Revision as of 22:26, 12 October 2012 editWhoop whoop pull up (talk | contribs)Extended confirmed users35,123 edits Reverted good faith edits by Plasmic Physics (talk): What templates? Your edits are still unsupported. (TW)← Previous edit | Latest revision as of 07:35, 10 May 2024 edit undoNucleus hydro elemon (talk | contribs)Extended confirmed users3,323 edits Added {{More citations needed}} tagTag: Twinkle | ||
(67 intermediate revisions by 23 users not shown) | |||
Line 1: | Line 1: | ||
{{More citations needed|date=May 2024}} | |||
{{Chembox | {{Chembox | ||
| IUPACName = Mercury(I) hydride | | IUPACName = Mercury(I) hydride | ||
| Name = | |||
| OtherNames = Dimercurane<br /> | |||
| ImageFile = | |||
Mercurous hydride | |||
| OtherNames = Mercurous hydride<br>Mercury monohydride | |||
⚫ | | Section1 = {{Chembox Identifiers | ||
| SystematicName = | |||
⚫ | | |
||
⚫ | | Section1 = {{Chembox Identifiers | ||
⚫ | | |
||
| CASNo = 13966-62-6 | |||
⚫ | | |
||
| PubChem = 57348259 | |||
⚫ | | SMILES = | ||
⚫ | | StdInChI = 1S/Hg.H | ||
⚫ | | StdInChIKey = DJSHOLCMNYJYSS-UHFFFAOYSA-N | ||
}} | }} | ||
| Section2 = {{Chembox Properties | | Section2 = {{Chembox Properties | ||
| H=1|Hg=1 | |||
| Formula = {{Chem|Hg|2|H|2}} | |||
| MolarMass = 403.20 g mol<sup>-1</sup> | |||
| ExactMass = 405.956901272 g mol<sup>-1</sup> | |||
}} | }} | ||
| Section3 = {{Chembox Related | | Section3 = {{Chembox Related | ||
| |
| OtherCompounds = ] | ||
}} | }} | ||
| Section4 = | |||
| Section5 = | |||
| Section6 = | |||
}} | }} | ||
'''Mercury(I) hydride''' (systematically named '''mercury hydride''') is an ] with the ] HgH. It has not yet been obtained in bulk, hence its bulk properties remain unknown. However, molecular mercury(I) hydrides with the formulae HgH and {{chem|Hg|2|H|2}} have been isolated in solid gas matrices. The molecular hydrides are very unstable toward ]. As such the compound is not well characterised, although many of its properties have been calculated via ]. | |||
⚫ | |||
== Molecular forms == | |||
=== History === | |||
In 1979 and 1985, Swiss chemical physicists, Egger and Gerber, and Soviet chemical physicists, Kolbycheva and Kolbychev, independently, theoretically determined that it is feasible to develop a mercury(I) hydride molecular laser. | |||
=== Chemical properties === | |||
Mercury(I) hydride is an unstable ]<ref>{{cite web|title=Mercury hydride|url=http://webbook.nist.gov/cgi/cbook.cgi?ID=C13966626&Units=SI&Mask=1#Thermo-Gas|work=Chemistry WebBook| date=1998 | pages=1–1951 |publisher=National Institute of Standards and Technology|accessdate=14 October 2012|location=USA | last1=Chase | first1=M. W. }}</ref> and is the heaviest group 12 monohydride. In mercury(I) hydride, the formal ]s of hydrogen and mercury are −1 and +1, respectively, because of the ] of mercury is lower than that of hydrogen. The stability of the ] metal hydrides with the formula MH (M = Zn-Hg) increases as the atomic number of M increases. | |||
⚫ | The Hg-H bond is very weak and therefore the compound has only been ] at temperatures up to 6 K.<ref>{{cite journal|doi=10.1021/cr960151d|title=Hydrides of the Main-Group Metals: New Variations on an Old Theme|year=2001|last1=Aldridge|first1=Simon|last2=Downs|first2=Anthony J.|journal=Chemical Reviews|volume=101|issue=11|pages=3305–65|pmid=11840988}}</ref><ref>{{cite journal|doi=10.1063/1.1676373|title=Hyperfine Interaction, Chemical Bonding, and Isotope Effect in ZnH, CdH, and HgH Molecules|year=1971|last1=Knight|first1=Lon B.|journal=The Journal of Chemical Physics|volume=55|issue=5|pages=2061–2070|bibcode=1971JChPh..55.2061K}}</ref> The ], HgH<sub>2</sub>, has also been detected this way. | ||
] | |||
A related compound is dimercurane(2), or bis(hydridomercury)(''Hg''—''Hg''), with the formula {{chem|Hg|2|H|2}}, which can be considered to be dimeric mercury(I) hydride. It spontaneously decomposes into the monomeric form. | |||
==== Electronic nature ==== | |||
The mercury centre in mercury complexes such as hydridomercury can accept or donate a single ] by association: | |||
:HgH + R → HHgR | |||
Because of this acceptance or donation of the electron, hydridomercury has ] character. It is a moderately reactive monoradical. | |||
== References == | == References == | ||
{{ |
{{reflist}} | ||
{{ |
{{mercury compounds}} | ||
] | ] | ||
] | ] | ||
] | |||
] |
Latest revision as of 07:35, 10 May 2024
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Mercury(I) hydride" – news · newspapers · books · scholar · JSTOR (May 2024) (Learn how and when to remove this message) |
Names | |
---|---|
IUPAC name Mercury(I) hydride | |
Other names
Mercurous hydride Mercury monohydride | |
Identifiers | |
CAS Number | |
3D model (JSmol) | |
PubChem CID | |
CompTox Dashboard (EPA) | |
InChI
| |
SMILES
| |
Properties | |
Chemical formula | HHg |
Molar mass | 201.600 g·mol |
Related compounds | |
Related compounds | Cadmium hydride |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references |
Mercury(I) hydride (systematically named mercury hydride) is an inorganic compound with the chemical formula HgH. It has not yet been obtained in bulk, hence its bulk properties remain unknown. However, molecular mercury(I) hydrides with the formulae HgH and Hg
2H
2 have been isolated in solid gas matrices. The molecular hydrides are very unstable toward thermal decomposition. As such the compound is not well characterised, although many of its properties have been calculated via computational chemistry.
Molecular forms
History
In 1979 and 1985, Swiss chemical physicists, Egger and Gerber, and Soviet chemical physicists, Kolbycheva and Kolbychev, independently, theoretically determined that it is feasible to develop a mercury(I) hydride molecular laser.
Chemical properties
Mercury(I) hydride is an unstable gas and is the heaviest group 12 monohydride. In mercury(I) hydride, the formal oxidation states of hydrogen and mercury are −1 and +1, respectively, because of the electronegativity of mercury is lower than that of hydrogen. The stability of the diatomic metal hydrides with the formula MH (M = Zn-Hg) increases as the atomic number of M increases.
The Hg-H bond is very weak and therefore the compound has only been matrix isolated at temperatures up to 6 K. The dihydride, HgH2, has also been detected this way.
A related compound is dimercurane(2), or bis(hydridomercury)(Hg—Hg), with the formula Hg
2H
2, which can be considered to be dimeric mercury(I) hydride. It spontaneously decomposes into the monomeric form.
Electronic nature
The mercury centre in mercury complexes such as hydridomercury can accept or donate a single electron by association:
- HgH + R → HHgR
Because of this acceptance or donation of the electron, hydridomercury has radical character. It is a moderately reactive monoradical.
References
- Chase, M. W. (1998). "Mercury hydride". Chemistry WebBook. USA: National Institute of Standards and Technology. pp. 1–1951. Retrieved 14 October 2012.
- Aldridge, Simon; Downs, Anthony J. (2001). "Hydrides of the Main-Group Metals: New Variations on an Old Theme". Chemical Reviews. 101 (11): 3305–65. doi:10.1021/cr960151d. PMID 11840988.
- Knight, Lon B. (1971). "Hyperfine Interaction, Chemical Bonding, and Isotope Effect in ZnH, CdH, and HgH Molecules". The Journal of Chemical Physics. 55 (5): 2061–2070. Bibcode:1971JChPh..55.2061K. doi:10.1063/1.1676373.
Mercury compounds | |||
---|---|---|---|
Mercury(I) | |||
Mercury(II) |
| ||
Mercury(IV) |
| ||
Amalgams | |||
Mercury cations |