Great Shat<ref name=mc9/>
|Hand || <!---<small><hiero>?</hiero> </small> '' ??? ''---> || 1 hand = 5 fingers ||c. 9.38&nbsp;cm
| <hiero>H7-O29</hiero>{{efn|Alternative representations for the Egyptian half-cubit include <hiero>Z12</hiero> of uncertain pronunciation.<ref name=vygus/>}}
| ''pḏ ]]''<ref name=mc8/><ref name=vygus/><br>'']]t ]]''<ref name=mc8/>
| style="text-align: right" | {{frac|3|1|2}}
| style="text-align: right" | 14
| style="text-align: right" |26&nbsp;cm
|- |-
| ]<br>Djeser<ref name=mc8/><br>Ser<ref name=leper/><br>Bent Arm<ref name=mc8/>
|Palm || <small><hiero>D48</hiero> </small> ''shesep'' || 1 palm = 4 fingers|| c. 7.5&nbsp;cm
| <hiero>D45</hiero>
| '']sr'' || ||
| style="text-align: right" | 4
| style="text-align: right" | 16
| style="text-align: right" | 30&nbsp;cm
|- |-
| Shoulder<br>Remen<ref name=mc8/><br>Upper Arm<ref name=mc8/>
|Finger || <small><hiero> D50</hiero> </small> ''djeba'' || 1 finger = 1/4 palm || c. 1.88&nbsp;cm
| <hiero>D41</hiero>
| ''rmn'' || ||
| style="text-align: right" | 5
| style="text-align: right" | 20
| style="text-align: right" | 37.5&nbsp;cm
|- |-
| Small ]<ref name=cnm/><br>Short ]<ref name=mc8/><br>Meh Nedjes<ref name=mc8/>
|Khet (rod) || <small><hiero>M3-X1-Z1</hiero> </small> ''khet'' || 1 khet = 100 cubits || c. 52.5 m
| <hiero>D42-G37</hiero>
| ''m] n]s''<br>''m] ]sr''
| rowspan=2 | {{lang|cop|ⲙⲁϩⲉ}}<ref name=crum>{{harvp|Crum|1939|p=210}}.</ref><ref name=jea>{{citation |title=Journal of Egyptian Archaeology, ''Vol. IV'' |date=1917 |publisher=Egypt Exploration Fund |page=135 }}.</ref><br>{{lang|cop|ⲙⲉϩⲓ}}{{sfnp|Crum|1939|p=211}}
| rowspan=2 | ''mahe''<br>''mehi''
| style="text-align: right" | 6
| style="text-align: right" | 24
| style="text-align: right" |45&nbsp;cm
|- |-
| ]<br>Royal ]<ref name=mc8/><br>Sacred ]<ref name=hp86>{{harvp|Bagnall|2009|p=}}.</ref><br>Meh Nesut<ref name=mc7/><br>Meh Nisut<ref name=mc8>{{harvp|Clagett|1999|p=}}.</ref><br>Mahi<br>]<ref name=crum/>
|River measure || <small><hiero> M17-X1-D21-G43-N35B-N36-N21*Z1</hiero> </small>''iteru'' || 1 iteru = 20,000 cubits || c. 10.5&nbsp;km
| <hiero>D42</hiero>{{efn|Alternative representations of the Egyptian cubit or royal cubit include <hiero>D36</hiero>, <hiero>D36:Y1</hiero>, <hiero>D36:Z1</hiero>, <hiero>V22:D36</hiero>, <hiero>V22:D42</hiero>, <hiero>V22:Z1:D36</hiero>,<ref name=vygus/> all pronounced ''m]'',<ref name=vygus/> and the explicit "royal" or "sacred cubit" <hiero>M23-t:n-D42</hiero>,<ref name=leper/> pronounced ''m] nswt''<ref name=vygus/> or ''n]-swt''.<ref name=mc8/>}}
| ''m]''
| style="text-align: right" | 7
| style="text-align: right" | 28
| style="text-align: right" | 52.3{{nbsp}}cm<ref name=mc7>{{harvp|Clagett|1999|p=}}.</ref><br>52.5{{nbsp}}cm<ref name=hp86/>
|-
| Pole<br>Nebiu<ref>{{citation |last=Obenga |first=Théophile |publisher=Per Ankh |date=2004 |title=African Philosophy: The Pharaonic Period 2780–330 BC |page=460 }}.</ref>
| <hiero>N35:D58-M17-V1-T19</hiero>
| ''nbiw'' || ||
| style="text-align: right" | 8
| style="text-align: right" | 32
| style="text-align: right" |60&nbsp;cm
|-
| colspan=8 |
|-
| ]<br>Rod of Cord<br>Stick of Rope<ref name=cnm/><br>Khet<ref name=mc7/><br>]<ref name=hp85/>
| <hiero>W24-G43-V28</hiero>{{efn|Alternative representations of the Egyptian rod include <hiero>M3</hiero><ref>{{citation |title=Hat-'a em Sbayet r-en Kemet: An Introduction to the Study of the Egyptian Language: A Semitic Approach |author=Abd el-Mohsen Bakir |date=1978 |publisher=General Egyptian Book Organization |page=70 }}.</ref> and <hiero>M3:X1*Z1-N35-N35:U19-W24-G43-V28-V1</hiero>, <hiero>M3:X1*Z1-N35-N35:U19:W24-V28-V1</hiero>, and <hiero>M3:X1*Z1-N35-U19-W24-V28</hiero>,<ref name=vygus/> which were pronounced '']t n nw]''<ref name=mc7/> ({{langx|cop|ϣⲉ ⲛ ⲛⲟϩ}}, ''she n noh'').<ref name=gtown/>}}
| '']t''
|| {{lang|cop|ϩⲱⲧⲉ}}{{sfnp|Crum|1939|p=722}}<br>{{lang|cop|ϩⲱϯ}}{{sfnp|Crum|1939|p=722}} || ''hōte''<br>''hōti''
| colspan=2 | 100 cubits<ref name=mc7/>
| style="text-align: right" |52.5&nbsp;m<ref name=hp85/>
|-
| ]<ref name=vygus/><br>River-Measure<br>]<ref name=vygus/><br>Ater<ref name=mc7/><br>{{nowrap|Iter<ref name=cnm/> or Iteru<ref name=vygus/>}}
| <hiero> M17-X1:D21-G43-N35B-N36:N21*Z1</hiero>{{efn|Alternative representations of the Egyptian schoenus include <hiero>M17-X1:D21-G43-D54</hiero>, <hiero>M17-X1:D21-G43-D54-Z1</hiero>, <hiero>M17-X1:D21-G43-N36</hiero>, <hiero>M17-X1:D21-N35A-D54:N21*Z1</hiero>, <hiero>M17-X1*Z7:D21-N35A-D54</hiero>, <hiero>M17-X1*Z7:D21-N35A-N17:N21*N21-Z2</hiero>, <hiero>M17-X1*Z7:D21-N35A-N36:N21*Z1-Z2</hiero>, <hiero>M17-X1*Z7:D21-N35A-N36:N23</hiero>, <hiero>M17-X1:D21-Z7-N37:Z2</hiero>, and <hiero>M17-D21-D56-D54</hiero>.<ref name=vygus/>}}
| '']trw'' || ϣϥⲱ{{sfnp|Crum|1939|p=611}}<br>ϣⲃⲱ{{sfnp|Crum|1939|p=611}} || ''shfō''<br>''shvō''
| colspan=2 | 20,000 cubits<ref name=mc7/>
| style="text-align: right" |10.5&nbsp;km<ref name=mc7/>
|} |}

The digit was also subdivided into smaller fractions of {{1/2}}, {{1/3}}, {{1/4}}, and {{frac|1|16}}.<ref>{{harvp|Lepsius|1865|p=}}.</ref> Minor units include the ] reed of 2 royal cubits,{{efn|The Egyptian reed was written <hiero>N35:D58*M17-M3</hiero> or <hiero>N35:D58-M17-Z7-T19</hiero> and pronounced ''nb]''.<ref name=vygus/>}} the ] xylon ({{langx|grc|ξύλον}}, {{abbr|lit|literally}}.{{nbsp}}"timber") of three royal cubits,<ref>{{citation |contribution-url=https://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0063%3Aalphabetic+letter%3DM%3Aentry+group%3D2%3Aentry%3Dmensura-cn |contribution=Mensura |title=A Dictionary of Greek and Roman Antiquities |date=1890 |editor-last=Smith |editor-first=William |editor2=William Wayte |editor3=G.E. Marindin |display-editors=0 |last=Ridgeway |first=William |location=London |publisher=John Murray }}.</ref><ref>{{citation |publisher=American Philological Association |date=1941 |title=Transactions and Proceedings |page=443 }}.</ref> the Ptolemaic ] ({{langx|grc|ὀργυιά}}, ''orgyiá''; {{langx|egy|]pt}}; {{langx|cop|ϩⲡⲟⲧ}}, ''hpot'') of four lesser cubits,<ref>{{citation |url=https://books.google.com/books?id=3_wUAAAAIAAJ |contribution-url=https://books.google.com/books?id=3_wUAAAAIAAJ&pg=PA1312 |page= |contribution=3997: Iversen, Erik, Canon and Proportions in Egyptian Art |title=Annual Egyptological Bibliography 1955 |last=Janssen |first=Jozef M.A. |date=1956 |location=Leiden |publisher=E.J. Brill for the International Association of Egyptologists }}.</ref> and the kalamos of six royal cubits.<ref name=hp86/>


==Area== ==Area==
Records of land area also date to the ]. The ] records grants of land expressed in terms of ''kha'' and ''setat''. Mathematical papyri also include units of land area in their problems. For example, several problems in the ] give the area of rectangular plots of land in terms of ''setat'' and the ratio of the sides and then require the scribe to solve for their exact lengths.<ref name="MC"/>


