Misplaced Pages

Gumbel distribution: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 22:38, 9 January 2013 edit111.68.96.57 (talk) Related distributions← Previous edit Latest revision as of 13:37, 7 October 2024 edit undoMjaðveig (talk | contribs)59 edits Related distributions: Clarifications regarding the sum of Gumbel RVs 
(230 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Short description|Particular case of the generalized extreme value distribution}}
{{Probability distribution |
{{Probability distribution
name =Gumbel|
type =density| |name =Gumbel
|type =density
pdf_image =]|
cdf_image =]| |pdf_image =]
|cdf_image =]
parameters =<math>\mu\!</math> ] (])<br /><math>\beta>0\!</math> ] (real)|
|parameters =<math>\mu,</math> ] (])<br /><math>\beta>0,</math> ] (real)
support =<math>x \in (-\infty; +\infty)\!</math>|
pdf =<math>\frac{1}{\beta}e^{-z-e^{-z}}\!</math><br /> where <math>z=\frac{x-\mu}{\beta}\!</math>| |support =<math>x\in\mathbb{R}</math>
|pdf =<math>\frac{1}{\beta}e^{-(z+e^{-z})}</math><br /> where <math>z=\frac{x-\mu}{\beta}</math>
cdf =<math>\exp(-e^{-(x-\mu)/\beta})\!</math>| |cdf =<math>e^{-e^{-(x-\mu)/\beta}}</math>
mean =<math>\mu + \beta\,\gamma\!</math>| |quantile =<math>\mu-\beta\ln(-\ln(p))</math>
median =<math>\mu - \beta\,\ln(\ln(2))\!</math>| |mean =<math>\mu + \beta\gamma</math> <br> where <math>\gamma</math> is the ]
mode =<math>\mu\!</math>| |median =<math>\mu - \beta\ln(\ln 2)</math>
variance =<math>\frac{\pi^2}{6}\,\beta^2\!</math>| |mode =<math>\mu</math>
skewness =<math>\frac{12\sqrt{6}\,\zeta(3)}{\pi^3} \approx 1.14\!</math>| |variance =<math>\frac{\pi^2}{6}\beta^2</math>
kurtosis =<math>\frac{12}{5}</math>| |skewness =<math>\frac{12\sqrt{6}\,\zeta(3)}{\pi^3} \approx 1.14</math>
entropy =<math>\ln(\beta)+\gamma+1\!</math>| |kurtosis =<math>\frac{12}{5}</math>
mgf =<math>\Gamma(1-\beta\,t)\, e^{\mu\,t}\!</math>| |entropy =<math>\ln(\beta)+\gamma+1</math>
char =<math>\Gamma(1-i\,\beta\,t)\, e^{i\,\mu\,t}\!</math>| |mgf =<math>\Gamma(1-\beta t) e^{\mu t}</math>
|char =<math>\Gamma(1-i\beta t) e^{i\mu t}</math>
}}
|notation=<math>\text{Gumbel}(\mu, \beta)</math>}}
In ] and ], the '''Gumbel distribution''' is used to model the distribution of the maximum (or the minimum) of a number of samples of various distributions.
In ] and ], the '''Gumbel distribution''' (also known as the '''type-I ]''') is used to model the distribution of the maximum (or the minimum) of a number of samples of various distributions.
Such a distribution might be used to represent the distribution of the maximum level of a river in a particular year if there was a list of maximum values for the past ten years. It is useful in predicting the chance that an extreme earthquake, flood or other natural disaster will occur.


The potential applicability of the Gumbel distribution to represent the distribution of maxima relates to ] which indicates that it is likely to be useful if the distribution of the underlying sample data is of the normal or exponential type. This distribution might be used to represent the distribution of the maximum level of a river in a particular year if there was a list of maximum values for the past ten years. It is useful in predicting the chance that an extreme earthquake, flood or other natural disaster will occur. The potential applicability of the Gumbel distribution to represent the distribution of maxima relates to ], which indicates that it is likely to be useful if the distribution of the underlying sample data is of the normal or exponential type.{{efn|This article uses the Gumbel distribution to model the distribution of the maximum value''. ''To model the minimum value, use the negative of the original values.}}


The Gumbel distribution is a particular case of the ] (also known as the Fisher-Tippett distribution). It is also known as the ''']''' and the ''double exponential'' distribution (which is sometimes used to refer to the ]). It is often incorrectly labelled as ].{{Citation needed|date=February 2012}} The Gumbel distribution is a particular case of the ] (also known as the Fisher–Tippett distribution). It is also known as the ''log-]'' and the ''double exponential distribution'' (a term that is alternatively sometimes used to refer to the ]). It is related to the ]: when its density is first reflected about the origin and then restricted to the positive half line, a Gompertz function is obtained.


In the ] formulation of the ] model — common in ] theory — the errors of the latent variables follow a Gumbel distribution. This is useful because the difference of two Gumbel-distributed ]s has a ]. In the ] formulation of the ] model — common in ] theory — the errors of the latent variables follow a Gumbel distribution. This is useful because the difference of two Gumbel-distributed ]s has a ].


The Gumbel distribution is named after ] (1891&ndash;1966), based on his original papers describing the distribution.<ref>{{Citation |url= http://archive.numdam.org/article/AIHP_1935__5_2_115_0.pdf |title= Les valeurs extrêmes des distributions statistiques |last= Gumbel |first= E.J. |journal= Annales de l'Institut Henri Poincaré |volume= 5 |year= 1935 |pages= 115–158 |issue= 2 |author-link= Emil Julius Gumbel}}</ref><ref>Gumbel E.J. (1941). "The return period of flood flows". The Annals of Mathematical Statistics, 12, 163–190.</ref>
The Gumbel distribution is named after ] (1891&ndash;1966).{{Citation needed|date=February 2012}}


==Properties== ==Definitions==
The ] of the Gumbel distribution is
{{No footnotes|section|date=February 2012}}
]


:<math>F(x;\mu,\beta) = e^{-e^{-(x-\mu)/\beta}}\,</math>
The ] of the Gumbel distribution is

:<math>F(x;\mu,\beta) = e^{-e^{-(x-\mu)/\beta}}.\,</math>

The mode is μ, while the median is <math>\mu-\beta \ln\left(\ln 2\right),</math> and the mean is given by
:<math>\operatorname{E}(X)=\mu+\gamma\beta ,</math>
where <math>\gamma</math> = ] <math>\approx</math> 0.5772.

The standard deviation is

:<math>\beta \pi/\sqrt{6}.\,</math>


===Standard Gumbel distribution=== ===Standard Gumbel distribution===
The standard Gumbel distribution is the case where μ = 0 and β = 1 with cumulative distribution function The standard Gumbel distribution is the case where <math>\mu = 0</math> and <math>\beta = 1</math> with cumulative distribution function
:<math>F(x) = e^{-e^{(-x)}}\,</math> :<math>F(x) = e^{-e^{(-x)}}\,</math>


and probability density function and probability density function
:<math>f(x) = e^{-x} e^{-e^{-x}}.</math> :<math>f(x) = e^{-(x+e^{-x})}.</math>


In this case mode is 0, the median is <math>-\ln(\ln(2)) \approx</math> 0.3665 and the mean is <math>\gamma</math>, where this is defined above. The standard deviation is In this case the mode is 0, the median is <math>-\ln(\ln(2)) \approx 0.3665</math>, the mean is <math>\gamma\approx 0.5772</math> (the ]), and the standard deviation is <math>\pi/\sqrt{6} \approx 1.2825.</math>


The ], for ''n''&nbsp;>&nbsp;1, are given by
: <math> \pi/\sqrt{6} \approx</math> 1.2825.
:<math>\kappa_n = (n-1)! \zeta(n).</math>


==Properties==
==Generating Gumbel variates==
The mode is μ, while the median is <math>\mu-\beta \ln\left(\ln 2\right),</math> and the mean is given by
Given a random variate ''U'' drawn from the ] in the interval <nowiki></nowiki>, the variate
:<math>\operatorname{E}(X)=\mu+\gamma\beta</math>,
where <math> \gamma </math> is the ].


The standard deviation <math> \sigma </math> is <math>\beta \pi/\sqrt{6}</math> hence <math>\beta = \sigma \sqrt{6} / \pi \approx 0.78 \sigma. </math> <ref name = "Oosterbaan" />
:<math>X=\mu-\beta\ln(-\ln(U))\,</math>


At the mode, where <math> x = \mu </math>, the value of <math>F(x;\mu,\beta)</math> becomes <math> e^{-1} \approx 0.37 </math>, irrespective of the value of <math> \beta. </math>
has a Gumbel distribution with parameters μ and β. This follows from the form of the cumulative distribution function given above.

If <math>G_1,...,G_k</math> are iid Gumbel random variables with parameters <math>(\mu,\beta)</math> then <math>\max\{G_1,...,G_k\}</math> is also a Gumbel random variable with parameters <math>(\mu+\beta\ln k, \beta)</math>.

If <math>G_1, G_2,...</math> are iid random variables such that <math>\max\{G_1,...,G_k\}-\beta\ln k </math> has the same distribution as <math>G_1</math> for all natural numbers <math> k </math>, then <math>G_1</math> is necessarily Gumbel distributed with scale parameter <math>\beta</math> (actually it suffices to consider just two distinct values of k>1 which are coprime).


==Related distributions== ==Related distributions==
When the cdf of Y is the converse of the Gumbel standard cumulative distribution, <math>P(Y \leq y) = 1 - F(y)</math>, then Y has a ].<ref>Willemse, W. J. and Kaas, R., "Rational reconstruction of frailty-based mortality models by a generalisation of Gompertz’ law of mortality", ''Insurance: Mathematics and Economics'', 40 (3) (2007), 468&ndash;484.</ref> * If <math>X </math> has a Gumbel distribution, then the conditional distribution of ''Y''&nbsp;=&nbsp;&minus;''X'' given that ''Y'' is positive, or equivalently given that ''X'' is negative, has a ]. The cdf ''G'' of ''Y'' is related to ''F'', the cdf of ''X'', by the formula <math>G(y) = P(Y \le y) = P(X \ge -y \mid X \le 0) = (F(0)-F(-y))/F(0)</math> for ''y''&nbsp;>&nbsp;0. Consequently, the densities are related by <math>g(y) = f(-y)/F(0)</math>: the ] is proportional to a reflected Gumbel density, restricted to the positive half-line.<ref>{{Cite journal |doi=10.1016/j.insmatheco.2006.07.003 |title=Rational reconstruction of frailty-based mortality models by a generalisation of Gompertz' law of mortality |year=2007 |last1=Willemse |first1=W.J. |last2=Kaas |first2=R. |journal=Insurance: Mathematics and Economics |volume=40 |issue=3 |pages=468 |url=https://www.dnb.nl/binaries/Working%20Paper%20135-2007_tcm46-146792.pdf |access-date=2019-09-24 |archive-date=2017-08-09 |archive-url=https://web.archive.org/web/20170809050854/https://www.dnb.nl/binaries/Working%20Paper%20135-2007_tcm46-146792.pdf |url-status=dead }}</ref>
* If ''X'' is an exponentially distributed variable with mean 1, then &minus;log(''X'') has a standard Gumbel distribution.
* If <math>X \sim \mathrm{Gumbel}(\alpha_X, \beta) </math> and <math> Y \sim \mathrm{Gumbel}(\alpha_Y, \beta) </math> are independent, then <math> X-Y \sim \mathrm{Logistic}(\alpha_X-\alpha_Y,\beta) \,</math> (see ]).
* Despite this, if <math>X, Y \sim \mathrm{Gumbel}(\alpha, \beta) </math> are independent, then <math>X+Y \nsim \mathrm{Logistic}(2 \alpha,\beta)</math>. This can easily be seen by noting that <math> E(X+Y) = 2\alpha+2\beta\gamma \neq 2\alpha = E\left(\mathrm{Logistic}(2 \alpha,\beta) \right) </math> (where <math>\gamma</math> is the Euler-Mascheroni constant). Instead, the distribution of linear combinations of independent Gumbel random variables can be approximated by GNIG and GIG distributions.<ref name="Marques">{{Cite journal | last1=Marques|first1 = F.| last2=Coelho| first2=C.| last3=de Carvalho|first3=M.| title = On the distribution of linear combinations of independent Gumbel random variables | journal=Statistics and Computing|year=2015|volume=25 | issue=3 | pages=683‒701| doi=10.1007/s11222-014-9453-5 | s2cid=255067312 | url=https://www.maths.ed.ac.uk/~mdecarv/papers/marques2015.pdf}}</ref>


Theory related to the ] provides a multivariate version of the Gumbel distribution.
If X and Y are independent standard Gumbel random variables then X-Y is a logistic random variable with mean zero and scale parameter 1. <ref>Tsukida, Kristi and Gupta, Maya R. How to analyze paired comparison data</ref>


==Occurrence and applications==
==Application==
] of a cumulative Gumbel distribution to maximum one-day October rainfalls]] ] with ] of a cumulative Gumbel distribution to maximum one-day October rainfalls.<ref>{{Cite web|url=https://www.waterlog.info/cumfreq.htm|title=CumFreq, distribution fitting of probability, free calculator|website=www.waterlog.info}}</ref> ]]


Gumbel has shown that the maximum value (or last ]) in a sample of a ] following an ] approaches the Gumbel distribution closer with increasing sample size.<ref>Gumbel, E.J. 1954. "Statistical theory of extreme values and some practical applications". ''Applied Mathematics Series'', 33. U.S. Department of Commerce, National Bureau of Standards.</ref> Gumbel has shown that the maximum value (or last ]) in a sample of ]s following an ] minus the natural logarithm of the sample size <ref>{{Cite web|url=https://math.stackexchange.com/questions/3527556/gumbel-distribution-and-exponential-distribution?noredirect=1#comment7669633_3527556|title=Gumbel distribution and exponential distribution|website=Mathematics Stack Exchange}}</ref> approaches the Gumbel distribution as the sample size increases.<ref>{{cite book |last=Gumbel |first= E.J. |year=1954 |asin=B0007DSHG4 |title=Statistical theory of extreme values and some practical applications |series=Applied Mathematics Series |volume= 33 |edition=1st |url= https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB175818.xhtml |publisher= U.S. Department of Commerce, National Bureau of Standards}}</ref>


Concretely, let <math> \rho(x)=e^{-x} </math> be the probability distribution of <math> x </math> and <math> Q(x)=1- e^{-x} </math> its cumulative distribution. Then the maximum value out of <math> N </math> realizations of <math> x </math> is smaller than <math> X </math> if and only if all realizations are smaller than <math> X </math>. So the cumulative distribution of the maximum value <math> \tilde{x} </math> satisfies
In ], therefore, the Gumbel distribution is used to analyze such variables as monthly and annual maximum values of daily rainfall and river discharge volumes,<ref>{{cite book|last=Ritzema (ed.)|first=H.P.|title=Frequency and Regression Analysis|year=1994|publisher=Chapter 6 in: Drainage Principles and Applications, Publication 16, International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands|pages=175–224|url=http://www.waterlog.info/pdf/freqtxt.pdf|isbn=90-70754-33-9}}</ref> and also to describe droughts.<ref>Burke, E.J.; Perry R.H.J.; Brown, S.J. (2010) "An extreme value analysis of UK drought and projections of change in the future", ''Journal of Hydrology'' {{full|date=November 2012}}</ref>
:<math>P(\tilde{x}-\log(N)\le X)=P(\tilde{x}\le X+\log(N))=^N=\left(1- \frac{e^{-X}}{N}\right)^N, </math>
and, for large <math> N </math>, the right-hand-side converges to <math> e^{-e^{(-X)}}. </math>

In ], therefore, the Gumbel distribution is used to analyze such variables as monthly and annual maximum values of daily rainfall and river discharge volumes,<ref name = "Oosterbaan">{{cite book |editor-last=Ritzema |editor-first=H.P. |first1=R.J. |last1=Oosterbaan |chapter=Chapter 6 Frequency and Regression Analysis |year=1994 |title=Drainage Principles and Applications, Publication 16 |publisher=International Institute for Land Reclamation and Improvement (ILRI) |location=Wageningen, The Netherlands |pages= |chapter-url=http://www.waterlog.info/pdf/freqtxt.pdf |isbn=90-70754-33-9 |url=https://archive.org/details/drainageprincipl0000unse/page/175 }}</ref> and also to describe droughts.<ref>{{cite journal |doi=10.1016/j.jhydrol.2010.04.035 |title=An extreme value analysis of UK drought and projections of change in the future |year=2010 |last1=Burke |first1=Eleanor J. |last2=Perry |first2=Richard H.J. |last3=Brown |first3=Simon J. |journal=Journal of Hydrology |volume=388 |issue=1–2 |pages=131–143 |bibcode=2010JHyd..388..131B}}</ref>
Gumbel has also shown that the ] <big>''r'' / (''n''+1)</big> for the probability of an event - where <big>''r''</big> is the rank number of the observed value in the data series and <big>''n''</big> is the total number of observations - is an ] of the ] around the ] of the distribution. Therefore, this estimator is often used as a ]. Gumbel has also shown that the ] {{frac|''r''|(''n''+1)}} for the probability of an event &mdash; where ''r'' is the rank number of the observed value in the data series and ''n'' is the total number of observations &mdash; is an ] of the ] around the ] of the distribution. Therefore, this estimator is often used as a ].

In ], the Gumbel distribution approximates the number of terms in a random ]<ref>{{cite journal |doi=10.1215/S0012-7094-41-00826-8 |title=The distribution of the number of summands in the partitions of a positive integer |year=1941 |last1=Erdös |first1=Paul |last2=Lehner |first2=Joseph |journal=Duke Mathematical Journal |volume=8 |issue=2 |pages=335}}</ref> as well as the trend-adjusted sizes of maximal ] and maximal gaps between ].<ref>{{cite journal |arxiv=1301.2242 |last=Kourbatov |first= A. |title=Maximal gaps between prime ''k''-tuples: a statistical approach |journal=Journal of Integer Sequences |volume=16 |year=2013|bibcode=2013arXiv1301.2242K }} Article 13.5.2.</ref>

It appears in the ].

=== Gumbel reparameterization tricks ===
In ], the Gumbel distribution is sometimes employed to generate samples from the ]. This technique is called "Gumbel-max trick" and is a special example of "]".<ref>{{Cite conference |first1=Eric |last1=Jang |first2=Shixiang |last2=Gu |first3=Ben |last3=Poole |date=April 2017 |title=Categorical Reparameterization with Gumble-Softmax |url=https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_2564872 |conference=International Conference on Learning Representations (ICLR) 2017}}</ref>

In detail, let <math>(\pi_1, \ldots, \pi_n)</math> be nonnegative, and not all zero, and let <math>g_1,\ldots , g_n</math> be independent samples of Gumbel(0, 1), then by routine integration,<math display="block">Pr(j = \arg\max_i (g_i + \log\pi_i)) = \frac{\pi_j}{\sum_i \pi_i}</math>That is, <math>\arg\max_i (g_i + \log\pi_i) \sim \text{Categorical}\left(\frac{\pi_j}{\sum_i \pi_i}\right)_j</math>

Equivalently, given any <math>x_1, ..., x_n\in \R</math>, we can sample from its ] by

<math display="block">Pr(j = \arg\max_i (g_i + x_i)) = \frac{e^{x_j}}{\sum_i e^{x_i}}</math>Related equations include:<ref>{{Cite journal |last1=Balog |first1=Matej |last2=Tripuraneni |first2=Nilesh |last3=Ghahramani |first3=Zoubin |last4=Weller |first4=Adrian |date=2017-07-17 |title=Lost Relatives of the Gumbel Trick |url=https://proceedings.mlr.press/v70/balog17a.html |journal=International Conference on Machine Learning |language=en |publisher=PMLR |pages=371–379|arxiv=1706.04161 }}</ref>
* If <math>x\sim \operatorname{Exp}(\lambda)</math>, then <math>(-\ln x - \gamma)\sim \text{Gumbel}(-\gamma + \ln\lambda, 1)</math>.
* <math>\arg\max_i (g_i + \log\pi_i) \sim \text{Categorical}\left(\frac{\pi_j}{\sum_i \pi_i}\right)_j</math>.
* <math>\max_i (g_i + \log\pi_i) \sim \text{Gumbel}\left(\log\left(\sum_i \pi_i \right), 1\right)</math>. That is, the Gumbel distribution is a max-stable distribution family.
* <math>\mathbb E = \log \left(\sum_i e^{\beta x_i}\right) + \gamma.</math>

==Random variate generation==
{{further|Non-uniform random variate generation}}

Since the quantile function (inverse ]), <math>Q(p)</math>, of a Gumbel distribution is given by

:<math>Q(p)=\mu-\beta\ln(-\ln(p)),</math>

the variate <math>Q(U)</math> has a Gumbel distribution with parameters <math>\mu</math> and <math>\beta</math> when the random variate <math>U</math> is drawn from the ] on the interval <math>(0,1)</math>.

===Probability paper===
]


In pre-software times probability paper was used to picture the Gumbel distribution (see illustration). The paper is based on linearization of the cumulative distribution function <math>F</math> :
The blue picture illustrates an example of fitting the Gumbel distribution to ranked maximum one-day October rainfalls showing also the 90% ] based on the ]. The rainfall data are represented by the ] ''r'' / (''n''+1) as part of the ].
: <math> -\ln = \frac{x-\mu}\beta </math>
In the paper the horizontal axis is constructed at a double log scale. The vertical axis is linear. By plotting <math>F</math> on the horizontal axis of the paper and the <math>x</math>-variable on the vertical axis, the distribution is represented by a straight line with a slope 1<math>/\beta</math>. When ] software like ] became available, the task of plotting the distribution was made easier.


==See also== ==See also==
* ]
* ] * ]
* ] * ]
* ] * ]
* ] * ]
* ]
* ] (application software for probability distributions including Gumbel)


==Notes==
== External links ==
{{Notelist}}

{{Commons category}}


==References== ==References==
{{Reflist}} {{Reflist|40em}}

== External links ==
{{Commons and category}}


{{ProbDistributions|continuous-infinite}} {{ProbDistributions|continuous-infinite}}
Line 99: Line 135:
] ]
] ]
]

]
]
]
]
]
]
]
]
]
]

Latest revision as of 13:37, 7 October 2024

Particular case of the generalized extreme value distribution
Gumbel
Probability density functionProbability distribution function
Cumulative distribution functionCumulative distribution function
Notation Gumbel ( μ , β ) {\displaystyle {\text{Gumbel}}(\mu ,\beta )}
Parameters μ , {\displaystyle \mu ,} location (real)
β > 0 , {\displaystyle \beta >0,} scale (real)
Support x R {\displaystyle x\in \mathbb {R} }
PDF 1 β e ( z + e z ) {\displaystyle {\frac {1}{\beta }}e^{-(z+e^{-z})}}
where z = x μ β {\displaystyle z={\frac {x-\mu }{\beta }}}
CDF e e ( x μ ) / β {\displaystyle e^{-e^{-(x-\mu )/\beta }}}
Quantile μ β ln ( ln ( p ) ) {\displaystyle \mu -\beta \ln(-\ln(p))}
Mean μ + β γ {\displaystyle \mu +\beta \gamma }
where γ {\displaystyle \gamma } is the Euler–Mascheroni constant
Median μ β ln ( ln 2 ) {\displaystyle \mu -\beta \ln(\ln 2)}
Mode μ {\displaystyle \mu }
Variance π 2 6 β 2 {\displaystyle {\frac {\pi ^{2}}{6}}\beta ^{2}}
Skewness 12 6 ζ ( 3 ) π 3 1.14 {\displaystyle {\frac {12{\sqrt {6}}\,\zeta (3)}{\pi ^{3}}}\approx 1.14}
Excess kurtosis 12 5 {\displaystyle {\frac {12}{5}}}
Entropy ln ( β ) + γ + 1 {\displaystyle \ln(\beta )+\gamma +1}
MGF Γ ( 1 β t ) e μ t {\displaystyle \Gamma (1-\beta t)e^{\mu t}}
CF Γ ( 1 i β t ) e i μ t {\displaystyle \Gamma (1-i\beta t)e^{i\mu t}}

In probability theory and statistics, the Gumbel distribution (also known as the type-I generalized extreme value distribution) is used to model the distribution of the maximum (or the minimum) of a number of samples of various distributions.

This distribution might be used to represent the distribution of the maximum level of a river in a particular year if there was a list of maximum values for the past ten years. It is useful in predicting the chance that an extreme earthquake, flood or other natural disaster will occur. The potential applicability of the Gumbel distribution to represent the distribution of maxima relates to extreme value theory, which indicates that it is likely to be useful if the distribution of the underlying sample data is of the normal or exponential type.

The Gumbel distribution is a particular case of the generalized extreme value distribution (also known as the Fisher–Tippett distribution). It is also known as the log-Weibull distribution and the double exponential distribution (a term that is alternatively sometimes used to refer to the Laplace distribution). It is related to the Gompertz distribution: when its density is first reflected about the origin and then restricted to the positive half line, a Gompertz function is obtained.

In the latent variable formulation of the multinomial logit model — common in discrete choice theory — the errors of the latent variables follow a Gumbel distribution. This is useful because the difference of two Gumbel-distributed random variables has a logistic distribution.

The Gumbel distribution is named after Emil Julius Gumbel (1891–1966), based on his original papers describing the distribution.

Definitions

The cumulative distribution function of the Gumbel distribution is

F ( x ; μ , β ) = e e ( x μ ) / β {\displaystyle F(x;\mu ,\beta )=e^{-e^{-(x-\mu )/\beta }}\,}

Standard Gumbel distribution

The standard Gumbel distribution is the case where μ = 0 {\displaystyle \mu =0} and β = 1 {\displaystyle \beta =1} with cumulative distribution function

F ( x ) = e e ( x ) {\displaystyle F(x)=e^{-e^{(-x)}}\,}

and probability density function

f ( x ) = e ( x + e x ) . {\displaystyle f(x)=e^{-(x+e^{-x})}.}

In this case the mode is 0, the median is ln ( ln ( 2 ) ) 0.3665 {\displaystyle -\ln(\ln(2))\approx 0.3665} , the mean is γ 0.5772 {\displaystyle \gamma \approx 0.5772} (the Euler–Mascheroni constant), and the standard deviation is π / 6 1.2825. {\displaystyle \pi /{\sqrt {6}}\approx 1.2825.}

The cumulants, for n > 1, are given by

κ n = ( n 1 ) ! ζ ( n ) . {\displaystyle \kappa _{n}=(n-1)!\zeta (n).}

Properties

The mode is μ, while the median is μ β ln ( ln 2 ) , {\displaystyle \mu -\beta \ln \left(\ln 2\right),} and the mean is given by

E ( X ) = μ + γ β {\displaystyle \operatorname {E} (X)=\mu +\gamma \beta } ,

where γ {\displaystyle \gamma } is the Euler–Mascheroni constant.

The standard deviation σ {\displaystyle \sigma } is β π / 6 {\displaystyle \beta \pi /{\sqrt {6}}} hence β = σ 6 / π 0.78 σ . {\displaystyle \beta =\sigma {\sqrt {6}}/\pi \approx 0.78\sigma .}

At the mode, where x = μ {\displaystyle x=\mu } , the value of F ( x ; μ , β ) {\displaystyle F(x;\mu ,\beta )} becomes e 1 0.37 {\displaystyle e^{-1}\approx 0.37} , irrespective of the value of β . {\displaystyle \beta .}

If G 1 , . . . , G k {\displaystyle G_{1},...,G_{k}} are iid Gumbel random variables with parameters ( μ , β ) {\displaystyle (\mu ,\beta )} then max { G 1 , . . . , G k } {\displaystyle \max\{G_{1},...,G_{k}\}} is also a Gumbel random variable with parameters ( μ + β ln k , β ) {\displaystyle (\mu +\beta \ln k,\beta )} .

If G 1 , G 2 , . . . {\displaystyle G_{1},G_{2},...} are iid random variables such that max { G 1 , . . . , G k } β ln k {\displaystyle \max\{G_{1},...,G_{k}\}-\beta \ln k} has the same distribution as G 1 {\displaystyle G_{1}} for all natural numbers k {\displaystyle k} , then G 1 {\displaystyle G_{1}} is necessarily Gumbel distributed with scale parameter β {\displaystyle \beta } (actually it suffices to consider just two distinct values of k>1 which are coprime).

Related distributions

  • If X {\displaystyle X} has a Gumbel distribution, then the conditional distribution of Y = −X given that Y is positive, or equivalently given that X is negative, has a Gompertz distribution. The cdf G of Y is related to F, the cdf of X, by the formula G ( y ) = P ( Y y ) = P ( X y X 0 ) = ( F ( 0 ) F ( y ) ) / F ( 0 ) {\displaystyle G(y)=P(Y\leq y)=P(X\geq -y\mid X\leq 0)=(F(0)-F(-y))/F(0)} for y > 0. Consequently, the densities are related by g ( y ) = f ( y ) / F ( 0 ) {\displaystyle g(y)=f(-y)/F(0)} : the Gompertz density is proportional to a reflected Gumbel density, restricted to the positive half-line.
  • If X is an exponentially distributed variable with mean 1, then −log(X) has a standard Gumbel distribution.
  • If X G u m b e l ( α X , β ) {\displaystyle X\sim \mathrm {Gumbel} (\alpha _{X},\beta )} and Y G u m b e l ( α Y , β ) {\displaystyle Y\sim \mathrm {Gumbel} (\alpha _{Y},\beta )} are independent, then X Y L o g i s t i c ( α X α Y , β ) {\displaystyle X-Y\sim \mathrm {Logistic} (\alpha _{X}-\alpha _{Y},\beta )\,} (see Logistic distribution).
  • Despite this, if X , Y G u m b e l ( α , β ) {\displaystyle X,Y\sim \mathrm {Gumbel} (\alpha ,\beta )} are independent, then X + Y L o g i s t i c ( 2 α , β ) {\displaystyle X+Y\nsim \mathrm {Logistic} (2\alpha ,\beta )} . This can easily be seen by noting that E ( X + Y ) = 2 α + 2 β γ 2 α = E ( L o g i s t i c ( 2 α , β ) ) {\displaystyle E(X+Y)=2\alpha +2\beta \gamma \neq 2\alpha =E\left(\mathrm {Logistic} (2\alpha ,\beta )\right)} (where γ {\displaystyle \gamma } is the Euler-Mascheroni constant). Instead, the distribution of linear combinations of independent Gumbel random variables can be approximated by GNIG and GIG distributions.

Theory related to the generalized multivariate log-gamma distribution provides a multivariate version of the Gumbel distribution.

Occurrence and applications

Distribution fitting with confidence band of a cumulative Gumbel distribution to maximum one-day October rainfalls.

Gumbel has shown that the maximum value (or last order statistic) in a sample of random variables following an exponential distribution minus the natural logarithm of the sample size approaches the Gumbel distribution as the sample size increases.

Concretely, let ρ ( x ) = e x {\displaystyle \rho (x)=e^{-x}} be the probability distribution of x {\displaystyle x} and Q ( x ) = 1 e x {\displaystyle Q(x)=1-e^{-x}} its cumulative distribution. Then the maximum value out of N {\displaystyle N} realizations of x {\displaystyle x} is smaller than X {\displaystyle X} if and only if all realizations are smaller than X {\displaystyle X} . So the cumulative distribution of the maximum value x ~ {\displaystyle {\tilde {x}}} satisfies

P ( x ~ log ( N ) X ) = P ( x ~ X + log ( N ) ) = [ Q ( X + log ( N ) ) ] N = ( 1 e X N ) N , {\displaystyle P({\tilde {x}}-\log(N)\leq X)=P({\tilde {x}}\leq X+\log(N))=^{N}=\left(1-{\frac {e^{-X}}{N}}\right)^{N},}

and, for large N {\displaystyle N} , the right-hand-side converges to e e ( X ) . {\displaystyle e^{-e^{(-X)}}.}

In hydrology, therefore, the Gumbel distribution is used to analyze such variables as monthly and annual maximum values of daily rainfall and river discharge volumes, and also to describe droughts.

Gumbel has also shown that the estimator r⁄(n+1) for the probability of an event — where r is the rank number of the observed value in the data series and n is the total number of observations — is an unbiased estimator of the cumulative probability around the mode of the distribution. Therefore, this estimator is often used as a plotting position.

In number theory, the Gumbel distribution approximates the number of terms in a random partition of an integer as well as the trend-adjusted sizes of maximal prime gaps and maximal gaps between prime constellations.

It appears in the coupon collector's problem.

Gumbel reparameterization tricks

In machine learning, the Gumbel distribution is sometimes employed to generate samples from the categorical distribution. This technique is called "Gumbel-max trick" and is a special example of "reparameterization tricks".

In detail, let ( π 1 , , π n ) {\displaystyle (\pi _{1},\ldots ,\pi _{n})} be nonnegative, and not all zero, and let g 1 , , g n {\displaystyle g_{1},\ldots ,g_{n}} be independent samples of Gumbel(0, 1), then by routine integration, P r ( j = arg max i ( g i + log π i ) ) = π j i π i {\displaystyle Pr(j=\arg \max _{i}(g_{i}+\log \pi _{i}))={\frac {\pi _{j}}{\sum _{i}\pi _{i}}}} That is, arg max i ( g i + log π i ) Categorical ( π j i π i ) j {\displaystyle \arg \max _{i}(g_{i}+\log \pi _{i})\sim {\text{Categorical}}\left({\frac {\pi _{j}}{\sum _{i}\pi _{i}}}\right)_{j}}

Equivalently, given any x 1 , . . . , x n R {\displaystyle x_{1},...,x_{n}\in \mathbb {R} } , we can sample from its Boltzmann distribution by

P r ( j = arg max i ( g i + x i ) ) = e x j i e x i {\displaystyle Pr(j=\arg \max _{i}(g_{i}+x_{i}))={\frac {e^{x_{j}}}{\sum _{i}e^{x_{i}}}}} Related equations include:

  • If x Exp ( λ ) {\displaystyle x\sim \operatorname {Exp} (\lambda )} , then ( ln x γ ) Gumbel ( γ + ln λ , 1 ) {\displaystyle (-\ln x-\gamma )\sim {\text{Gumbel}}(-\gamma +\ln \lambda ,1)} .
  • arg max i ( g i + log π i ) Categorical ( π j i π i ) j {\displaystyle \arg \max _{i}(g_{i}+\log \pi _{i})\sim {\text{Categorical}}\left({\frac {\pi _{j}}{\sum _{i}\pi _{i}}}\right)_{j}} .
  • max i ( g i + log π i ) Gumbel ( log ( i π i ) , 1 ) {\displaystyle \max _{i}(g_{i}+\log \pi _{i})\sim {\text{Gumbel}}\left(\log \left(\sum _{i}\pi _{i}\right),1\right)} . That is, the Gumbel distribution is a max-stable distribution family.
  • E [ max i ( g i + β x i ) ] = log ( i e β x i ) + γ . {\displaystyle \mathbb {E} =\log \left(\sum _{i}e^{\beta x_{i}}\right)+\gamma .}

Random variate generation

Further information: Non-uniform random variate generation

Since the quantile function (inverse cumulative distribution function), Q ( p ) {\displaystyle Q(p)} , of a Gumbel distribution is given by

Q ( p ) = μ β ln ( ln ( p ) ) , {\displaystyle Q(p)=\mu -\beta \ln(-\ln(p)),}

the variate Q ( U ) {\displaystyle Q(U)} has a Gumbel distribution with parameters μ {\displaystyle \mu } and β {\displaystyle \beta } when the random variate U {\displaystyle U} is drawn from the uniform distribution on the interval ( 0 , 1 ) {\displaystyle (0,1)} .

Probability paper

A piece of graph paper that incorporates the Gumbel distribution.

In pre-software times probability paper was used to picture the Gumbel distribution (see illustration). The paper is based on linearization of the cumulative distribution function F {\displaystyle F}  :

ln [ ln ( F ) ] = x μ β {\displaystyle -\ln={\frac {x-\mu }{\beta }}}

In the paper the horizontal axis is constructed at a double log scale. The vertical axis is linear. By plotting F {\displaystyle F} on the horizontal axis of the paper and the x {\displaystyle x} -variable on the vertical axis, the distribution is represented by a straight line with a slope 1 / β {\displaystyle /\beta } . When distribution fitting software like CumFreq became available, the task of plotting the distribution was made easier.

See also

Notes

  1. This article uses the Gumbel distribution to model the distribution of the maximum value. To model the minimum value, use the negative of the original values.

References

  1. Gumbel, E.J. (1935), "Les valeurs extrêmes des distributions statistiques" (PDF), Annales de l'Institut Henri Poincaré, 5 (2): 115–158
  2. Gumbel E.J. (1941). "The return period of flood flows". The Annals of Mathematical Statistics, 12, 163–190.
  3. ^ Oosterbaan, R.J. (1994). "Chapter 6 Frequency and Regression Analysis" (PDF). In Ritzema, H.P. (ed.). Drainage Principles and Applications, Publication 16. Wageningen, The Netherlands: International Institute for Land Reclamation and Improvement (ILRI). pp. 175–224. ISBN 90-70754-33-9.
  4. Willemse, W.J.; Kaas, R. (2007). "Rational reconstruction of frailty-based mortality models by a generalisation of Gompertz' law of mortality" (PDF). Insurance: Mathematics and Economics. 40 (3): 468. doi:10.1016/j.insmatheco.2006.07.003. Archived from the original (PDF) on 2017-08-09. Retrieved 2019-09-24.
  5. Marques, F.; Coelho, C.; de Carvalho, M. (2015). "On the distribution of linear combinations of independent Gumbel random variables" (PDF). Statistics and Computing. 25 (3): 683‒701. doi:10.1007/s11222-014-9453-5. S2CID 255067312.
  6. "CumFreq, distribution fitting of probability, free calculator". www.waterlog.info.
  7. "Gumbel distribution and exponential distribution". Mathematics Stack Exchange.
  8. Gumbel, E.J. (1954). Statistical theory of extreme values and some practical applications. Applied Mathematics Series. Vol. 33 (1st ed.). U.S. Department of Commerce, National Bureau of Standards. ASIN B0007DSHG4.
  9. Burke, Eleanor J.; Perry, Richard H.J.; Brown, Simon J. (2010). "An extreme value analysis of UK drought and projections of change in the future". Journal of Hydrology. 388 (1–2): 131–143. Bibcode:2010JHyd..388..131B. doi:10.1016/j.jhydrol.2010.04.035.
  10. Erdös, Paul; Lehner, Joseph (1941). "The distribution of the number of summands in the partitions of a positive integer". Duke Mathematical Journal. 8 (2): 335. doi:10.1215/S0012-7094-41-00826-8.
  11. Kourbatov, A. (2013). "Maximal gaps between prime k-tuples: a statistical approach". Journal of Integer Sequences. 16. arXiv:1301.2242. Bibcode:2013arXiv1301.2242K. Article 13.5.2.
  12. Jang, Eric; Gu, Shixiang; Poole, Ben (April 2017). Categorical Reparameterization with Gumble-Softmax. International Conference on Learning Representations (ICLR) 2017.
  13. Balog, Matej; Tripuraneni, Nilesh; Ghahramani, Zoubin; Weller, Adrian (2017-07-17). "Lost Relatives of the Gumbel Trick". International Conference on Machine Learning. PMLR: 371–379. arXiv:1706.04161.

External links

Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Categories: