Revision as of 16:28, 20 March 2013 editBeland (talk | contribs)Autopatrolled, Administrators236,679 editsm →Vulnerabilities: linking← Previous edit | Latest revision as of 02:35, 3 January 2025 edit undoParanormaI (talk | contribs)58 edits what drollie did with the 'ostentatious' thing and replacing into unbranded digicardTag: Visual edit | ||
(286 intermediate revisions by more than 100 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Device used to gain access to restricted resource}} | |||
] | |||
{{Disputed|date=November 2024|details=Review the definitions of "Security Token" and "Security Token Generator".}} | |||
A '''security token''' (or sometimes a ''hardware token'', ''authentication token'', ''USB token'', ''cryptographic token'', ''software token'', ''virtual token'', or '']'') may be a physical device that an authorized user of computer services is given to ease ]. The term may also refer to ]s. | |||
] card used to open a door.]] | |||
A '''security token''' is a ] used to gain access to an electronically restricted resource. The token is used in addition to, or in place of, a ].<ref>{{Cite journal |last1=Schink |first1=Marc |last2=Wagner |first2=Alexander |last3=Unterstein |first3=Florian |last4=Heyszl |first4=Johann |date=2021-07-09 |title=Security and Trust in Open Source Security Tokens |url=https://tches.iacr.org/index.php/TCHES/article/view/8972 |journal=IACR Transactions on Cryptographic Hardware and Embedded Systems |pages=176–201 |doi=10.46586/tches.v2021.i3.176-201 |s2cid=235349083 |issn=2569-2925|doi-access=free }}</ref> Examples of security tokens include wireless ]s used to open locked doors, a banking token used as a digital authenticator for signing in to ], or signing transactions such as ]. | |||
Security tokens are used to prove one's identity electronically (as in the case of a customer trying to access their bank account). The token is used in addition to or in place of a password to prove that the customer is who they claim to be. The token acts like an electronic key to access something. | |||
Security tokens can be used to store information such as ], ]s used to generate ], or ] data (such as ]). Some designs incorporate ] packaging, while others may include small ]s to allow entry of a ] or a simple button to start a generation routine with some display capability to show a generated key number. Connected tokens utilize a variety of interfaces including ], ] (NFC), ] (RFID), or ]. Some tokens have audio capabilities designed for those who are vision-impaired. | |||
== |
== Password types == | ||
There are four types of tokens: | |||
# Static password token. | |||
# Synchronous dynamic password token. | |||
# Asynchronous password token. | |||
# Challenge response token. | |||
All tokens contain some secret information used to prove identity. There are four different ways in which this information can be used: | |||
This article currently focuses on synchronous dynamic password tokens. | |||
] | |||
; Static password token: The device contains a password that is physically hidden (not visible to the possessor), but is transmitted for each authentication. This type is vulnerable to ]s. | |||
; Synchronous dynamic password token: A timer is used to rotate through various combinations produced by a ]. The token and the authentication server must have synchronized clocks. | |||
The simplest security tokens do not need any connection to a ]. The ] enters the number to a local keyboard as displayed on the token (second security factor), usually along with a ] (first security factor), when asked to do so. Being disconnected from the authenticating server, however, renders such tokens vulnerable to man-in-the-middle attacks. | |||
; Asynchronous password token: A ] is generated without the use of a clock, either from a ] or cryptographic algorithm. | |||
Other tokens connect to the computer using wireless techniques, such as ]. These tokens transfer a key sequence to the local client or to a nearby access point. | |||
; ] token: Using ], it is possible to prove possession of a private key without revealing that key. The authentication server encrypts a challenge (typically a random number, or at least data with some random parts) with a public key; the device proves it possesses a copy of the matching private key by providing the decrypted challenge. | |||
Alternatively, another form of token that has been widely available for many years is a mobile device which communicates using an out-of-band channel (like voice, ], ]). Like physically disconnected tokens, out-of-band delivered tokens are also vulnerable to man-in-the-middle attacks. | |||
Time-synchronized, one-time passwords change constantly at a set time interval; e.g., once per minute. To do this, some sort of synchronization must exist between the ]'s token and the authentication ]. For disconnected tokens, this time-synchronization is done before the token is distributed to the ]. Other token types do the synchronization when the token is inserted into an ]. The main problem with time-synchronized tokens is that they can, over time, become unsynchronized.<ref>{{Cite web|last=RD|first=Token2|date=2019-01-07|title=Time drift: a major downside of TOTP hardware tokens|url=https://token2.medium.com/time-drift-a-major-downside-of-totp-hardware-tokens-c164c2ec9252|access-date=2020-11-21|website=Medium|language=en}}</ref> However, some such systems, such as ], allow the user to re-synchronize the server with the token, sometimes by entering several consecutive passcodes. Most also cannot have replaceable batteries and only last up to 5 years before having to be replaced – so there is an additional cost.<ref>{{Cite web|date=2019-06-03|title=Time Drift in TOTP Hardware Tokens Explained and Solved - Protectimus Solutions|url=https://www.protectimus.com/blog/time-drift-in-totp-hardware-tokens/|access-date=2020-11-21|website=Protectimus|language=en-GB}}</ref> | |||
Still other tokens plug into the computer. For these one must: | |||
Another type of one-time password uses a complex mathematical algorithm, such as a ], to generate a series of one-time passwords from a secret shared key. Each password is unique, even when previous passwords are known. The open-source ] algorithm is standardized;{{Citation needed |date=March 2023 |reason=This claim needs references to reliable sources.}} other algorithms are covered by US ]s. Each password is observably unpredictable and independent of previous ones, whereby an adversary would be unable to guess what the next password may be, even with knowledge of all previous passwords. | |||
==Physical types== | |||
# Connect the token to the computer using an appropriate ]. | |||
{{More citations needed section|date=March 2023}} | |||
# Enter the ] if necessary. | |||
Depending on the type of the token, the ] ] will then either | |||
* read the key from token and perform cryptographic operation on it or | |||
* ask the token's firmware to perform this operation | |||
Tokens can contain ] with functions varying from very simple to very complex, including multiple authentication methods. | |||
A related application is the hardware ] required by some computer programs to prove ownership of the ]. The ] is placed in an ] and the ] accesses the ] in question to ] the use of the ] in question. | |||
The simplest security tokens do not need any connection to a ]. The tokens have a physical display; the authenticating user simply enters the displayed number to log in. Other tokens connect to the computer using wireless techniques, such as ]. These tokens transfer a key sequence to the local client or to a nearby access point.<ref>{{Cite web |date=2021-01-15 |title=2.3.3: Authentication Methods - Security Tokens |url=https://eng.libretexts.org/Courses/Delta_College/Information_Security/02%3A_Authenticate_and_Identify/2.3%3A_Authentication_Methods_-_Password/2.3.3%3A_Authentication_Methods_-_Security_Tokens |access-date=2023-05-08 |website=Engineering LibreTexts |language=en}}</ref> | |||
== Minimum requirement == | |||
Alternatively, another form of token that has been widely available for many years is a mobile device which communicates using an out-of-band channel (like voice, ], or ]). | |||
1. Option 1: (for zero-installation and disconnected tokens): The minimum requirement of any token is at least an '''inherent unique identity''' in a protected memory that cannot be tampered with and preferably is not openly accessible to applications other than those offered by the token vendor or other trusted organizations. | |||
Still other tokens plug into the computer and may require a PIN. Depending on the type of the token, the ] ] will then either read the key from the token and perform a cryptographic operation on it, or ask the token's firmware to perform this operation.{{Citation needed |date=March 2023 |reason=This claim needs references to reliable sources.}} | |||
2. Option 2: (for out-of-band tokens): The minimum requirement of this form of token is connectivity from another medium, like mobile network for USSD, SMS and voice. All you need is a registered telephone / mobile number. | |||
A related application is the hardware ] required by some computer programs to prove ownership of the ]. The dongle is placed in an ] and the ] accesses the ] in question to ] the use of the ] in question. | |||
=== Vulnerabilities === | |||
Commercial solutions are provided by a variety of vendors, each with their own proprietary (and often patented) implementation of variously used security features. Token designs meeting certain security standards are certified in the ] as compliant with ], a federal security standard.<ref>{{Cite report |url=https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf |title=Security requirements for cryptographic modules |last=National Institute of Standards and Technology |date=April 2019 |publisher=National Institute of Standards and Technology |issue=NIST FIPS 140-3 |doi=10.6028/nist.fips.140-3 |location=Gaithersburg, MD}}</ref> Tokens without any kind of certification are sometimes viewed as suspect, as they often do not meet accepted government or industry security standards, have not been put through rigorous testing, and likely cannot provide the same level of cryptographic security as token solutions which have had their designs independently audited by third-party agencies.{{citation needed|date=April 2013}} | |||
The simplest vulnerability with any password container is losing the special key device or the activated smart phone with the integrated key function. Such vulnerability cannot be healed with any single token container device within the pre-set time span of activation. All further consideration presumes performance loss prevention, e.g. by additional ] or body sensor and alarm. | |||
Physically disconnected token approaches, including out-of-band approaches, are also vulnerable to man-in-the-middle attacks. In a man-in-the-middle attack, a fraudster acts as the "go-between" the user and the legitimate system, soliciting the token value from the user and then supplying it to the authentication system themselves. Since the token value is mathematically correct, the authentication succeeds and the fraudster is granted access. Citibank made headline news in 2006 when its hardware token-equipped business users became the victims of a large Ukrainian-based man-in-the-middle phishing attack. | |||
In June, 2012, a team of computer scientists claimed to have developed a method of quickly extracting the secret key generated by several RSA dongles including the ] 800. Calling themselves "Team Prosecco," the group published a research paper documenting their findings which they planned to present at a cryptography conference in August, 2012. | |||
<ref>{{cite news | |||
| author = Somini Sengupta | |||
| title = Computer Scientists Break Security Token Key in Record Time | |||
| url = http://bits.blogs.nytimes.com/2012/06/25/computer-scientists-break-security-token-key-in-record-time/ | |||
| work = ] | |||
| date = 2012-06-25 | |||
| accessdate = 2012-06-25 | |||
}}</ref>{{update-inline}} | |||
== Digital signature == | |||
Trusted as a regular hand-written signature, the digital signature must be made with a private key known only to the person authorized to make the signature. Tokens that allow secure on-board generation and storage of private keys enable secure digital signatures, and can also be used for user authentication, as the private key also serves as a proof for the user’s identity. | |||
For tokens to identify the user, all tokens must have some kind of number that is unique. Not all approaches fully qualify as ]s according to some national laws.{{Citation needed|date=February 2007}} Tokens with no on-board keyboard or another ] cannot be used in some ] scenarios, such as confirming a bank transaction based on the bank account number that the funds are to be transferred to. | |||
== Embodiments and vendors == | |||
Tokens can contain ] with functions varying from very simple to very complex, including multiple authentication methods. Commercial solutions are provided by a variety of vendors, each with their own proprietary (and often patented) implementation of variously used security features. Token designs meeting certain security standards are certified in the USA as . Tokens without any kind of certification are sometimes viewed as suspect, as they often do not meet accepted government or industry security standards, have not been put through rigorous testing, and likely cannot provide the same level of cryptographic security as token solutions which have had their designs independently audited by 3rd-party agencies. | |||
=== Disconnected tokens === | === Disconnected tokens === | ||
] | ] field by hand.]] | ||
Disconnected tokens have neither a physical nor logical connection to the client computer. They typically do not require a special input device, and instead use a built-in screen to display the generated authentication data, which the user enters manually themselves via a keyboard or keypad. Disconnected tokens are the most common type of security token used (usually in combination with a password) in two-factor authentication for online identification.<ref>{{cite web|url=http://www.insight.co.uk/files/whitepapers/Two-factor%20authentication%20(White%20paper).pdf|title=Two-factor authentication|last=de Borde|first=Duncan|publisher=Siemens Insight Consulting| |
Disconnected tokens have neither a physical nor logical connection to the client computer. They typically do not require a special input device, and instead use a built-in screen to display the generated authentication data, which the user enters manually themselves via a ] or ]. Disconnected tokens are the most common type of security token used (usually in combination with a password) in two-factor authentication for online identification.<ref>{{cite web|url=http://www.insight.co.uk/files/whitepapers/Two-factor%20authentication%20(White%20paper).pdf|title=Two-factor authentication|last=de Borde|first=Duncan|publisher=Siemens Insight Consulting|access-date=2009-01-14|date=2007-06-28|url-status=dead|archive-url=https://web.archive.org/web/20120112172841/http://www.insight.co.uk/files/whitepapers/Two-factor%20authentication%20(White%20paper).pdf|archive-date=2012-01-12}}</ref> | ||
=== Connected tokens === | === Connected tokens === | ||
Connected tokens are tokens that must be physically connected to the |
Connected tokens are tokens that must be physically connected to the computer with which the user is authenticating. Tokens in this category automatically transmit the authentication information to the client computer once a physical connection is made, eliminating the need for the user to manually enter the authentication information. However, in order to use a connected token, the appropriate input device must be installed. The most common types of physical tokens are ]s and USB tokens (also called ''security keys''), which require a smart card reader and a USB port respectively. Increasingly, ] tokens, supported by the open specification group ] have become popular for consumers with mainstream browser support beginning in 2015 and supported by popular websites and social media sites.{{Citation needed|date=March 2023|reason=This claim needs references to reliable sources.}} | ||
Older ] tokens are made to work primarily with ]s. Type II PC Cards are preferred as a token as they are half as thick as Type III. | |||
=== Virtual tokens === | |||
Virtual tokens are similar to a connected token, but with significant differences. Like connected tokens, virtual tokens are a physical device connected to the authenticating server, however, the connected device is the client computer or mobile device<ref>Kenyon, Henry S. ''Virtual Token Leaves No Footprint''. AFCEA International, 2002, p. 1.</ref><ref>Maraes, Ricardo. ''VTP-CSMA: A Virtual Token Passing Approach for Real-Time Communication in IEEE 802.11 Wireless Networks ''. IEEE Transactions on Industrial Informatics, 2007 Aug, p. 1.</ref>, not a traditional hardware token. No hardware or software must be distributed to the end user. Virtual tokens uses the user's existing device as the possession factor, reducing the costs normally associated with implementation and maintenance of security tokens. Processing occurs "server-side" and facilitates the retrieval of one-time-use digitally-signed keys and other information from a connected device using Internet-standard HTTP/HTTPS delivery methods. The retrieved key is then authenticated against the connecting device's digital fingerprint, the user's account details, and other data. Since the authenticating server is communicating directly with the connected device, the method is not as prone to man-in-the-middle attacks as other methods.<ref>Jeong, Youn-Kwae Kwae. ''A virtual token dual bus protocol for the interconnection network in CDMA mobile communication system''. Third IEEE Symposium on Computers and Communications, 30 June 1998, p. 1.</ref><ref>J Iturralde, Mauricio. ''Performance Study of Multimedia Services Using Virtual Token Mechanism for Resource Allocation in LTE Networks''. Fall 2011 Vehicular Technology Conference. ISCC, 5 Sept 2011, p. 1.</ref> | |||
The audio jack port is a relatively practical method to establish connection between mobile devices, such as ], ] and ], and other accessories.{{Citation needed|date=March 2023|reason=This claim needs references to reliable sources.}} The most well known device is called ], a credit card reader for ] and Android devices. | |||
=== Smart cards === | |||
{{Main|smart card}} | |||
Many connected tokens use smart card technology. Smart cards can be very cheap (around ten cents) and contain proven security mechanisms (as used by financial institutions, like cash cards). However, computational performance of smart cards is often rather limited because of extreme low power consumption and ultra thin form-factor requirements. | |||
Some use a special purpose interface (e.g. the ] deployed by the United States ]). Tokens can also be used as a photo ]. ] and ] can also serve as security tokens with proper programming. | |||
=== Contactless tokens === | |||
Contactless tokens are the third main type of physical tokens. Unlike connected tokens, they form a logical connection to the client computer but do not require a physical connection. The absence of the need for physical contact makes them more convenient than both connected and disconnected tokens. As a result contactless tokens are a popular choice for ] systems and electronic payment solutions such as ] ], which uses ] to transmit authentication info from a keychain token. However, there have been various security concerns raised about RFID tokens after researchers at ] and ] discovered that RFID tags could be easily cracked and cloned.<ref>{{cite web|url=http://www.pcworld.com/article/119661/does_your_car_key_pose_a_security_risk.html|title=Does Your Car Key Pose a Security Risk?|first=Erin|last=Biba|date=2005-02-14|accessdate=2009-01-14|publisher=PC World}}</ref> | |||
Another downside is that contactless tokens have relatively short battery lives; usually only 3–5 years, which is low compared to ] tokens which may last more than 10 years.{{Citation needed|date=June 2008}} Though some tokens do allow the batteries to be changed, thus reducing costs. | |||
==== |
==== Smart cards ==== | ||
{{Main article|Smart card}} | |||
] tokens are often combined with a USB token, thus working in both a connected and a disconnected state. Bluetooth authentication works when closer than 32 feet (10 meters). If the Bluetooth is not available, the token must be inserted into a ] ] to function. | |||
Many connected tokens use smart card technology. Smart cards can be very cheap (around ten cents){{citation needed|date=September 2013}} and contain proven security mechanisms (as used by financial institutions, like cash cards). However, computational performance of smart cards is often rather limited because of extreme low power consumption and ultra-thin form-factor requirements. | |||
Smart-card-based ] tokens which contain a ] chip inside provide the functionality of both USB tokens and smart cards. They enable a broad range of security solutions and provide the abilities and security of a traditional smart card without requiring a unique input device. From the ]'s point of view such a token is a USB-connected smart card reader with one non-removable smart card present.<ref name="noteusbSpec"> {{webarchive|url=https://web.archive.org/web/20051229033623/http://www.usb.org/developers/devclass_docs/DWG_Smart-Card_CCID_Rev110.pdf |date=2005-12-29 }}, usb.org</ref> | |||
In the USB mode of operation sign off required care for the token while mechanically coupled to the USB plug. The advantage with the Bluetooth mode of operation is the option of combining sign-off with a distance metrics. Respective products are in preparation, following the concepts of ]. | |||
=== Contactless tokens === | |||
Unlike connected tokens, contactless tokens form a logical connection to the client computer but do not require a physical connection. The absence of the need for physical contact makes them more convenient than both connected and disconnected tokens. As a result, contactless tokens are a popular choice for ] systems and electronic payment solutions such as ] ], which uses ] to transmit authentication info from a keychain token.{{Citation needed|date=March 2023|reason=This claim needs references to reliable sources.}} However, there have been various security concerns raised about RFID tokens after researchers at ] and ] discovered that RFID tags could be easily cracked and cloned.<ref>{{cite web|url=http://www.pcworld.com/article/119661/does_your_car_key_pose_a_security_risk.html|title=Does Your Car Key Pose a Security Risk?|first=Erin|last=Biba|date=2005-02-14|access-date=2009-01-14|publisher=PC World|archive-date=2011-06-05|archive-url=https://web.archive.org/web/20110605231530/http://www.pcworld.com/article/119661/does_your_car_key_pose_a_security_risk.html|url-status=dead}}</ref> | |||
A new category of T-FA tools allows users to utilize their mobile phone as a security token. A Java application installed on the mobile phone performs the functions normally provided by a dedicated token. Other methods of using the cell phone include using ] messaging, instigating an interactive telephone call, or using standard Internet protocols such as ] or ]. | |||
Another downside is that contactless tokens have relatively short battery lives; usually only 5–6 years, which is low compared to ] tokens which may last more than 10 years.{{Citation needed|date=June 2008}} Some tokens however do allow the batteries to be changed, thus reducing costs. | |||
Such a method can simplify deployment, reduce logistical costs and remove the need for separate token devices.<ref>http://www.fireid.com/products/overview.html</ref> In the case of SMS options, there are trade-offs: users may incur fees for text messages or for WAP/HTTP services. | |||
=== |
==== Bluetooth tokens ==== | ||
{{tone|section|date=September 2016}} | |||
Some types of ] (SSO) solutions, like ], use the token to store software that allows for seamless authentication and password filling. As the passwords are stored on the token, users need not remember their passwords and therefore can select more secure passwords, or have more secure passwords assigned. | |||
The ] protocols provide long lasting battery lifecycle of wireless transmission. | |||
=== Mobile device tokens === | |||
Mobile devices tokens use a ] device such as a smart phone or tablet computer as the authentication device. This provides secure ] that does not require the user to carry around an additional physical device. Some vendors offer a mobile device authentication solution that uses a ] for user authentication. This provides a high level of security protection including protection from a ], which can occur from a rogue ]. | |||
* The transmission of inherent Bluetooth identity data is the lowest quality for supporting authentication. | |||
== Related authentication technologies == | |||
* A bidirectional connection for transactional data interchange serves for the most sophisticated authentication procedures. | |||
Although, the automatic transmission power control attempts for radial distance estimates. The escape is available apart from the standardised Bluetooth power control algorithm to provide a calibration on minimally required transmission power.<ref>{{cite web|url=http://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE102009039879B9|title=Verfahren zum Steuern der Freigabe einer Einrichtung oder eines Dienstes, als Master ausgebildete Sendeempfangseinrichtung sowie System mit derartiger Einrichtung|website=dpma.de|access-date=16 April 2018}}</ref> | |||
=== Two-factor authentication (T-FA or 2FA) === | |||
Bluetooth tokens are often combined with a USB token, thus working in both a connected and a disconnected state. Bluetooth authentication works when closer than {{convert|32|ft|m|abbr=off|sp=us}}. When the Bluetooth link is not properly operable, the token may be inserted into a ] ] to function. | |||
Security tokens provide the "posession" component in ] and multi-factor authentication solutions. | |||
Another combination is with a ] to store locally larger amounts of identity data and process information as well.<ref>{{cite web |url=https://www.certgate.com/de/produkte/cgtoken |title=cgToken {{!}} certgate |website=www.certgate.com |url-status=dead |archive-url=https://web.archive.org/web/20131009094610/http://www.certgate.com/de/produkte/cgtoken/ |archive-date=2013-10-09}}</ref> Another is a contactless BLE token that combines secure storage and tokenized release of fingerprint credentials.<ref>{{cite web|url=https://www.hypr.com/biometric-token/|title=Biometric U2F OTP Token - HYPR|website=HYPR Corp|access-date=16 April 2018}}</ref> | |||
=== One-time passwords === | |||
In the USB mode of operation sign-off requires care for the token while mechanically coupled to the USB plug. The advantage with the Bluetooth mode of operation is the option of combining sign-off with distance metrics. Respective products are in preparation, following the concepts of electronic leash. | |||
A ] is a ] that changes after each ], or changes after a set time interval. | |||
==== NFC tokens ==== | |||
==== Mathematical-algorithm-based one-time passwords ==== | |||
] (NFC) tokens combined with a Bluetooth token may operate in several modes, thus working in both a connected and a disconnected state. NFC authentication works when closer than {{convert|1|ft|m|1|abbr=off|sp=us}}.{{Citation needed|date=March 2023|reason=This claim needs references to reliable sources.}} The NFC protocol bridges short distances to the reader while the Bluetooth connection serves for data provision with the token to enable authentication. Also when the Bluetooth link is not connected, the token may serve the locally stored authentication information in coarse positioning to the NFC reader and relieves from exact positioning to a connector.{{citation needed|date=October 2016}} | |||
Another type of one-time password uses a complex mathematical algorithm, such as a ], to generate a series of one-time passwords from a secret shared key. Each password is unguessable, even when previous passwords are known. The open source ] algorithm is standardized; other algorithms are covered by U.S. ]s. Each new password is unique, so an unauthorized user would be unable to guess what the new password may be, based on previously used passwords. | |||
=== Single sign-on software tokens === | |||
Some types of ] (SSO) solutions, like ], use the token to store software that allows for seamless authentication and password filling. As the passwords are stored on the token, users need not remember their passwords and therefore can select more secure passwords, or have more secure passwords assigned. Usually most tokens store a cryptographic hash of the password so that if the token is compromised, the password is still protected.<ref>{{Cite web |date=2021-01-15 |title=2.3.3: Authentication Methods - Security Tokens |url=https://eng.libretexts.org/Courses/Delta_College/Information_Security/02:_Authenticate_and_Identify/2.3:_Authentication_Methods_-_Password/2.3.3:_Authentication_Methods_-_Security_Tokens |access-date=2024-11-21 |website=Engineering LibreTexts |language=en}}</ref> | |||
=== Programmable tokens === | |||
Time-synchronized one-time passwords change constantly at a set time interval, e.g. once per minute. To do this some sort of synchronization must exist between the ]'s token and the authentication ]. For disconnected tokens this time-synchronization is done before the token is distributed to the ]. Other token types do the synchronization when the token is inserted into an ]. The main problem with time-synchronized tokens is that they can, over time, become unsynchronized.{{Citation needed|date=June 2008}} However, some such systems, such as RSA's ], allow the user to resynchronize the server with the token, sometimes by entering several consecutive passcodes. Most also cannot have replaceable batteries and only last up to 5 years before having to be replaced - so there is additional cost. | |||
Programmable tokens are marketed as "drop-in" replacement of mobile applications such as ] (miniOTP<ref></ref>). They can be used as mobile app replacement, as well as in parallel as a backup. | |||
== Vulnerabilities == | |||
=== Loss and theft === | |||
The ] tokens are made to only work with ]s. Type II PC Cards are preferred as a token as they are half as thick as Type III. | |||
The simplest vulnerability with any password container is theft or loss of the device. The chances of this happening, or happening unaware, can be reduced with physical security measures such as locks, electronic leash, or body sensor and alarm. Stolen tokens can be made useless by using ]. Commonly, in order to authenticate, a ] (PIN) must be entered along with the information provided by the token the same time as the output of the token. | |||
=== Smart cards === | |||
]s are relatively inexpensive compared to other tokens.{{Citation needed|date=February 2007}} There are also significant wear-and-tear on the ]s themselves because of the friction on the electronic contacts the card is inserted. This has the potential to reduce the lifespan of a smart card token. | |||
=== |
=== Attacking === | ||
Any system which allows users to authenticate via an untrusted network (such as ]) is vulnerable to ]s. In this type of attack, an attacker acts as the "go-between" of the user and the legitimate system, soliciting the token output from the legitimate user and then supplying it to the authentication system themselves. Since the token value is mathematically correct, the authentication succeeds and the fraudster is granted access. In 2006, ] was the victim of an attack when its hardware-token-equipped business users became the victims of a large Ukrainian-based man-in-the-middle ] operation.<ref>{{Cite news|url=https://www.theregister.co.uk/2006/07/13/2-factor_phishing_attack/|title=Phishers rip into two-factor authentication |work=The Register |date=2006-07-13 |first=John |last=Leyden |access-date=2018-09-25|language=en}}</ref><ref>{{Cite news |url=http://voices.washingtonpost.com/securityfix/2006/07/citibank_phish_spoofs_2factor_1.html|archive-url=https://web.archive.org/web/20110703141728/http://voices.washingtonpost.com/securityfix/2006/07/citibank_phish_spoofs_2factor_1.html|url-status=dead|archive-date=July 3, 2011|title=Citibank Phish Spoofs 2-Factor Authentication|first=Brian |last=Krebs |author-link=Brian Krebs|date=July 10, 2006|newspaper=The Washington Post|access-date=2018-09-25}}</ref> | |||
The ] has become a standard in ]s today, USB tokens are therefore often a cheaper alternative than other tokens needing a special ].{{Citation needed|date=June 2008}} | |||
=== Breach of codes === | |||
The Smartcard-based USB Token is widely used, as compared to the normal smart card, which needs card reader and install driver on computer, the smartcard-based USB token does not need any further configuration. It's a plug-and-play device. | |||
In 2012, the Prosecco research team at INRIA Paris-Rocquencourt developed an efficient method of extracting the secret key from several ] cryptographic devices.<ref> | |||
===Audio Jack port (TRRS)=== | |||
{{cite news | |||
] | |||
| first = Somini | |||
The audio jack port is a relatively practical method to establish connection between mobile devices, such as iPhone, iPad and Android, and other accessories. The most well known devices are Square, a credit card reader for iPhone and Android. Token with audio jack port can provide strong authentication for mobile devices. | |||
| last = Sengupta | |||
| title = Computer Scientists Break Security Token Key in Record Time | |||
| url = http://bits.blogs.nytimes.com/2012/06/25/computer-scientists-break-security-token-key-in-record-time/ | |||
| work = ] | |||
| date = 2012-06-25 | |||
| access-date = 2012-06-25 | |||
}}</ref><ref> | |||
{{cite news | |||
| first = Nancy | |||
| last = Owano | |||
| title = Team Prosecco dismantles security tokens | |||
| url = http://phys.org/news/2012-06-team-prosecco-dismantles-tokens.html | |||
| work = ] | |||
| date = 2012-06-27 | |||
| access-date = 2014-03-29 | |||
}}</ref> These findings were documented in INRIA Technical Report RR-7944, ID hal-00691958,<ref> | |||
{{cite web | |||
| url = http://prosecco.gforge.inria.fr/publications.php | |||
| title = Prosecco :: Publications | |||
| access-date = 2014-03-29 | |||
}}</ref> and published at CRYPTO 2012.<ref>{{cite web | |||
| title = Accepted Papers CRYPTO 2012 | |||
| url = https://www.iacr.org/conferences/crypto2012/acceptedpapers-2012.html | |||
| access-date = 2014-03-29 | |||
}}</ref> | |||
== Digital signature == | |||
=== Smart-card-based USB tokens === | |||
Smart-card-based ] tokens which contain a ] chip inside provide the functionality of both USB tokens and smart cards. They enable a broad range of security solutions and provide the abilities and security of a traditional smart card without requiring a unique input device. From the ]'s point of view such a token is a USB-connected smart card reader with one non-removable smart card present.<ref name="noteusbSpec">, usb.org</ref> | |||
Trusted as a regular hand-written signature, the ] must be made with a private key known only to the person authorized to make the signature. Tokens that allow secure on-board generation and storage of private keys enable secure digital signatures, and can also be used for user authentication, as the private key also serves as a proof of the user's identity. | |||
=== Other token types === | |||
For tokens to identify the user, all tokens must have some kind of number that is unique. Not all approaches fully qualify as ]s according to some national laws.{{Citation needed|date=February 2007}} Tokens with no on-board keyboard or another ] cannot be used in some ] scenarios, such as confirming a bank transaction based on the bank account number that the funds are to be transferred to. | |||
Some use a special purpose interface (e.g. the ] deployed by the ] ]). Tokens can also be used as a photo ]. ] and ] can also serve as security tokens with proper programming. | |||
== See also == | == See also == | ||
<!---♦♦♦ Please keep the list in alphabetical order ♦♦♦---> | |||
{{Commons category|OTP tokens}} | |||
* ] | * ] | ||
* ] | * ] | ||
* ] | * ] | ||
* ] | * ] | ||
* ] | * ] | ||
* ] |
* ] | ||
* ] | * ] | ||
* ] | * ] | ||
* ] | |||
* ] | |||
* ] | * ] | ||
* ] | |||
== References == | == References == | ||
{{reflist| |
{{reflist|30em}} | ||
;General references | ;General references | ||
{{refbegin}} | {{refbegin}} | ||
Line 160: | Line 156: | ||
== External links == | == External links == | ||
* {{Commons category-inline}} | |||
* | |||
* {{Webarchive|url=https://web.archive.org/web/20190424203824/http://www.openauthentication.org/ |date=2019-04-24 }} | |||
{{DEFAULTSORT:Security Token}} | {{DEFAULTSORT:Security Token}} | ||
] | ] | ||
] |
Latest revision as of 02:35, 3 January 2025
Device used to gain access to restricted resourceThis article's factual accuracy is disputed. Review the definitions of "Security Token" and "Security Token Generator". Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2024) (Learn how and when to remove this message) |
A security token is a peripheral device used to gain access to an electronically restricted resource. The token is used in addition to, or in place of, a password. Examples of security tokens include wireless key cards used to open locked doors, a banking token used as a digital authenticator for signing in to online banking, or signing transactions such as wire transfers.
Security tokens can be used to store information such as passwords, cryptographic keys used to generate digital signatures, or biometric data (such as fingerprints). Some designs incorporate tamper resistant packaging, while others may include small keypads to allow entry of a PIN or a simple button to start a generation routine with some display capability to show a generated key number. Connected tokens utilize a variety of interfaces including USB, near-field communication (NFC), radio-frequency identification (RFID), or Bluetooth. Some tokens have audio capabilities designed for those who are vision-impaired.
Password types
All tokens contain some secret information used to prove identity. There are four different ways in which this information can be used:
- Static password token
- The device contains a password that is physically hidden (not visible to the possessor), but is transmitted for each authentication. This type is vulnerable to replay attacks.
- Synchronous dynamic password token
- A timer is used to rotate through various combinations produced by a cryptographic algorithm. The token and the authentication server must have synchronized clocks.
- Asynchronous password token
- A one-time password is generated without the use of a clock, either from a one-time pad or cryptographic algorithm.
- Challenge–response token
- Using public key cryptography, it is possible to prove possession of a private key without revealing that key. The authentication server encrypts a challenge (typically a random number, or at least data with some random parts) with a public key; the device proves it possesses a copy of the matching private key by providing the decrypted challenge.
Time-synchronized, one-time passwords change constantly at a set time interval; e.g., once per minute. To do this, some sort of synchronization must exist between the client's token and the authentication server. For disconnected tokens, this time-synchronization is done before the token is distributed to the client. Other token types do the synchronization when the token is inserted into an input device. The main problem with time-synchronized tokens is that they can, over time, become unsynchronized. However, some such systems, such as RSA's SecurID, allow the user to re-synchronize the server with the token, sometimes by entering several consecutive passcodes. Most also cannot have replaceable batteries and only last up to 5 years before having to be replaced – so there is an additional cost. Another type of one-time password uses a complex mathematical algorithm, such as a hash chain, to generate a series of one-time passwords from a secret shared key. Each password is unique, even when previous passwords are known. The open-source OATH algorithm is standardized; other algorithms are covered by US patents. Each password is observably unpredictable and independent of previous ones, whereby an adversary would be unable to guess what the next password may be, even with knowledge of all previous passwords.
Physical types
This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources in this section. Unsourced material may be challenged and removed. (March 2023) (Learn how and when to remove this message) |
Tokens can contain chips with functions varying from very simple to very complex, including multiple authentication methods.
The simplest security tokens do not need any connection to a computer. The tokens have a physical display; the authenticating user simply enters the displayed number to log in. Other tokens connect to the computer using wireless techniques, such as Bluetooth. These tokens transfer a key sequence to the local client or to a nearby access point.
Alternatively, another form of token that has been widely available for many years is a mobile device which communicates using an out-of-band channel (like voice, SMS, or USSD).
Still other tokens plug into the computer and may require a PIN. Depending on the type of the token, the computer OS will then either read the key from the token and perform a cryptographic operation on it, or ask the token's firmware to perform this operation.
A related application is the hardware dongle required by some computer programs to prove ownership of the software. The dongle is placed in an input device and the software accesses the I/O device in question to authorize the use of the software in question.
Commercial solutions are provided by a variety of vendors, each with their own proprietary (and often patented) implementation of variously used security features. Token designs meeting certain security standards are certified in the United States as compliant with FIPS 140, a federal security standard. Tokens without any kind of certification are sometimes viewed as suspect, as they often do not meet accepted government or industry security standards, have not been put through rigorous testing, and likely cannot provide the same level of cryptographic security as token solutions which have had their designs independently audited by third-party agencies.
Disconnected tokens
Disconnected tokens have neither a physical nor logical connection to the client computer. They typically do not require a special input device, and instead use a built-in screen to display the generated authentication data, which the user enters manually themselves via a keyboard or keypad. Disconnected tokens are the most common type of security token used (usually in combination with a password) in two-factor authentication for online identification.
Connected tokens
Connected tokens are tokens that must be physically connected to the computer with which the user is authenticating. Tokens in this category automatically transmit the authentication information to the client computer once a physical connection is made, eliminating the need for the user to manually enter the authentication information. However, in order to use a connected token, the appropriate input device must be installed. The most common types of physical tokens are smart cards and USB tokens (also called security keys), which require a smart card reader and a USB port respectively. Increasingly, FIDO2 tokens, supported by the open specification group FIDO Alliance have become popular for consumers with mainstream browser support beginning in 2015 and supported by popular websites and social media sites.
Older PC card tokens are made to work primarily with laptops. Type II PC Cards are preferred as a token as they are half as thick as Type III.
The audio jack port is a relatively practical method to establish connection between mobile devices, such as iPhone, iPad and Android, and other accessories. The most well known device is called Square, a credit card reader for iOS and Android devices.
Some use a special purpose interface (e.g. the crypto ignition key deployed by the United States National Security Agency). Tokens can also be used as a photo ID card. Cell phones and PDAs can also serve as security tokens with proper programming.
Smart cards
Main article: Smart cardMany connected tokens use smart card technology. Smart cards can be very cheap (around ten cents) and contain proven security mechanisms (as used by financial institutions, like cash cards). However, computational performance of smart cards is often rather limited because of extreme low power consumption and ultra-thin form-factor requirements.
Smart-card-based USB tokens which contain a smart card chip inside provide the functionality of both USB tokens and smart cards. They enable a broad range of security solutions and provide the abilities and security of a traditional smart card without requiring a unique input device. From the computer operating system's point of view such a token is a USB-connected smart card reader with one non-removable smart card present.
Contactless tokens
Unlike connected tokens, contactless tokens form a logical connection to the client computer but do not require a physical connection. The absence of the need for physical contact makes them more convenient than both connected and disconnected tokens. As a result, contactless tokens are a popular choice for keyless entry systems and electronic payment solutions such as Mobil Speedpass, which uses RFID to transmit authentication info from a keychain token. However, there have been various security concerns raised about RFID tokens after researchers at Johns Hopkins University and RSA Laboratories discovered that RFID tags could be easily cracked and cloned.
Another downside is that contactless tokens have relatively short battery lives; usually only 5–6 years, which is low compared to USB tokens which may last more than 10 years. Some tokens however do allow the batteries to be changed, thus reducing costs.
Bluetooth tokens
This section's tone or style may not reflect the encyclopedic tone used on Misplaced Pages. See Misplaced Pages's guide to writing better articles for suggestions. (September 2016) (Learn how and when to remove this message) |
The Bluetooth Low Energy protocols provide long lasting battery lifecycle of wireless transmission.
- The transmission of inherent Bluetooth identity data is the lowest quality for supporting authentication.
- A bidirectional connection for transactional data interchange serves for the most sophisticated authentication procedures.
Although, the automatic transmission power control attempts for radial distance estimates. The escape is available apart from the standardised Bluetooth power control algorithm to provide a calibration on minimally required transmission power.
Bluetooth tokens are often combined with a USB token, thus working in both a connected and a disconnected state. Bluetooth authentication works when closer than 32 feet (9.8 meters). When the Bluetooth link is not properly operable, the token may be inserted into a USB input device to function.
Another combination is with a smart card to store locally larger amounts of identity data and process information as well. Another is a contactless BLE token that combines secure storage and tokenized release of fingerprint credentials.
In the USB mode of operation sign-off requires care for the token while mechanically coupled to the USB plug. The advantage with the Bluetooth mode of operation is the option of combining sign-off with distance metrics. Respective products are in preparation, following the concepts of electronic leash.
NFC tokens
Near-field communication (NFC) tokens combined with a Bluetooth token may operate in several modes, thus working in both a connected and a disconnected state. NFC authentication works when closer than 1 foot (0.3 meters). The NFC protocol bridges short distances to the reader while the Bluetooth connection serves for data provision with the token to enable authentication. Also when the Bluetooth link is not connected, the token may serve the locally stored authentication information in coarse positioning to the NFC reader and relieves from exact positioning to a connector.
Single sign-on software tokens
Some types of single sign-on (SSO) solutions, like enterprise single sign-on, use the token to store software that allows for seamless authentication and password filling. As the passwords are stored on the token, users need not remember their passwords and therefore can select more secure passwords, or have more secure passwords assigned. Usually most tokens store a cryptographic hash of the password so that if the token is compromised, the password is still protected.
Programmable tokens
Programmable tokens are marketed as "drop-in" replacement of mobile applications such as Google Authenticator (miniOTP). They can be used as mobile app replacement, as well as in parallel as a backup.
Vulnerabilities
Loss and theft
The simplest vulnerability with any password container is theft or loss of the device. The chances of this happening, or happening unaware, can be reduced with physical security measures such as locks, electronic leash, or body sensor and alarm. Stolen tokens can be made useless by using two factor authentication. Commonly, in order to authenticate, a personal identification number (PIN) must be entered along with the information provided by the token the same time as the output of the token.
Attacking
Any system which allows users to authenticate via an untrusted network (such as the Internet) is vulnerable to man-in-the-middle attacks. In this type of attack, an attacker acts as the "go-between" of the user and the legitimate system, soliciting the token output from the legitimate user and then supplying it to the authentication system themselves. Since the token value is mathematically correct, the authentication succeeds and the fraudster is granted access. In 2006, Citibank was the victim of an attack when its hardware-token-equipped business users became the victims of a large Ukrainian-based man-in-the-middle phishing operation.
Breach of codes
In 2012, the Prosecco research team at INRIA Paris-Rocquencourt developed an efficient method of extracting the secret key from several PKCS #11 cryptographic devices. These findings were documented in INRIA Technical Report RR-7944, ID hal-00691958, and published at CRYPTO 2012.
Digital signature
Trusted as a regular hand-written signature, the digital signature must be made with a private key known only to the person authorized to make the signature. Tokens that allow secure on-board generation and storage of private keys enable secure digital signatures, and can also be used for user authentication, as the private key also serves as a proof of the user's identity.
For tokens to identify the user, all tokens must have some kind of number that is unique. Not all approaches fully qualify as digital signatures according to some national laws. Tokens with no on-board keyboard or another user interface cannot be used in some signing scenarios, such as confirming a bank transaction based on the bank account number that the funds are to be transferred to.
See also
- Authentication
- Authenticator
- Hardware security module
- Identity management
- Initiative for Open Authentication
- Mobile signature
- Multi-factor authentication
- Mutual authentication
- One-time pad
- Single sign-on
- Software token
References
- Schink, Marc; Wagner, Alexander; Unterstein, Florian; Heyszl, Johann (2021-07-09). "Security and Trust in Open Source Security Tokens". IACR Transactions on Cryptographic Hardware and Embedded Systems: 176–201. doi:10.46586/tches.v2021.i3.176-201. ISSN 2569-2925. S2CID 235349083.
- RD, Token2 (2019-01-07). "Time drift: a major downside of TOTP hardware tokens". Medium. Retrieved 2020-11-21.
{{cite web}}
: CS1 maint: numeric names: authors list (link) - "Time Drift in TOTP Hardware Tokens Explained and Solved - Protectimus Solutions". Protectimus. 2019-06-03. Retrieved 2020-11-21.
- "2.3.3: Authentication Methods - Security Tokens". Engineering LibreTexts. 2021-01-15. Retrieved 2023-05-08.
- National Institute of Standards and Technology (April 2019). Security requirements for cryptographic modules (PDF) (Report). Gaithersburg, MD: National Institute of Standards and Technology. doi:10.6028/nist.fips.140-3.
- de Borde, Duncan (2007-06-28). "Two-factor authentication" (PDF). Siemens Insight Consulting. Archived from the original (PDF) on 2012-01-12. Retrieved 2009-01-14.
- Specification for Integrated Circuit(s) Cards Interface Devices Archived 2005-12-29 at the Wayback Machine, usb.org
- Biba, Erin (2005-02-14). "Does Your Car Key Pose a Security Risk?". PC World. Archived from the original on 2011-06-05. Retrieved 2009-01-14.
- "Verfahren zum Steuern der Freigabe einer Einrichtung oder eines Dienstes, als Master ausgebildete Sendeempfangseinrichtung sowie System mit derartiger Einrichtung". dpma.de. Retrieved 16 April 2018.
- "cgToken | certgate". www.certgate.com. Archived from the original on 2013-10-09.
- "Biometric U2F OTP Token - HYPR". HYPR Corp. Retrieved 16 April 2018.
- "2.3.3: Authentication Methods - Security Tokens". Engineering LibreTexts. 2021-01-15. Retrieved 2024-11-21.
- Programmable hardware tokens Token2 miniOTP
- Leyden, John (2006-07-13). "Phishers rip into two-factor authentication". The Register. Retrieved 2018-09-25.
- Krebs, Brian (July 10, 2006). "Citibank Phish Spoofs 2-Factor Authentication". The Washington Post. Archived from the original on July 3, 2011. Retrieved 2018-09-25.
- Sengupta, Somini (2012-06-25). "Computer Scientists Break Security Token Key in Record Time". New York Times. Retrieved 2012-06-25.
- Owano, Nancy (2012-06-27). "Team Prosecco dismantles security tokens". Phys.org. Retrieved 2014-03-29.
- "Prosecco :: Publications". Retrieved 2014-03-29.
- "Accepted Papers CRYPTO 2012". Retrieved 2014-03-29.
- General references
External links
- Media related to OTP tokens at Wikimedia Commons
- OATH Initiative for open authentication Archived 2019-04-24 at the Wayback Machine