The ''setat'' was the basic unit of land measure and may originally have varied in size across Egypt's ]s.<ref name=cnm/> Later, it was equal to one square ''khet'', where a ''khet'' measured 100 ''cubits''. The ''setat'' could be divided into strips one ''khet'' long and ten ''cubit'' wide (a ''kha'').<ref name="CR"/><ref name="MC"/><ref></ref>
The records of areas of land date back to the early dynastic period. Gifts of land recorded in the ] are expressed in terms of kha, setat, etc. Further examples of units of area come from the mathematical ]. Several problems in the ] for instance give the area of a rectangular plot of land (measured in setjats) and given a ratio for the lengths of the sides of the rectangles one is asked to compute the lengths of the sides.<ref name="MC"/>


During the ]:
The ''setat'' was equal to one square ''khet'', where a ''khet'' measured 100 ''cubits''. The ''setat'' could be divided into strips one ''khet'' long and ten ''cubit'' wide (a ''Kha'').<ref name="CR"/><ref></ref>


{| class="wikitable" border="1" cellpadding="5" align="center" | style="margin: 1em auto 1em auto; width: 75%" {| class="wikitable" style="margin: 1em auto 1em auto; text-align: center"
|+'''Units of Area<ref name="MC"/><ref name="CR"/> ''' |+ Units of Area
! colspan=5 | Names
!|Name!! |Egyptian name!!align="center" |Equivalent Egyptian values!! |Metric Equivalent
! colspan=3 | Equivalents<ref name=mc12>{{harvp|Clagett|1999|p=}}.</ref>
|- |-
! English
| Kha-ta || <small><hiero>V28-G1-X1-N37-M12</hiero></small> ''kha-ta'' || 100,000 sq cubits || 27,565 square meters
! colspan=2 | Egyptian
! colspan=2 | Coptic
! Setat
! Square<br>Cubits
! Metric
|- |-
| Sa<ref name=cnm/><br>Eighth
| Setat (setjat) || <small><hiero>s t-F29-t:Z4</hiero></small>''setat'' || 1 square khet = 10,000 square cubits || 2,756½ square meters
| <hiero>G39</hiero> || ''z]'' || ||
| style="text-align: right" | {{frac|1|800}}
| style="text-align: right" | {{frac|12|1|2}}
| style="text-align: right" | 3.4456{{nbsp}}m<sup>2</sup>
|- |-
| Heseb<br>Fourth<br>Account Unit<ref name=cnm/>
| Kha || <small><hiero>M12</hiero></small>''kha'' || 1000 square cubits = 1/10 setat || 275.65 square meters
| <hiero>Z9</hiero> || '']sb'' || ||
| style="text-align: right" | {{frac|1|400}}
| style="text-align: right" | 25
| style="text-align: right" | 6.8913{{nbsp}}m<sup>2</sup>
|- |-
| Remen<br>Half<br>Shoulder<ref name=cnm/>
| Ta || ''ta'' || 100 square cubits = 1/100 setat || 27.565 square meters
| <hiero>D41</hiero> || ''rmn'' || ||
| style="text-align: right" | {{frac|1|200}}
| style="text-align: right" | 50
| style="text-align: right" | 13.783{{nbsp}}m<sup>2</sup>
|- |-
| Ta<br>Khet<ref name=mc12/><br>Cubit<ref name=mc13>{{harvp|Clagett|1999|p=}}.</ref><br>Cubit of Land<ref name=mc13/><br>Land Cubit<ref name=vygus/><br>Ground Cubit<ref name=mc13/><br>Cubit Strip<ref name=mc13/><br>Land Unit<ref name=cnm/>
| Shoulder (Remen) || <small><hiero>D41</hiero></small>''remen'' || 1/2 ta = 50 square cubits || 13.7 square meters
| <hiero>N17</hiero>{{efn|Alternative representations of the 100-square-cubit measure include <hiero>D41</hiero> and <hiero>D41:N16</hiero>, both pronounced ''m] t]'',<ref name=vygus/> and <hiero>V28-G1-X1-N37-M12</hiero>.{{citation needed|date=February 2017}}}}
| ''t]''<br>'']t''<br>''m]''<br>''m] itn''
| {{lang|cop|ϫⲓⲥⲉ}}{{sfnp|Crum|1939|p=790}}<ref name=gtown/> || jise
| style="text-align: right" | {{frac|1|100}}
| style="text-align: right" | 100<ref name=mc12/>
| style="text-align: right" | 27.565{{nbsp}}m<sup>2</sup>
|- |-
| Kha<br>Thousand<ref name=cnm/>
| Heseb || <small><hiero>Z9</hiero></small>''heseb'' || 1/2 remen = 25 square cubits || 6.8 square meters
| <hiero>M12</hiero> || '']]'' || ||
| style="text-align: right" | {{frac|1|10}}
| style="text-align: right" | 1,000
| style="text-align: right" | 275.65{{nbsp}}m<sup>2</sup>
|-
| Setat<ref name=mc12/><br>Setjat<ref name=mc12/><br>Aroura<ref name=mc12/><br>Square Khet<ref name=mc12/>
| <hiero>s t-F29-t:Z4</hiero>{{efn|Alternative representations of the setat include <hiero>N18</hiero>, <hiero>O39:Z1</hiero>, <hiero>S22:X1*X1</hiero>, <hiero>S29-V13:V2-X1:O39</hiero>, <hiero>V2:X1*N23</hiero>, <hiero>V2:X1*X1-N23:Z1</hiero>, <hiero>V2:X1*X1-O39</hiero>, <hiero>V2:X1*Z4</hiero>, <hiero>V2:X1*Z4-N23-Z1:Z1</hiero>, and <hiero>D35:X1*Z4-V20:Z2</hiero>, all pronounced ''s]]t''.<ref name=vygus/>}} || ''s]]''<ref name=hp85>{{harvp|Bagnall|2009|p=}}.</ref><br>''s]]t''<ref name=mc12/>
| {{lang|cop|ⲥⲱⲧ}}{{sfnp|Crum|1939|p=360}}<ref name=gtown/><br>{{lang|cop|ⲥⲧⲉⲓⲱϩⲉ}}{{sfnp|Crum|1939|p=367}}<ref name=gtown/> || ''sōt''<br>''steiōhe''
| style="text-align: right" | 1
| style="text-align: right" | 10,000
| style="text-align: right" | 2,756.5{{nbsp}}m<sup>2</sup>
|- |-
| Sa || <small><hiero>G38</hiero></small>''sa'' || 1/2 heseb = 12.5 square cubits || 3.4 square meters
|} |}


During the ] and ], the "eighth", "fourth", "half", and "thousand" units were taken to refer to the ''setat'' rather than the cubit strip:
==Volume, Capacity and Weight==


{| class="wikitable" style="margin: 1em auto 1em auto; text-align: center"
Several problems in the mathematical ] deal with volume questions. For example in RMP 42 the volume of a circular granary is computed as part of the problem and units of cubic cubits, khar, quadruple heqats and heqats are used.<ref name="MC"/>
|-
| Sa<br>Eighth
| <hiero>G39</hiero>{{efn|Alternative representations of the {{frac|1|8}} setat include <hiero>Z30</hiero>.<ref name=vygus/>}} || ''s]'' || ||
| style="text-align: right" | {{frac|1|8}}
| style="text-align: right" | 1,250
| style="text-align: right" | 345{{nbsp}}m<sup>2</sup>
|-
| Heseb<br>Fourth
| <hiero>Z9</hiero>{{efn|Alternative representations of the quarter-setat include <hiero>Aa2:Y1</hiero>.{{citation needed|date=February 2017}}}} || ''hsb''<br>''r-fdw'' || ||
| style="text-align: right" | {{1/4}}
| style="text-align: right" | 2,500
| style="text-align: right" | 689{{nbsp}}m<sup>2</sup>
|-
| Gs<br>Remen<br>Half
| <hiero>Aa13</hiero>{{efn|Alternative representations of the half-setat include <hiero>W11-S29-Aa13</hiero>, pronounced ''gs'', <hiero>D41</hiero>, pronounced ''rmn'',<ref name=vygus/> and <hiero>Y5:N35-M40</hiero>.{{citation needed|date=February 2017}}}} || ''gs''
| {{lang|cop|ⲣⲉⲣⲙⲏ}}<ref name=gtown/> || rermē
| style="text-align: right" | {{1/2}}
| style="text-align: right" | 5,000
| style="text-align: right" | 1378{{nbsp}}m<sup>2</sup>
|-
| Kha<br>Thousand
| <hiero>M12</hiero>{{efn|Alternative representations of the thousand-ta measure include <hiero>M12-N16:N23*Z1</hiero>, <hiero>M12-N17</hiero>, and <hiero>M12-Z1-N35-N16:N23*Z1</hiero>.<ref name=vygus/>}} || '']]''<br>'']] t]'' || ||
| style="text-align: right" | 10
| style="text-align: right" | 100,000
| style="text-align: right" | 2.76{{nbsp}}ha
|-
|}


During the Ptolemaic period, the cubit strip square was surveyed using a length of 96 cubits rather than 100, although the ''aroura'' was still figured to compose 2,756.25{{nbsp}}m<sup>2</sup>.<ref name=hp86/> A 36{{nbsp}}square{{nbsp}}cubit area was known as a ''kalamos'' and a 144{{nbsp}}square{{nbsp}}cubit area as a ''hamma''.<ref name=hp86/> The uncommon ''bikos'' may have been {{frac|1|1|2}}{{nbsp}}''hammata'' or another name for the cubit strip.<ref name=hp86/> The Coptic ''shipa'' ({{lang|cop|ϣⲓⲡⲁ}}) was a land unit of uncertain value, possibly derived from ].{{sfnp|Crum|1939|p=570}}
Problem 80 on the ] recorded how to divide grain (measured in ''heqats''), a topic included in RMP 42 into smaller units called ''henu'':


==Volume==
]
] of the birth and throne names of ] of the ]]]
The text states: As for vessels (debeh) used in measuring grain by the functionaries of the granary, done into henu : 1 hekat makes 10 ; 1/2 makes 5 ; 1/4 makes 2½ etc.<ref name="MC"/>
Units of volume appear in the mathematical papyri. For example, computing the volume of a circular ] in ]{{nbsp}}42 involves cubic cubits, khar, heqats, and quadruple heqats.<ref name="MC"/><ref name="MTP"/> RMP{{nbsp}}80 divides heqats of grain into smaller henu.


]: As for vessels (''debeh'') used in measuring grain by the functionaries of the granary: done into henu, 1 hekat makes 10; {{1/2}} makes 5; {{1/4}} makes {{frac|2|1|2}}; etc.<ref name="MC"/><ref name="MTP"/>]]
{| class="wikitable" border="1" cellpadding="5" align="center" | style="margin: 1em auto 1em auto; width: 75%"

|+'''Units of volume and capacity<ref name="MC"/><ref name="CR"/> '''
{| class="wikitable" style="margin: 1em auto 1em auto; text-align: center"
!|Name!! |Egyptian name!!align="center" |Equivalent Egyptian values!! |Metric Equivalent
|+ Units of Volume<ref name="MC"/><ref name="CR"/>
! colspan=3 | Names
! colspan=3 | Equivalents
|-
! English
! colspan=2 | Egyptian
! Heqats
! Ro
! Metric
|- |-
| Ro
| Deny || ''deny'' || 1 cubic cubit ||
| <hiero>r</hiero> || ''r''
| style="text-align: right" | {{frac|1|320}}
| style="text-align: right" | 1
| style="text-align: right" | 0.015{{nbsp}}L
|- |-
| Dja
| Khar (sack) || <small><hiero>Aa1:r</hiero></small>''khar'' || 20 heqat (]) <br> 16 heqat (]) <ref name="katz">Katz, Victor J. (editor),Imhausen, Annette et.al. The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook, Princeton University Press. 2007, p 17, ISBN 978-0-691-11485-9</ref> || 96.5 liters (]) <br> 76.8 liters (]) <ref name="katz"/>
| || ''dja''
| style="text-align: right" | {{frac|1|16}}
| style="text-align: right" | 20<ref>{{citation |first=T. |last=Pommerening |contribution=Altagyptische Rezepturen Netrologisch Neu Onterpretiert |title=Berichte zur Wissenschaftgeschichte, ''No. 26'' |date=2003 |page=1–16}}. {{in lang|de}}</ref>
| style="text-align: right" | 0.30{{nbsp}}L
|- |-
| Jar<br>Hinu
| quadruple heqat || <small><hiero>T14-U9</hiero></small>''hekat-fedw''|| 4 heqat = 40 hinu || 19.2 liters
| <hiero>h-n:W24*V1-W22</hiero> || ''hnw''
| style="text-align: right" | {{frac|1|10}}
| style="text-align: right" | 32
| style="text-align: right" | 0.48{{nbsp}}L
|- |-
| Barrel<br>Heqat<br>Hekat
| double heqat || ''hekaty'' || 2 heqat = 20 hinu || 9.6 liters
| <hiero>U9</hiero> || ''hqt''
| style="text-align: right" | 1
| style="text-align: right" | 320
| style="text-align: right" | 4.8{{nbsp}}L
|- |-
| Double{{nbsp}}Barrel<br>Double Heqat<br>Double Hekat
| Heqat (barrel) || <small><hiero>U9</hiero></small>''hekat'' || 10 hinu || 4.8 liters
| || ''hqty''
| style="text-align: right" | 2
| style="text-align: right" | 640
| style="text-align: right" | 9.6{{nbsp}}L
|- |-
| Quadruple Heqat{{nbsp}}(])<ref name=deu/><br>Oipe<ref>{{citation |page= |url=https://books.google.com/books?id=6KUdBAAAQBAJ |title=Middle Egyptian: An Introduction to the Language and Culture of Hieroglyphics, ''3rd ed.'' |last=Allen |first=James P. |date=2014 |location=] |publisher=Cambridge University Press |isbn = 9781139917094}}.</ref> (])<ref name=deu>{{citation |contribution-url=http://www.ucl.ac.uk/museums-static/digitalegypt/weights/volume.html |contribution=Measuring Volume in Ancient Egypt |title=Digital Egypt for Universities |url=http://www.ucl.ac.uk/museums-static/digitalegypt/Welcome.html |publisher=University College |location=London |date=2002 }}.</ref>
| Hinu (jar) || <small><hiero>h-n:W24*V1-W22</hiero></small>''hnw'' || 1/10 heqat = 32 ro || .48 liters
| <hiero>T14-U9</hiero><br><hiero>-i-p:t-U9-</hiero> || ''hqt-fdw''<br>''jpt''<ref name=cnm>{{citation |contribution-url=http://www.reshafim.org.il/ad/egypt/people/counting_and_measuring.htm#volume |contribution=Counting and Measuring |title=Pharaonic Egypt |url=http://www.reshafim.org.il/ad/egypt/index.html |date=2012 |last=Dollinger |first=André |location=Reshafim }}.</ref><br>''ipt''<ref name=deu/>
| style="text-align: right" | 4
| style="text-align: right" | 1,280
| style="text-align: right" | 19.2{{nbsp}}L
|- |-
| Sack<br>Khar
| Dja || ''dja''|| 5/8 hinu = 20 ro <ref>T. Pommerening, Altagyptische Rezepturen metrologisch neu onterpretiert, Berichte zur Wissenschaftgeschichte 26 (2003) p. 1 - 16</ref> || .3 liters
| <hiero>Aa1:r</hiero> || ''khar''
| style="text-align: right" | 20{{nbsp}}(])<br>16{{nbsp}}(])<ref name="katz">{{citation |editor-last=Katz |editor-first=Victor J. |editor2=Annette Imhausen |display-editors=1 |title=The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook |publisher=Princeton University Press |date=2007 |page=17 |isbn=978-0-691-11485-9 }}.</ref>
| style="text-align: right" | 6,400{{nbsp}}(])<br>5120{{nbsp}}(])
| style="text-align: right" | 96.5{{nbsp}}L{{nbsp}}(])<br>76.8{{nbsp}}L{{nbsp}}(])<ref name="katz"/>
|- |-
| Deny<br>Cubic{{nbsp}}cubit
| Ro || <small><hiero>r</hiero></small>''r''|| 1/320 heqat || .015 liters
| || ''deny''
| style="text-align: right" | 30
| style="text-align: right" | 9,600
| style="text-align: right" | 144{{nbsp}}L
|} |}


The oipe was also formerly romanized as the ''apet''.<ref>{{citation |title=Encyclopaedia Britannica, ''9th ed.'' |contribution=Weights and Measures |volume=XXIV |date=1888 }}.</ref>
Weights were measured in terms of ]. This unit would have been equivalent to 13.6&nbsp;grams in the ] and ]. During the ] however it was equivalent to 91&nbsp;grams. For smaller amounts the kite (1/10 of a deben) and the shematy (1/12 of a deben) were used.<ref name="CR"/>


==Weight==
{| class="wikitable" border="1" cellpadding="5" align="center" | style="margin: 1em auto 1em auto; width: 75%"
], inscribed for the high steward ] during the late ]]]
|+'''Units of weight <ref name="CR"/> '''
]]]
!|Name!! |Egyptian name!!align="center" |Equivalent Egyptian values!! |Metric Equivalent

Weights were measured in terms of ]. This unit would have been equivalent to 13.6&nbsp;grams in the ] and ]. During the ] however it was equivalent to 91&nbsp;grams. For smaller amounts the qedet ({{frac|1|10}} of a deben) and the shematy ({{frac|1|12}} of a deben) were used.<ref name="CR"/><ref name="MTP"/>

{| class="wikitable" style="margin: 1em auto 1em auto; text-align: center"
|+ Units of Weight<ref name="CR"/>
! colspan=3 | Names
! colspan=2 | Equivalents
|- |-
!English
| Deben || <small><hiero> D46-D58-N35:F46 </hiero> </small> ''dbn''|| || 13.6&nbsp;grams in the ] and ]. <br> 91&nbsp;grams during the ]
! colspan=2 | Egyptian
!Debens
!Metric
|- |-
| Piece<br>Shematy
| Kite || <small><hiero> Aa28-X1:S106 </hiero> </small> ''qd.t''|| 1/10 of a deben ||
| || ''shȝts''
| style="text-align: right" | {{frac|1|12}}
| style="text-align: right" |
|- |-
| Qedet<br>Kedet<br>Kite
| Shematy || ''shȝts'' || 1/12 of a deben ||
| <hiero>Aa28-X1:S106</hiero> || ''qdt''
| style="text-align: right" | {{frac|1|10}}
| style="text-align: right" |
|-
| ]
| <hiero>D46-D58-N35:F46</hiero> || ''dbn''
| style="text-align: right" | 1
| style="text-align: right" | 13.6&nbsp;g (] & ])<br> 91&nbsp;g (])
|} |}

The qedet or kedet is also often known as the ''kite'', from the ] form of the same name ({{lang|cop|ⲕⲓⲧⲉ}} or {{lang|cop|ⲕⲓϯ}}).{{sfnp|Weigall|1908|p=ix}} In 19th-century sources, the deben and qedet are often mistakenly transliterated as the ''uten'' and ''kat'' respectively, although this was corrected by the 20th century.{{sfnp|Weigall|1908|pp=iii & ix}}


==Time== ==Time==
{{main|Egyptian calendar|Alexandrian calendar}}
The Egyptians divided their year (''rnpt'') into 365 days (''hrw''). The ] had 12 months (''abd'') of 30 days each, plus 5 epagomenal days.<ref name="MC" />
The ] of the ] organized ] and ] into three ]s: ] ("Flood"), ] ("Growth"), and ] or Shomu ("Low Water" or "Harvest").<ref name=teatime>{{harvp|Tetley|2014|p=}}.</ref>{{sfnp|Winlock|1940|p=453}}{{sfnp|Clagett|1995|p=}}


The ] in place by ]{{sfnp|Clagett|1995|p=}} followed ]s resetting with the ascension of each new ].<ref name=poormountaineer>{{harvp|Clagett|1995|p=}}.</ref> It was based on the ] and apparently initiated during a ] of ] following a recognition of its rough correlation with the onset of the Nile flood.{{sfnp|Parker|1950|p=23}} It followed none of these consistently, however. Its year was divided into 3 seasons, ], 36 ], or 360 ]s with another 5 ]{{sfnp|Parker|1950|p=7}}—celebrated as the birthdays of five major gods{{sfnp|Spalinger|1995|p=33}} but feared for their ill luck{{sfnp|Spalinger|1995|p=35}}—added "upon the year". The ] were originally simply numbered within each season{{sfnp|Parker|1950|pp=43–5}} but, in later sources, they acquired names from the year's major festivals{{sfnp|Clagett|1995|p=14–15}} and the three decans of each one were distinguished as "first", "middle", and "last".{{sfnp|Clagett|1995|p=}} It has been suggested that during the ] and the ] the last two days of each decan were usually treated as a kind of weekend for the royal craftsmen, with royal artisans free from work.{{sfnp|Jauhiainen|2009|p=39}} This scheme lacked any provision for ] ] until the introduction of the ] by ] in the 20s{{nbsp}}BC, causing it to slowly move through the ] against the ], ], and ].<ref name="MC" /><ref name="EG"/><ref>Marshall Clagett, Ancient Egyptian Science: Calendars, clocks, and astronomy, 1989</ref> Dates were typically given in a ].<ref name=poormountaineer/>
They divided their year into 3 seasons, named Akhet, Peret and Shemu. Akhet was the season of inundation. Peret was the season which saw the emergence of life after the inundation. The season of Shemu was named after the low water and included harvest time.<ref>Marshall Clagett, Ancient Egyptian Science: Calendars, clocks, and astronomy, 1989</ref>


The civil calendar was apparently preceded by an observational ] which was eventually made ]{{efn|] extensively developed the thesis that the predynastic lunar calendar was already ], using ]s every 2 or 3 years to maintain ]'s ] in its twelfth month,{{sfnp|Parker|1950|pp=30–2}} but no evidence of such intercalation exists predating the schematic lunisolar calendar developed in {{nowrap|4th century BC.{{sfnp|Tetley|2014|p=}}}}}} and fixed to the civil calendar, probably in 357{{nbsp}}BC.{{sfnp|Clagett|1995|p=}} The months of these calendars were known as "temple months"{{sfnp|Parker|1950|p=17}} and used for liturgical purposes until the ] under ]<ref>Theodosian Code 16.10.12</ref> in the AD{{nbsp}}390s and the subsequent suppression of individual worship by ].{{sfn|Høyrup|p=13}}
{| class="wikitable" border="1" cellpadding="5" align="center" | style="margin: 1em auto 1em auto; width: 75%"

|+'''Units of time<ref name="MC"/><ref name="CR"/> '''
Smaller units of time were vague approximations for most of Egyptian history. Hours—known by a variant of the word for "stars"{{sfnp|Vygus|2015|p=409}}—were initially only demarcated at night and varied in length. They were measured using ] stars and by ]s. Equal 24-part divisions of the day were only introduced in 127{{nbsp}}BC. Division of these hours into 60 equal ]s is attested in ]'s 2nd-century works.
!|Name!! |Egyptian name !!align="center" |Equivalent Egyptian values

{| class="wikitable" style="margin: 1em auto 1em auto; text-align: center"
|+ Units of Time<ref name="MC"/><ref name="CR"/>
! colspan=3 |Name
! rowspan=2 | Days
|- |-
! English
| hour || <hiero>E34-N35-W24-X1-N14</hiero></small>''unut'' || 1 day = 24 hours
! colspan=2 | ]
|- |-
| style="text-align: left" | ]
| day || <hiero>O4-D21-G43-N5</hiero></small> ''hrw'' || 1 day = 1/30 month = 24 hours
| <hiero>E34:N35-W24:X1-N14:N5</hiero>{{efn|Variant representations of hour include <hiero>E34:N35-D54</hiero>,{{sfnp|Vygus|2015|p=399}} <hiero>E34:N35-W24:X1-N5</hiero>, <hiero>E34:N35-W24*X1:N14</hiero>, <hiero>E34:N35-W24-G43-X1:N14-N5:Z1</hiero>,{{sfnp|Vygus|2015|p=408}} <hiero>E34:N35-W24:X1-N14-X1:N5-Z1</hiero>, <hiero>E34:N35-W24:X1-N2-N5-Z1</hiero>, <hiero>E34:N35-W24:X1-N2-D6</hiero> (properly <hiero>N46B</hiero> with a star at the end of the line and a second shorter line to its right),{{sfnp|Vygus|2015|p=409}}<hiero>E34:N35-W24:Z7-N14-N5:Z2</hiero>,{{sfnp|Vygus|2015|p=410}} <hiero>N5:Z2</hiero>,{{sfnp|Vygus|2015|p=1229}} <hiero>N14:V13-N5</hiero>, <hiero>N14:V13-N5:Z2</hiero>, <hiero>N14:X1*N5</hiero>, <hiero>N14:X1-N5:Z2</hiero>,{{sfnp|Vygus|2015|p=1239}} <hiero>N14:X1*Z1</hiero>,{{sfnp|Vygus|2015|p=1240}} <hiero>T14-X1:N5</hiero>,{{sfnp|Vygus|2015|p=1984}} and <hiero>E34-N35-W24-X1-N14</hiero>.{{citation needed|date=February 2017}} As ''nwt'', hour also appears as <hiero>N35:U19-W24-G43-X1:N5</hiero>.{{sfnp|Vygus|2015|p=1382}}}}
| {{lang|egy|wnwt}}
| variable
|- |-
| style="text-align: left" | ] || <hiero>S29-S29-S29-Z7-N5</hiero>{{efn|Variant representations of day include <hiero>N5</hiero>,{{sfnp|Vygus|2015|p=1228}} <hiero>S29-S29-S29-G43-N5</hiero>,{{sfnp|Vygus|2015|p=1880}} and <hiero>S29-S29-Z4-N5</hiero>.{{sfnp|Vygus|2015|p=1881}} In the plural ''sww'', it appears as <hiero>O35-G43-N5:Z2</hiero>{{sfnp|Vygus|2015|p=1611}} <hiero>S29-G43-N5:Z2</hiero>{{sfnp|Vygus|2015|p=1790}} and <hiero>S29-S29-S29-N5</hiero>.{{sfnp|Vygus|2015|p=1880}} As ''hrw'' ("daytime", "day"), it appears as <hiero>N5-Z1</hiero>,{{sfnp|Vygus|2015|p=1228}} <hiero>O4-N5</hiero>,{{sfnp|Vygus|2015|p=1500}} <hiero>Z5:N5-Z1</hiero>,{{sfnp|Vygus|2015|p=2467}} <hiero>O1:D21-N5-Z1</hiero>,{{sfnp|Vygus|2015|p=1461}} <hiero>O4-G1-D21:N5*Z1</hiero>,{{sfnp|Vygus|2015|p=1477}} <hiero>O4-G1-D21:Z7-N5-Z1</hiero>,{{sfnp|Vygus|2015|p=1478}} <hiero>O4-G1-Z7-N5:Z1</hiero>,{{sfnp|Vygus|2015|p=1492}} <hiero>O4-G43-N5:Z1</hiero>,{{sfnp|Vygus|2015|p=1495}} <hiero>O4-Z1-G43-N5</hiero>, <hiero>O4-Z5-N5-Z1</hiero>,{{sfnp|Vygus|2015|p=1513}} <hiero>O4-Z5-X1:N5</hiero>, <hiero>O4-Z5-Z5-N5</hiero>, <hiero>O4-Z5-Z5-Z1</hiero>,{{sfnp|Vygus|2015|p=1514}} and <hiero>O4:D21-G43-N5:Z1</hiero>.{{sfnp|Vygus|2015|p=1471}} As ''rꜥ'' ("sun", "day"), it appears as <hiero>N5</hiero>, <hiero>N5-Z1</hiero>,{{sfnp|Vygus|2015|p=1228}} and <hiero>D21:D36-N5-Z1</hiero>.{{sfnp|Vygus|2015|p=75}} As ''ḏt'', day appears as <hiero>I10:X1*Z1-D12</hiero>, although properly the loaf and stroke are smaller and fit within the curve of the snake.{{sfnp|Vygus|2015|p=822}}}} || {{lang|egy|sw}}
| month || <hiero>N11:N14-d</hiero></small> ''abd'' || 1 month = 30 days
| style="text-align: right" | 1
|- |-
| style="text-align: left" | ]<br>decade<br>] || <hiero>S29-S29-S29-Z7-N5-V20</hiero>{{efn|Variant representations of decan include <hiero>S29-S29-Z7-N5-V20</hiero>.{{sfnp|Vygus|2015|p=1881}}}} || "ten-day"<br>{{lang|egy|sw mḏ}}{{sfnp|Vygus|2015|p=1880}}
| Inundation season || <hiero>M8-Aa1:t-N5</hiero></small> ''akhet'' || Akhet = 4 months = 120 days
| style="text-align: right" | 10
|- |-
| style="text-align: left" | ] || <hiero>N11:N14-D46:N5</hiero>{{efn|Variant representations of month include <hiero>N11</hiero>, <hiero>N11:N14</hiero>, <hiero>N11:N14:D46</hiero>,{{sfnp|Vygus|2015|p=1233}} <hiero>N11:N14-D46</hiero>,{{citation needed|date=February 2017}} <hiero>N11:N14-D46:N5*Z1</hiero>, <hiero>N11:N14*D46-Z7-N5</hiero>, <hiero>N11:N14*Z1-D46:N5*Z1</hiero>, and <hiero>N11:N14*Z5*Z5-N5</hiero>.{{sfnp|Vygus|2015|p=1234}} In the plural {{lang|egy|ꜣbdtyw}}, it appears as <hiero>N11:N14*D46-G4-Z7:Z7-X1:N5</hiero>.{{sfnp|Vygus|2015|p=1233}} As ''ꜣbdw'', month appears as <hiero>G1-N11:D46-G43</hiero>.{{sfnp|Vygus|2015|p=547}}}} || {{lang|egy|ꜣbd}}
| Emergence season || <small><hiero>pr:r-t:N5</hiero></small> ''peret'' || Peret = 4 months = 120 days
| style="text-align: right" | 30
|- |-
| style="text-align: left" | ] || <hiero>M17-X1:D21-G43-M6</hiero> || {{lang|egy|ı͗trw}}{{efn|In the plural ''ı͗trw'', "seasons" appears as <hiero>M17-V13:D21-G43-M5</hiero> (properly <hiero>M5B</hiero> with a triangular leaf),{{sfnp|Vygus|2015|p=1156}} <hiero>M17-X1:D21-G43-M4-M4-M4-N5*N5:N5</hiero>, and <hiero>M17-X1:D21-E23-M5-M5-M5</hiero>, although properly the palm branches of the last are reversed.{{sfnp|Vygus|2015|p=1168}} As ''tr'' ("time", "period", "season"), it appears as <hiero>M6-N5</hiero>,{{sfnp|Vygus|2015|p=958}} <hiero>M17-X1:D21-N5</hiero>,{{sfnp|Vygus|2015|p=1167}} <hiero>X1:D21-M6-N5</hiero>,{{sfnp|Vygus|2015|p=2386}} and <hiero>X1:D21-M17-M6-N5</hiero>.{{sfnp|Vygus|2015|p=2387}} In the ], this appears as ''trwy'' in <hiero>X1:D21-G43-M6-N5:N5</hiero>, <hiero>X1:D21-M6-N5:N5</hiero>,{{sfnp|Vygus|2015|p=2386}} and <hiero>X1:D21-M17-M6-Z4-G43-N5:N5</hiero>.{{sfnp|Vygus|2015|p=2387}} In the plural, this appears as ''trw'' in <hiero>M17-G43-X1:D21-G43-M6-N5:Z2</hiero>,{{sfnp|Vygus|2015|p=1085}} <hiero>M17-X1:D21-M6-N5:Z2</hiero>,{{sfnp|Vygus|2015|p=1167}} and <hiero>X1:D21-G43-M4-N5:Z2</hiero>.{{sfnp|Vygus|2015|p=2386}}}}
| Harvest season || <small><hiero>S-n:n:n-N5</hiero></small>''shemu'' || Shemu = 4 months = 120 days
| style="text-align: right" | 120
|- |-
| style="text-align: left" | year || <hiero>M4-X1:Z1</hiero>{{efn|Variant representations of year include <hiero>M5</hiero>, <hiero>M7-X1:Z1</hiero>,{{sfnp|Vygus|2015|p=958}} <hiero>M4-X1</hiero> and <hiero>M4-X1:Z1-G7</hiero>.{{sfnp|Vygus|2015|p=957}} In the plural {{lang|egy|rnpwt}}, it appears as <hiero>D21:N35:Q3*Z2</hiero> on the Naucratis Stela{{sfnp|Vygus|2015|p=103}} and as <hiero>M4-M4-M4</hiero>, <hiero>M4-M4-M4-X1:Z1-Y1:Z2</hiero>, <hiero>M4-M4-M4-X1:Z2</hiero>, <hiero>M4-X1:Z1-Z3A</hiero>, <hiero>M4-X1:Z2</hiero>,{{sfnp|Vygus|2015|p=957}} and <hiero>M4-Z3</hiero>.{{sfnp|Vygus|2015|p=958}}}} || {{lang|egy|rnpt}}
| year || <hiero>M4-X1-Z1</hiero></small> ''renpet'' || 1 year = 365 days
| style="text-align: right" | 365<br>{{frac|365|1|4}}
|} |}


==See also==
The introduction of equal length hours occurred in 127 BC. The Alexandrian scholar ] introduced the division of the hour into 60 minutes in the second century AD.
* ] and ]
* ] and ]
* ] and ]
* ], ], ], ], ], and ]
* ] & ]

==Notes==
{{Noteslist}}


==References== ==References==

{{reflist}}
===Citations===
{{Reflist|30em}}

===Bibliography===
* {{citation |url=https://books.google.com/books?id=iD1nDAAAQBAJ |editor-last=Bagnall |editor-first=Roger S. |title=The Oxford Handbook of Papyrology |publisher=Oxford University Press |location=Oxford |date=2009 |display-editors=0 |last=Bagnall |first=Roger Shaler |author-link=Roger S. Bagnall |contribution=Practical Help: Chronology, Geography, Measures, Currency, Names, Prosopography, and Technical Vocabulary |pages= |isbn=9780199843695 }}.
* {{citation |first=Marshall |last=Clagett |url=https://books.google.com/books?id=xKKPUpDOTKAC |title=Ancient Egyptian Science: A Source Book, ''Vol. II:'' Calendars, Clocks, and Astronomy |location=Philadelphia |publisher=American Philosophical Society |series=''Memoirs of the APS'', No. 214 |date=1995 |isbn=9780871692146 }}.
* {{citation |last=Clagett |first=Marshall |author-link=Marshall Clagett |title=Ancient Egyptian Science: A Source Book, ''Vol. III:'' Ancient Egyptian Mathematics |series=''Memoirs of the APS'', Vol. 232 |date=1999 |publisher=American Philosophical Society |location=Philadelphia |isbn=978-0-87169-232-0 |url=https://books.google.com/books?id=8c10QYoGa4UC }}.
* {{citation |last=Crum |first=Walter Ewing |author-link=Walter Ewing Crum |url=http://www.tyndalearchive.com/TABS/crum/index.htm |title=A Coptic Dictionary |location=Oxford |publisher=Clarendon Press |date=1939 |page=210 }}.
* {{citation |last=Høyrup |first=Jens |contribution=A Historian's History of Ancient Egyptian Science |title=Physis |contribution-url=http://webhotel4.ruc.dk/~jensh/Publications/1996%7BR%7D10_Clagett.PDF }}, a review of Clagett's ''Ancient Egyptian Science'', Vols. I & II.
* {{citation |url=https://helda.helsinki.fi/bitstream/handle/10138/19196/donotcel.pdf?sequence=2 |title=Do Not Celebrate Your Feast without Your Neighbors: A Study of References to Feasts and Festivals in Non-Literary Documents from Ramesside Period Deir el-Medina |last=Jauhiainen |first=Heidi |publisher=University of Helsinki |location=Helsinki |date=2009 |series=''Publications of the Institute for Asian and African Studies'', No. 10 }}.
* {{citation |last=Lepsius |first=Karl Richard |author-link=Karl Richard Lepsius |title=Die Alt-Aegyptische Elle und Ihre Eintheilung |date=1865 |publisher=Dümmler |location=Berlin |url=https://books.google.com/books?id=PRQGAAAAQAAJ }}. {{in lang|de}}
* {{citation |last=Parker |first=Richard Anthony |author-link=Richard Anthony Parker |title=The Calendars of Ancient Egypt |series=''Studies in Ancient Oriental Civilization'', No. 26 |location=Chicago |publisher=University of Chicago Press |date=1950 |url=https://oi.uchicago.edu/sites/oi.uchicago.edu/files/uploads/shared/docs/saoc26.pdf }}.
* {{citation |last=Spalinger |first=Anthony |contribution=Some Remarks on the Epagomenal Days in Ancient Egypt |title=Journal of Near Eastern Studies, ''Vol. 54, No. 1'' |date=January 1995 |pages=33–47 }}.
* {{citation |last=Tetley |first=M. Christine |title=The Reconstructed Chronology of the Egyptian Kings, ''Vol. I'' |url=http://www.egyptchronology.com/vols-1--2.html |date=2014 |access-date=2017-02-24 |archive-url=https://web.archive.org/web/20170211075421/http://www.egyptchronology.com/vols-1--2.html |archive-date=2017-02-11 |url-status=dead }}.
* {{citation |last=Weigall |first=Arthur Edward Pearse Brome |author-link=Arthur Weigall |publisher=Imprimerie de l'Institut Français d'Archéologie Orientale |date=1908 |location=Cairo |series=''Catalogue Général des Antiquités Égyptiennes du Musée du Caire'', No. 31271-31670 |title=Weights and Balances |url=http://dlib.nyu.edu/awdl/sites/dl-pa.home.nyu.edu.awdl/files/weightsbalances00weig/weightsbalances00weig.pdf }}.
* {{citation |last=Winlock |first=Herbert Eustis |author-link=Herbert Eustis Winlock |date=1940 |contribution-url=https://archive.org/stream/H.e.WinlockTheOriginOfTheAncientEgyptianCalendar1840/Winlock_originOfTheAncientEgyptianCalendar_procAmerPhilosophSoc_1940_sep_v83_n3_447-464#page/n0/mode/2up |contribution=The Origin of the Ancient Egyptian Calendar |pages=447–464 |title=Proceedings of the American Philosophical Society, ''No. 83'' |location=New York |publisher=Metropolitan Museum of Art }}.


==External links== ==External links==
* *
* *
* *
* Page by Digitalegypt (University College London). * Page by Digitalegypt (University College London).
* Article by Gay Robins and C.C.D.Shute * {{Webarchive|url=https://web.archive.org/web/20150924024654/http://www.hallofmaat.com/modules.php?name=Articles&file=article&sid=39 |date=2015-09-24 }} Article by ] and ]
* Page contains photographs of Maya's cubit rod from the Louvre and land surveying scenes from the tomb of Menna. * , with photographs of Maya's cubit rod from the Louvre and land surveying scenes from the tomb of Menna.


{{DEFAULTSORT:Egypt}}
{{systems of measurement}} {{systems of measurement}}

]
{{DEFAULTSORT:Egyptian Units Of Measurement}}
]
]
]
] ]
]
]
]



]
]
]
]
]
]
] ]

Latest revision as of 16:45, 28 November 2024

System of measurement used in Ancient Egypt

The ancient Egyptian units of measurement are those used by the dynasties of ancient Egypt prior to its incorporation in the Roman Empire and general adoption of Roman, Greek, and Byzantine units of measurement. The units of length seem to have originally been anthropic, based on various parts of the human body, although these were standardized using cubit rods, strands of rope, and official measures maintained at some temples.

Following Alexander the Great's conquest of Persia and subsequent death, his bodyguard and successor Ptolemy assumed control in Egypt, partially reforming its measurements, introducing some new units and hellenized names for others.

Length

Egyptian units of length are attested from the Early Dynastic Period. Although it dates to the 5th dynasty, the Palermo stone recorded the level of the Nile River during the reign of the Early Dynastic pharaoh Djer, when the height of the Nile was recorded as 6 cubits and 1 palm (about 3.217 m or 10 ft 6.7 in). A Third Dynasty diagram shows how to construct an elliptical vault using simple measures along an arc. The ostracon depicting this diagram was found near the Step Pyramid of Saqqara. A curve is divided into five sections and the height of the curve is given in cubits, palms, and digits in each of the sections.

At some point, lengths were standardized by cubit rods. Examples have been found in the tombs of officials, noting lengths up to remen. Royal cubits were used for land measures such as roads and fields. Fourteen rods, including one double-cubit rod, were described and compared by Lepsius. Two examples are known from the Saqqara tomb of Maya, the treasurer of Tutankhamun. Another was found in the tomb of Kha (TT8) in Thebes. These cubits are about 52.5 cm (20.7 in) long and are divided into palms and hands: each palm is divided into four fingers from left to right and the fingers are further subdivided into ro from right to left. The rules are also divided into hands so that for example one foot is given as three hands and fifteen fingers and also as four palms and sixteen fingers.

Cubit rod from the Turin Museum.

Surveying and itinerant measurement were undertaken using rods, poles, and knotted cords of rope. A scene in the tomb of Menna in Thebes shows surveyors measuring a plot of land using rope with knots tied at regular intervals. Similar scenes can be found in the tombs of Amenhotep-Sesi, Khaemhat and Djeserkareseneb. The balls of rope are also shown in New Kingdom statues of officials such as Senenmut, Amenemhet-Surer, and Penanhor.

Units of Length
Names Equivalents
English Egyptian Coptic Palms Digits Metric
Digit
Finger
Fingerbreadth
Tebā
D50
ḏb ⲧⲏⲏⲃⲉ tēēbe 1⁄4 1 1.875 cm
Palm
Hand
Shesep
D48
šsp ϣⲟⲡ
ϣⲟⲟⲡ
ϣⲱⲡ
ϣⲁⲡ
shop
shoop
shōp
shap
1 4 7.5 cm
Hand
Handsbreadth
D46
ḏrt ϩⲱϩϥ hōhf 1+1⁄4 5 9.38 cm
Fist
D49
ḫf
ꜣmm
ϭⲁϫⲙⲏ
ϫⲁⲙⲏ
qajmē
jamē
1+1⁄2 6 11.25 cm
Double Handbreadth
D48
D48
šspwy 2 8 15 cm
Small Span
Pedj-Sheser
Shat Nedjes
Little Shat
H7G37
p šsr
šꜣt nḏs
ⲣⲧⲱ
ⲉⲣⲧⲱ
rtō
ertō
3 12 22.5 cm
Great Span
Half-Cubit
Pedj-Aa
Shat Aa
Great Shat
H7O29
pḏ
šꜣt
3+1⁄2 14 26 cm
Foot
Djeser
Ser
Bent Arm
D45
ḏsr 4 16 30 cm
Shoulder
Remen
Upper Arm
D41
rmn 5 20 37.5 cm
Small Cubit
Short Cubit
Meh Nedjes
D42G37
m nḏs
m šsr
ⲙⲁϩⲉ
ⲙⲉϩⲓ
mahe
mehi
6 24 45 cm
Cubit
Royal Cubit
Sacred Cubit
Meh Nesut
Meh Nisut
Mahi
Ell
D42
m 7 28 52.3 cm
52.5 cm
Pole
Nebiu
N35
D58
M17V1T19
nbiw 8 32 60 cm
Rod
Rod of Cord
Stick of Rope
Khet
Schoinion
W24G43V28
ḫt ϩⲱⲧⲉ
ϩⲱϯ
hōte
hōti
100 cubits 52.5 m
Schoenus
River-Measure
League
Ater
Iter or Iteru
M17X1
D21
G43N35BN36
N21 Z1
i͗trw ϣϥⲱ
ϣⲃⲱ
shfō
shvō
20,000 cubits 10.5 km

The digit was also subdivided into smaller fractions of 1⁄2, 1⁄3, 1⁄4, and 1⁄16. Minor units include the Middle Kingdom reed of 2 royal cubits, the Ptolemaic xylon (Ancient Greek: ξύλον, lit. "timber") of three royal cubits, the Ptolemaic fathom (Ancient Greek: ὀργυιά, orgyiá; Ancient Egyptian: ḥpt; Coptic: ϩⲡⲟⲧ, hpot) of four lesser cubits, and the kalamos of six royal cubits.

Area

Records of land area also date to the Early Dynastic Period. The Palermo stone records grants of land expressed in terms of kha and setat. Mathematical papyri also include units of land area in their problems. For example, several problems in the Moscow Mathematical Papyrus give the area of rectangular plots of land in terms of setat and the ratio of the sides and then require the scribe to solve for their exact lengths.

The setat was the basic unit of land measure and may originally have varied in size across Egypt's nomes. Later, it was equal to one square khet, where a khet measured 100 cubits. The setat could be divided into strips one khet long and ten cubit wide (a kha).

During the Old Kingdom:

Units of Area
Names Equivalents
English Egyptian Coptic Setat Square
Cubits
Metric
Sa
Eighth
G39
z 1⁄800 12+1⁄2 3.4456 m
Heseb
Fourth
Account Unit
Z9
ḥsb 1⁄400 25 6.8913 m
Remen
Half
Shoulder
D41
rmn 1⁄200 50 13.783 m
Ta
Khet
Cubit
Cubit of Land
Land Cubit
Ground Cubit
Cubit Strip
Land Unit
N17
t
ḫt
m
m itn
ϫⲓⲥⲉ jise 1⁄100 100 27.565 m
Kha
Thousand
M12
1⁄10 1,000 275.65 m
Setat
Setjat
Aroura
Square Khet
stF29t
Z4
s
sꜣt
ⲥⲱⲧ
ⲥⲧⲉⲓⲱϩⲉ
sōt
steiōhe
1 10,000 2,756.5 m

During the Middle and New Kingdom, the "eighth", "fourth", "half", and "thousand" units were taken to refer to the setat rather than the cubit strip:

Sa
Eighth
G39
s 1⁄8 1,250 345 m
Heseb
Fourth
Z9
hsb
r-fdw
1⁄4 2,500 689 m
Gs
Remen
Half
Aa13
gs ⲣⲉⲣⲙⲏ rermē 1⁄2 5,000 1378 m
Kha
Thousand
M12

t
10 100,000 2.76 ha

During the Ptolemaic period, the cubit strip square was surveyed using a length of 96 cubits rather than 100, although the aroura was still figured to compose 2,756.25 m. A 36 square cubit area was known as a kalamos and a 144 square cubit area as a hamma. The uncommon bikos may have been 1+1⁄2 hammata or another name for the cubit strip. The Coptic shipa (ϣⲓⲡⲁ) was a land unit of uncertain value, possibly derived from Nubia.

Volume

A bronze capacity measure inscribed with the cartouches of the birth and throne names of Amenhotep III of the 18th Dynasty

Units of volume appear in the mathematical papyri. For example, computing the volume of a circular granary in RMP 42 involves cubic cubits, khar, heqats, and quadruple heqats. RMP 80 divides heqats of grain into smaller henu.

Problem 80 on the Rhind Mathematical Papyrus: As for vessels (debeh) used in measuring grain by the functionaries of the granary: done into henu, 1 hekat makes 10; 1⁄2 makes 5; 1⁄4 makes 2+1⁄2; etc.
Units of Volume
Names Equivalents
English Egyptian Heqats Ro Metric
Ro
r
r 1⁄320 1 0.015 L
Dja dja 1⁄16 20 0.30 L
Jar
Hinu
hn
W24 V1
W22
hnw 1⁄10 32 0.48 L
Barrel
Heqat
Hekat
U9
hqt 1 320 4.8 L
Double Barrel
Double Heqat
Double Hekat
hqty 2 640 9.6 L
Quadruple Heqat (MK)
Oipe (NK)
T14U9

ip
t
U9
hqt-fdw
jpt
ipt
4 1,280 19.2 L
Sack
Khar
Aa1
r
khar 20 (MK)
16 (NK)
6,400 (MK)
5120 (NK)
96.5 L (MK)
76.8 L (NK)
Deny
Cubic cubit
deny 30 9,600 144 L

The oipe was also formerly romanized as the apet.

Weight

Green glazed faience weight discovered at Abydos, inscribed for the high steward Aabeni during the late Middle Kingdom
Serpentine weight of 10 daric, inscribed for Taharqa during the 25th Dynasty

Weights were measured in terms of deben. This unit would have been equivalent to 13.6 grams in the Old Kingdom and Middle Kingdom. During the New Kingdom however it was equivalent to 91 grams. For smaller amounts the qedet (1⁄10 of a deben) and the shematy (1⁄12 of a deben) were used.

Units of Weight
Names Equivalents
English Egyptian Debens Metric
Piece
Shematy
shȝts 1⁄12
Qedet
Kedet
Kite
Aa28X1
S106
qdt 1⁄10
Deben
D46D58N35
F46
dbn 1 13.6 g (OK & MK)
91 g (NK)

The qedet or kedet is also often known as the kite, from the Coptic form of the same name (ⲕⲓⲧⲉ or ⲕⲓϯ). In 19th-century sources, the deben and qedet are often mistakenly transliterated as the uten and kat respectively, although this was corrected by the 20th century.

Time

Main articles: Egyptian calendar and Alexandrian calendar

The former annual flooding of the Nile organized prehistoric and ancient Egypt into three seasons: Akhet ("Flood"), Peret ("Growth"), and Shemu or Shomu ("Low Water" or "Harvest").

The Egyptian civil calendar in place by Dynasty V followed regnal eras resetting with the ascension of each new pharaoh. It was based on the solar year and apparently initiated during a heliacal rising of Sirius following a recognition of its rough correlation with the onset of the Nile flood. It followed none of these consistently, however. Its year was divided into 3 seasons, 12 months, 36 decans, or 360 days with another 5 epagomenal days—celebrated as the birthdays of five major gods but feared for their ill luck—added "upon the year". The Egyptian months were originally simply numbered within each season but, in later sources, they acquired names from the year's major festivals and the three decans of each one were distinguished as "first", "middle", and "last". It has been suggested that during the Nineteenth Dynasty and the Twentieth Dynasty the last two days of each decan were usually treated as a kind of weekend for the royal craftsmen, with royal artisans free from work. This scheme lacked any provision for leap year intercalation until the introduction of the Alexandrian calendar by Augustus in the 20s BC, causing it to slowly move through the Sothic cycle against the solar, Sothic, and Julian years. Dates were typically given in a YMD format.

The civil calendar was apparently preceded by an observational lunar calendar which was eventually made lunisolar and fixed to the civil calendar, probably in 357 BC. The months of these calendars were known as "temple months" and used for liturgical purposes until the closing of Egypt's pagan temples under Theodosius I in the AD 390s and the subsequent suppression of individual worship by his successors.

Smaller units of time were vague approximations for most of Egyptian history. Hours—known by a variant of the word for "stars"—were initially only demarcated at night and varied in length. They were measured using decan stars and by water clocks. Equal 24-part divisions of the day were only introduced in 127 BC. Division of these hours into 60 equal minutes is attested in Ptolemy's 2nd-century works.

Units of Time
Name Days
English Egyptian
hour
E34
N35
W24
X1
N14
N5
wnwt variable
day
S29S29S29Z7N5
sw 1
decan
decade
week
S29S29S29Z7N5V20
"ten-day"
sw mḏ
10
month
N11
N14
D46
N5
ꜣbd 30
season
M17X1
D21
G43M6
ı͗trw 120
year
M4X1
Z1
rnpt 365
365+1⁄4

See also

Notes

  1. Alternative representations for the Egyptian digit include
    D50Z1
    and
    I10D58D36D50
    .
  2. Alternative representations for the Egyptian palm include
    D46
    ,
    N11
    ,
    O42
    and
    O42Q3
    N11
    .
  3. Alternative representations for the Egyptian hand include
    D46
    X1 F51
    ,
    D46
    X1 Z1
    , and
    U28X1
    D47
    .
  4. Alternative representations for the Egyptian fist include
    Aa1
    I9
    D36
    D49
    and
    Aa1
    I9
    D36D49
    Z1
    as ḫf and
    G1G17G17D49
    ,
    G1G17G17X1
    D49
    , and
    M17G17D49
    as ꜣmm.
  5. Alternative representations for the Egyptian double handbreadth include
    D48D48
    .
  6. Alternative representations for the Egyptian half-cubit include
    Z12
    of uncertain pronunciation.
  7. Alternative representations of the Egyptian cubit or royal cubit include
    D36
    ,
    D36
    Y1
    ,
    D36
    Z1
    ,
    V22
    D36
    ,
    V22
    D42
    ,
    V22
    Z1
    D36
    , all pronounced m, and the explicit "royal" or "sacred cubit"
    M23t
    n
    D42
    , pronounced m nswt or n-swt.
  8. Alternative representations of the Egyptian rod include
    M3
    and
    M3
    X1 Z1
    N35N35
    U19
    W24G43V28V1
    ,
    M3
    X1 Z1
    N35N35
    U19
    W24
    V28V1
    , and
    M3
    X1 Z1
    N35U19W24V28
    , which were pronounced ḫt n nw (Coptic: ϣⲉ ⲛ ⲛⲟϩ, she n noh).
  9. Alternative representations of the Egyptian schoenus include
    M17X1
    D21
    G43D54
    ,
    M17X1
    D21
    G43D54Z1
    ,
    M17X1
    D21
    G43N36
    ,
    M17X1
    D21
    N35AD54
    N21 Z1
    ,
    M17X1 Z7
    D21
    N35AD54
    ,
    M17X1 Z7
    D21
    N35AN17
    N21 N21
    Z2
    ,
    M17X1 Z7
    D21
    N35AN36
    N21 Z1
    Z2
    ,
    M17X1 Z7
    D21
    N35AN36
    N23
    ,
    M17X1
    D21
    Z7N37
    Z2
    , and
    M17D21D56D54
    .
  10. The Egyptian reed was written
    N35
    D58 M17
    M3
    or
    N35
    D58
    M17Z7T19
    and pronounced nb.
  11. Alternative representations of the 100-square-cubit measure include
    D41
    and
    D41
    N16
    , both pronounced m t, and
    V28G1X1N37M12
    .
  12. Alternative representations of the setat include
    N18
    ,
    O39
    Z1
    ,
    S22
    X1 X1
    ,
    S29V13
    V2
    X1
    O39
    ,
    V2
    X1 N23
    ,
    V2
    X1 X1
    N23
    Z1
    ,
    V2
    X1 X1
    O39
    ,
    V2
    X1 Z4
    ,
    V2
    X1 Z4
    N23Z1
    Z1
    , and
    D35
    X1 Z4
    V20
    Z2
    , all pronounced sꜣt.
  13. Alternative representations of the 1⁄8 setat include
    Z30
    .
  14. Alternative representations of the quarter-setat include
    Aa2
    Y1
    .
  15. Alternative representations of the half-setat include
    W11S29Aa13
    , pronounced gs,
    D41
    , pronounced rmn, and
    Y5
    N35
    M40
    .
  16. Alternative representations of the thousand-ta measure include
    M12N16
    N23 Z1
    ,
    M12N17
    , and
    M12Z1N35N16
    N23 Z1
    .
  17. Parker extensively developed the thesis that the predynastic lunar calendar was already lunisolar, using intercalary months every 2 or 3 years to maintain Sirius's return to the night sky in its twelfth month, but no evidence of such intercalation exists predating the schematic lunisolar calendar developed in 4th century BC.
  18. Variant representations of hour include
    E34
    N35
    D54
    ,
    E34
    N35
    W24
    X1
    N5
    ,
    E34
    N35
    W24 X1
    N14
    ,
    E34
    N35
    W24G43X1
    N14
    N5
    Z1
    ,
    E34
    N35
    W24
    X1
    N14X1
    N5
    Z1
    ,
    E34
    N35
    W24
    X1
    N2N5Z1
    ,
    E34
    N35
    W24
    X1
    N2D6
    (properly
    N46B
    with a star at the end of the line and a second shorter line to its right),
    E34
    N35
    W24
    Z7
    N14N5
    Z2
    ,
    N5
    Z2
    ,
    N14
    V13
    N5
    ,
    N14
    V13
    N5
    Z2
    ,
    N14
    X1 N5
    ,
    N14
    X1
    N5
    Z2
    ,
    N14
    X1 Z1
    ,
    T14X1
    N5
    , and
    E34N35W24X1N14
    . As nwt, hour also appears as
    N35
    U19
    W24G43X1
    N5
    .
  19. Variant representations of day include
    N5
    ,
    S29S29S29G43N5
    , and
    S29S29Z4N5
    . In the plural sww, it appears as
    O35G43N5
    Z2
    S29G43N5
    Z2
    and
    S29S29S29N5
    . As hrw ("daytime", "day"), it appears as
    N5Z1
    ,
    O4N5
    ,
    Z5
    N5
    Z1
    ,
    O1
    D21
    N5Z1
    ,
    O4G1D21
    N5 Z1
    ,
    O4G1D21
    Z7
    N5Z1
    ,
    O4G1Z7N5
    Z1
    ,
    O4G43N5
    Z1
    ,
    O4Z1G43N5
    ,
    O4Z5N5Z1
    ,
    O4Z5X1
    N5
    ,
    O4Z5Z5N5
    ,
    O4Z5Z5Z1
    , and
    O4
    D21
    G43N5
    Z1
    . As rꜥ ("sun", "day"), it appears as
    N5
    ,
    N5Z1
    , and
    D21
    D36
    N5Z1
    . As ḏt, day appears as
    I10
    X1 Z1
    D12
    , although properly the loaf and stroke are smaller and fit within the curve of the snake.
  20. Variant representations of decan include
    S29S29Z7N5V20
    .
  21. Variant representations of month include
    N11
    ,
    N11
    N14
    ,
    N11
    N14
    D46
    ,
    N11
    N14
    D46
    ,
    N11
    N14
    D46
    N5 Z1
    ,
    N11
    N14 D46
    Z7N5
    ,
    N11
    N14 Z1
    D46
    N5 Z1
    , and
    N11
    N14 Z5 Z5
    N5
    . In the plural ꜣbdtyw, it appears as
    N11
    N14 D46
    G4Z7
    Z7
    X1
    N5
    . As ꜣbdw, month appears as
    G1N11
    D46
    G43
    .
  22. In the plural ı͗trw, "seasons" appears as
    M17V13
    D21
    G43M5
    (properly
    M5B
    with a triangular leaf),
    M17X1
    D21
    G43M4M4M4N5 N5
    N5
    , and
    M17X1
    D21
    E23M5M5M5
    , although properly the palm branches of the last are reversed. As tr ("time", "period", "season"), it appears as
    M6N5
    ,
    M17X1
    D21
    N5
    ,
    X1
    D21
    M6N5
    , and
    X1
    D21
    M17M6N5
    . In the dual number, this appears as trwy in
    X1
    D21
    G43M6N5
    N5
    ,
    X1
    D21
    M6N5
    N5
    , and
    X1
    D21
    M17M6Z4G43N5
    N5
    . In the plural, this appears as trw in
    M17G43X1
    D21
    G43M6N5
    Z2
    ,
    M17X1
    D21
    M6N5
    Z2
    , and
    X1
    D21
    G43M4N5
    Z2
    .
  23. Variant representations of year include
    M5
    ,
    M7X1
    Z1
    ,
    M4X1
    and
    M4X1
    Z1
    G7
    . In the plural rnpwt, it appears as
    D21
    N35
    Q3 Z2
    on the Naucratis Stela and as
    M4M4M4
    ,
    M4M4M4X1
    Z1
    Y1
    Z2
    ,
    M4M4M4X1
    Z2
    ,
    M4X1
    Z1
    Z3A
    ,
    M4X1
    Z2
    , and
    M4Z3
    .

References

Citations

  1. Clagett 1999, p. 3.
  2. ^ Corinna Rossi, Architecture and Mathematics in Ancient Egypt, Cambridge University Press, 2007
  3. ^ Englebach, Clarke (1990). Ancient Egyptian Construction and Architecture. New York: Dover. ISBN 0486264858.
  4. Lepsius (1865), pp. 57 ff.
  5. ^ Loprieno, Antonio (1996). Ancient Egyptian. New York: CUP. ISBN 0521448492.
  6. ^ Clagett (1999).
  7. Gardiner, Allen (1994). Egyptian Grammar 3rd Edition. Oxford: Griffith Institute. ISBN 0900416351.
  8. ^ Faulkner, Raymond (1991). A Concise Dictionary of Middle Egyptian. Griffith Institute Asmolean Museum, Oxford. ISBN 0900416327.
  9. ^ Gillings, Richard (1972). Mathematics in the Time of the Pharaohs. MIT. ISBN 0262070456.
  10. Gardiner, §266, pp. 199–200.
  11. ^ Clagett (1999), p. 7.
  12. ^ Clagett (1999), p. 9.
  13. ^ Lepsius (1865), p. 43.
  14. ^ Vygus, Mark (2015), Middle Egyptian Dictionary (PDF).
  15. Crum (1939), p. 597.
  16. ^ Journal of Egyptian Archaeology, Vol. IV, Egypt Exploration Fund, 1917, p. 135.
  17. ^ Bagnall (2009), p. 186.
  18. ^ Clagett (1999), p. 8.
  19. ^ Crum (1939), p. 574.
  20. ^ Dollinger, André (2012), "Counting and Measuring", Pharaonic Egypt, Reshafim{{citation}}: CS1 maint: location missing publisher (link).
  21. Crum (1939), p. 742.
  22. ^ Feder, Frank; et al., Online Coptic Dictionary, Washington: Georgetown.
  23. ^ Crum (1939), p. 842.
  24. Crum (1939), p. 305.
  25. Crum (1939), p. 58.
  26. ^ Crum (1939), p. 210.
  27. Crum (1939), p. 211.
  28. Obenga, Théophile (2004), African Philosophy: The Pharaonic Period 2780–330 BC, Per Ankh, p. 460.
  29. ^ Bagnall (2009), p. 185.
  30. Abd el-Mohsen Bakir (1978), Hat-'a em Sbayet r-en Kemet: An Introduction to the Study of the Egyptian Language: A Semitic Approach, General Egyptian Book Organization, p. 70.
  31. ^ Crum (1939), p. 722.
  32. ^ Crum (1939), p. 611.
  33. Lepsius (1865), p. 44.
  34. Ridgeway, William (1890), "Mensura", A Dictionary of Greek and Roman Antiquities, London: John Murray.
  35. Transactions and Proceedings, American Philological Association, 1941, p. 443.
  36. Janssen, Jozef M.A. (1956), "3997: Iversen, Erik, Canon and Proportions in Egyptian Art", Annual Egyptological Bibliography 1955, Leiden: E.J. Brill for the International Association of Egyptologists, p. 1313.
  37. Digital Egypt: Measuring area in Ancient Egypt
  38. ^ Clagett (1999), p. 12.
  39. ^ Clagett (1999), p. 13.
  40. Crum (1939), p. 790.
  41. Crum (1939), p. 360.
  42. Crum (1939), p. 367.
  43. Crum (1939), p. 570.
  44. Pommerening, T. (2003), "Altagyptische Rezepturen Netrologisch Neu Onterpretiert", Berichte zur Wissenschaftgeschichte, No. 26, p. 1–16. (in German)
  45. ^ "Measuring Volume in Ancient Egypt", Digital Egypt for Universities, London: University College, 2002.
  46. Allen, James P. (2014), Middle Egyptian: An Introduction to the Language and Culture of Hieroglyphics, 3rd ed., Cambridge: Cambridge University Press, p. 129, ISBN 9781139917094.
  47. ^ Katz, Victor J.; et al., eds. (2007), The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook, Princeton University Press, p. 17, ISBN 978-0-691-11485-9.
  48. "Weights and Measures", Encyclopaedia Britannica, 9th ed., vol. XXIV, 1888.
  49. Weigall (1908), p. ix.
  50. Weigall (1908), pp. iii & ix.
  51. Tetley (2014), p. 39.
  52. Winlock (1940), p. 453.
  53. Clagett (1995), p. 4–5.
  54. Clagett (1995), p. 28.
  55. ^ Clagett (1995), p. 5.
  56. Parker (1950), p. 23.
  57. Parker (1950), p. 7.
  58. Spalinger (1995), p. 33.
  59. Spalinger (1995), p. 35.
  60. Parker (1950), pp. 43–5.
  61. Clagett (1995), p. 14–15.
  62. Clagett (1995), p. 4.
  63. Jauhiainen (2009), p. 39.
  64. Marshall Clagett, Ancient Egyptian Science: Calendars, clocks, and astronomy, 1989
  65. Parker (1950), pp. 30–2.
  66. Tetley (2014), p. 153.
  67. Clagett (1995), p. 26.
  68. Parker (1950), p. 17.
  69. Theodosian Code 16.10.12
  70. Høyrup, p. 13.
  71. ^ Vygus (2015), p. 409.
  72. Vygus (2015), p. 399.
  73. Vygus (2015), p. 408.
  74. Vygus (2015), p. 410.
  75. Vygus (2015), p. 1229.
  76. Vygus (2015), p. 1239.
  77. Vygus (2015), p. 1240.
  78. Vygus (2015), p. 1984.
  79. Vygus (2015), p. 1382.
  80. ^ Vygus (2015), p. 1228.
  81. ^ Vygus (2015), p. 1880.
  82. ^ Vygus (2015), p. 1881.
  83. Vygus (2015), p. 1611.
  84. Vygus (2015), p. 1790.
  85. Vygus (2015), p. 1500.
  86. Vygus (2015), p. 2467.
  87. Vygus (2015), p. 1461.
  88. Vygus (2015), p. 1477.
  89. Vygus (2015), p. 1478.
  90. Vygus (2015), p. 1492.
  91. Vygus (2015), p. 1495.
  92. Vygus (2015), p. 1513.
  93. Vygus (2015), p. 1514.
  94. Vygus (2015), p. 1471.
  95. Vygus (2015), p. 75.
  96. Vygus (2015), p. 822.
  97. ^ Vygus (2015), p. 1233.
  98. Vygus (2015), p. 1234.
  99. Vygus (2015), p. 547.
  100. Vygus (2015), p. 1156.
  101. Vygus (2015), p. 1168.
  102. ^ Vygus (2015), p. 958.
  103. ^ Vygus (2015), p. 1167.
  104. ^ Vygus (2015), p. 2386.
  105. ^ Vygus (2015), p. 2387.
  106. Vygus (2015), p. 1085.
  107. ^ Vygus (2015), p. 957.
  108. Vygus (2015), p. 103.

Bibliography

External links

Systems of measurement
Current
General
Specific
Natural
Background
Metric
UK/US
Historic
Metric
Europe
Asia
Africa
North America
South America
Ancient
List articles
Other
Categories: