Revision as of 16:17, 3 April 2013 view sourceVsmith (talk | contribs)Administrators273,020 editsm Reverted edits by 216.56.47.14 (talk) to last version by Materialscientist← Previous edit | Latest revision as of 01:32, 14 January 2025 view source DaRealPrinceZuko (talk | contribs)407 editsNo edit summaryTag: Visual edit | ||
(395 intermediate revisions by more than 100 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Mixed woodland-grassland ecosystem}} | |||
{{Redirect|Savannah}} | |||
{{Redirect|Savannah|the city in the U.S. state of Georgia|Savannah, Georgia|other uses}} | |||
] demonstrating the high tree density and regular spacing characteristic of many savannas.]] | |||
{{Pp|small=yes}} | |||
{{Use dmy dates|date=August 2022}} | |||
] in ] in ]]] | |||
] in ]]] | |||
A '''savanna''' or '''savannah''' is a mixed ]-] (i.e. grassy woodland) ] and ] characterised by the trees being sufficiently widely spaced so that the ] does not close. The open canopy allows sufficient light to reach the ground to support an unbroken ] layer consisting primarily of grasses.<ref>Anderson, Roger A., Fralish, James S. and Baskin, Jerry M. editors.1999. Savannas, Barrens, and Rock Outcrop Plant Communities of North America. Cambridge University Press.</ref><ref>McPherson, G. R. (1997). Ecology and management of North American Savannas. Tucson, AZ: University of Arizona Press.</ref><ref name="WernerIntro">{{cite book |year=1991 |title=Savanna Ecology and Management: Australian Perspectives and Intercontinental Comparisons |editor=Patricia A. Werner |location=] |first=Patricia A. |last=Werner |author2=B. H. Walker |author3=P. A Stott |chapter=Introduction |publisher=] |isbn=978-0-632-03199-3 |chapter-url=https://books.google.com/books?id=pDouvnGGgKEC}}</ref> Four savanna forms exist; ''savanna woodland'' where trees and shrubs form a light canopy, ''tree savanna'' with scattered trees and shrubs, ''shrub savanna'' with distributed shrubs, and ''grass savanna'' where trees and shrubs are mostly nonexistent.<ref name = britannica>Smith, Jeremy M.B.. "savanna". ], 5 Sep. 2016, https://www.britannica.com/science/savanna/Environment. Accessed 17 September 2022.</ref> | |||
Savannas maintain an open canopy despite a high tree density.<ref>Alexandro Solórzano, Jeanine Maria Felfili 2008 "Comparative analysis of the international terminaoolgy for cerrado" IX Symposio Nacional Cerrado 13 a 17 de outubro de 2008 Parlamundi Barsilia, DF</ref> It is often believed that savannas feature widely spaced, scattered trees. However, in many savannas, tree densities are higher and trees are more regularly spaced than in forests.<ref name=CRC>Manoel Cláudio da Silva Jánior, Christopher William Fagg, Maria Cristina Felfili, Paulo Ernane Nogueira, Alba Valéria Rezende, and Jeanine Maria Felfili 2006 "Chapter 4. Phytogeography of Cerrado Sensu Stricto and Land System Zoning in Central Brazil" in "Neotropical Savannas and Seasonally Dry Forests: Plant Diversity, Biogeography, and Conservation" R. Toby Pennington, James A. Ratter (eds) 2006 CRC Press</ref><ref name=Abdullahi>Abdullahi Jibrin 2013 "A Study of Variation in Physiognomic Characteristics of Guinea Savanna Vegetation" Environment and Natural Resources Research 3:2</ref><ref name=Geiger>Erika L. Geiger, Sybil G. Gotsch, Gabriel Damasco, M. Haridasan, Augusto C. Franco & William A. Hoffmann 2011 "Distinct roles of savanna and forest tree species in regeneration under fire suppression in a Brazilian savanna" Journal of Vegetation Science 22</ref><ref name=Scholz>Scholz, Fabian G.; Bucci, Sandra J.; Goldstein, Guillermo; Meinzer, Frederick C.; Franco, Augusto C.; Salazar, Ana. 2008 "Plant- and stand-level variation in biophysical and physiological traits along tree density gradients in the Cerrado", Brazilian Journal of Plant Physiology</ref> The South American savanna types ''] sensu stricto'' and ''cerrado dense'' typically have densities of trees similar to or higher than that found in South American tropical forests,<ref name=CRC/><ref name=Geiger/><ref name=Scholz/> with savanna ranging from 800 to 3300 trees per ] (trees/ha) and adjacent forests with 800–2000 trees/ha. Similarly Guinean savanna has 129 trees/ha, compared to 103 for ],<ref name=Abdullahi/> while Eastern Australian ] forests have average tree densities of approximately 100 per ], comparable to savannas in the same region.<ref>Tait, L 2010, Structure and dynamics of grazed woodlands in North-eastern Australia, Master of Applied Science Thesis, Central Queensland University, Faculty of Science, Engineering and Health, Rockhampton.</ref> | |||
A '''savanna''', or '''savannah''', is a ] ] characterized by the trees being sufficiently widely spaced so that the ] does not close. The open canopy allows sufficient light to reach the ground to support an unbroken ] layer consisting primarily of grasses.<ref>Anderson, Roger A., Fralish, James S. and Baskin, Jerry M. editors.1999. Savannas, Barrens, and Rock Outcrop Plant Communities of North America. Cambridge University Press.</ref><ref>McPherson, G. R. (1997). Ecology and management of North American Savannas. Tucson, AZ: University of Arizona Press. </ref><ref name="WernerIntro">{{cite book |year=1991 |title=Savanna Ecology and Management: Australian Perspectives and Intercontinental Comparisons |editor=Patricia A. Werner |location=] |first=Patricia A. |last=Werner |coauthors=B. H. Walker; P. A Stott |chapter=Introduction |publisher=] |isbn=978-0-632-03199-3 |url=http://books.google.com/?id=pDouvnGGgKEC}}</ref> | |||
Some classification systems{{Which|date=April 2010}} also recognize a grassland savanna from which trees are absent.<ref>, Encyclopædia Britannica Online</ref> This article deals only with savanna under the common definition of a grassy woodland with a significant woody plant component. | |||
Savannas are also characterised by seasonal water availability, with the majority of rainfall confined to one season. They are associated with several types of ]s, and are frequently in a ] between ] and ] or ], though mostly a transition between desert to forest.<ref>{{Cite web|url=https://askabiologist.asu.edu/explore/savanna|title= Savanna|website= ]|date= 25 May 2014|access-date=31 August 2022}}</ref> Savanna covers approximately 20% of the ] land area.<ref>{{Cite journal|last1=Sankaran|first1=Mahesh|last2=Hanan|first2=Niall P.|last3=Scholes|first3=Robert J.|last4=Ratnam|first4=Jayashree|last5=Augustine|first5=David J.|last6=Cade|first6=Brian S.|last7=Gignoux|first7=Jacques|last8=Higgins|first8=Steven I.|last9=Le Roux|first9=Xavier|date=December 2005|title=Determinants of woody cover in African savannas|journal=Nature|language=En|volume=438|issue=7069|pages=846–849|doi=10.1038/nature04070|pmid=16341012|bibcode=2005Natur.438..846S|s2cid=4344778|issn=0028-0836}}</ref> Unlike the ]s in North America and ]s in ], which feature cold winters, savannas are mostly located in areas having warm to hot climates, such as in Africa, Australia, Thailand, South America and India.<ref name = UCMP>{{Cite web|url=https://ucmp.berkeley.edu/exhibits/biomes/grasslands.php|title= The grassland biome|website= ]|access-date=31 August 2022}}</ref> | |||
It is often believed that savannas feature widely spaced, scattered trees. However, in many savannas, tree densities are higher and trees are more regularly spaced than in forest. Savannas are also characterized by seasonal water availability, with the majority of rainfall confined to one season. Savannas are associated with several types of ]s. Savannas are frequently in a ] between ] and ] or ]. Savanna covers approximately 20% of the ] land area. | |||
==Etymology== | ==Etymology== | ||
The word derives from the ] ''sabana'', which is itself a loanword from ], which means "treeless grassland" in the ].<ref name=wrangle/><ref>{{Cite web|url=https://dle.rae.es/sabana|title=sabana – Diccionario de la lengua española|last1=ASALE|first1=RAE-|last2=RAE|website=«Diccionario de la lengua española» – Edición del Tricentenario|language=es|access-date=6 March 2023}}</ref> The letter ''b'' in Spanish, when positioned in the middle of a word, is pronounced almost like an English ''v;'' hence the change of ] when transcribed into English.<ref>{{Cite web|last=B. A.|first=Seattle Pacific University|title=How to Pronounce B and V in Spanish|url=https://www.thoughtco.com/pronouncing-the-spanish-b-and-v-3079534|access-date=29 August 2021|website=ThoughtCo|language=en}}</ref> | |||
] savanna, ].]] | |||
Although the term ''savanna'' is believed to have originally come from an ] word describing "land which is without trees but with much ] either tall or short" (], 1535), by the late 1800s it was used to mean "land with both grass and trees". It now refers to land with grass and either scattered trees or an open ] of trees. | |||
The word originally entered English as the ''Zauana'' in a description of the ''ilands of the kinges of Spayne'' from 1555.<ref name="oed">'']'', {{nowrap|3rd ed.}} "savannah", ''n.'' Oxford University Press (Oxford), 2012.</ref>{{refn|]: "The palace of this ''Comogrus'', is ſituate at the foote of a ſtiepe hyll well cultured. Hauynge towarde the ſouthe a playne of twelue leages in breadth and veary frutefull. This playne, they caule ''Zauana''."<ref name=Eden1>D'Anghiera, Peter Martyr. ''De Orbe Novo Decades. Cum Ejusdem Legatione Babylonica.'' Arnao Guillén de Brocar (]), 1516 {{in lang|la}}. Trans. ] as William Powell (London), 1555.</ref>}} This was equivalent in the ] of the times to ''zavana'' (see ]). ] reported it as the local name for the plain around Comagre, the court of the ] Carlos in present-day ]. The accounts are inexact,{{refn|The account of ] itself differs in places, variously placing Comagre 25 ] west of and accessible by ship from ]<ref>Eden (1555), .</ref> or 70 ] (roughly {{convert|290|km|sp=us|disp=or}}) west of ] and beside a river flowing into the ].<ref name=Eden1/>}} but this is usually placed in present-day ]<ref>{{cite web |last=Bancroft |first=Hubert H. |url=https://archive.org/stream/histcentralameri01bancrich#page/n77/mode/2up |title=History of Central America. 1501–1530'' |page= LXXIV |publisher=A.L. Bancroft & Co. |location=San Francisco |year= 1882}}</ref> or at points on the nearby ] coast opposite ]<ref>Bancroft (1882), {{nowrap|.}}</ref> or on ].<ref>Bancroft (1882), {{nowrap|.}}</ref> These areas are now either given over to ] ] or ].<ref>]. "" from ''Earth Observatory. The Image Composite Explorer. Exercise 4: Vegetation Vital Signs''. Accessed 1 August 2014.</ref> | |||
Spanish explorers familiar with the term "sabana" called the grasslands they found around the ] "]", as well as calling ]n and ]n grasslands by that specific term. "]" was used on the higher savannas of the ]ian ].<ref name="Harris1980">{{cite book |title=Human Ecology in Savanna Environments |editor=David R. Harris |publisher=] |location=London |year=1980 |pages=3,5–9,12,271–278,297–298 |isbn=0-12-326550-9}}</ref> | |||
==Distribution== | ==Distribution== | ||
] demonstrating the regular tree spacing characteristic of some savannas]] | |||
Many grassy landscapes and mixed communities of trees, shrubs, and grasses were described as savanna before the middle of the 19th century, when the concept of a tropical savanna climate became established. The ] system was strongly influenced by effects of temperature and precipitation upon tree growth, and his oversimplified assumptions resulted in a tropical savanna classification concept which resulted in it being considered as a "climatic climax" formation. The common usage meaning to describe vegetation now conflicts with a simplified yet widespread climatic concept meaning. The divergence has sometimes caused areas such as extensive savannas north and south of the ] and ]s to be excluded from mapped savanna categories.<ref name="Harris1980"/> | |||
Many grassy landscapes and mixed communities of trees, shrubs, and grasses were described as savanna before the middle of the 19th century, when the concept of a tropical savanna climate became established. The ] system was strongly influenced by effects of temperature and precipitation upon tree growth, and oversimplified assumptions resulted in a tropical savanna classification concept which considered it as a "climatic climax" formation. The common usage to describe vegetation now conflicts with a simplified yet widespread climatic concept. The divergence has sometimes caused areas such as extensive savannas north and south of the ] and ]s to be excluded from mapped savanna categories.<ref name="Harris1980">{{cite book |title=Human Ecology in Savanna Environments |editor=David R. Harris |publisher=] |location=London |year=1980 |pages=, 5–9,12,271–278,297–298 |isbn=978-0-12-326550-0 |url=https://archive.org/details/humanecologyinsa0000unse |url-access=registration }}</ref> | |||
In different parts of North America, the word "savanna" has been used interchangeably with "]", "]", "]", "grassland" and "]".<ref name="Anderson1999">{{cite book|title=Savannas, Barrens, and Rock Outcrop Plant Communities of North America |editor1=Roger C. Anderson |editor2=James S. Fralish |editor3=Jerry M. Baskin |publisher=] |year=1999 |pages=157 |isbn=978-0-521-57322-1}}</ref> Different authors have defined the lower limits of savanna tree coverage as 5–10% and upper limits range as 25–80% of an area. Two factors common to all savanna environments are rainfall variations from year to year, and ] ]s.<ref name = britannica/> In the ], e.g. in ], ], savanna vegetation is similar from ] to ] and to the ].<ref name="Lentz2000">{{cite book |title=Imperfect balance: landscape transformations in the Precolumbian Americas |url=https://archive.org/details/imperfectbalance00lent |url-access=limited |editor=David L. Lentz |publisher=] |location=New York City |year=2000 |pages=–74 |isbn=978-0-231-11157-7}}</ref> The distinction between woodland and savanna is vague and therefore the two can be combined into a single biome as both woodlands and savannas feature open-canopied trees with crowns not usually interlinking (mostly forming 25-60% cover).<ref name=wrangle> Wrangle - WORLD RANGELAND LEARNING EXPERIENCE. 2022 ]. Retrieved 17 September 2022.</ref> | |||
"Barrens" has been used almost interchangeably with savanna in different parts of North America. Sometimes midwestern savanna were described as "grassland with trees". Different authors have defined the lower limits of savanna tree coverage as 5–10% and upper limits range as 25–80% of an area.<ref name="Anderson1999">{{cite book|title=Savannas, Barrens, and Rock Outcrop Plant Communities of North America |editor=Roger C. Anderson, James S. Fralish, Jerry M. Baskin |publisher=] |year=1999 |pages=2–3 |isbn=0-521-57322-X}}</ref> | |||
Over many large tropical areas, the dominant biome (forest, savanna or grassland) can not be predicted only by the climate, as historical events plays also a key role, for example, fire activity.<ref>Moncrieff, G. R., Scheiter, S., Langan, L., Trabucco, A., Higgins, S. I. (2016). The future distribution of the savannah biome: model-based and biogeographic contingency, ''Philos. T. R. Soc. B'', 371, 2015.0311, 2016. .</ref> In some areas, indeed, it is possible for there to be multiple stable biomes.<ref>Staver, A.C., Archibald, S., Levin, S.A. (2011). The global extent and determinants of savanna and forest as alternative biome states. ''Science'' 334, 230–232. .</ref> The annual rainfall ranges from {{convert|500|mm|2|abbr=on}} to {{convert|1270|mm|2|abbr=on}} per year, with the precipitation being more common in six or eight months of the year, followed by a period of drought. Savannas may at times be classified as forests.<ref name = UCMP/> | |||
Two factors common to all savanna environments are rainfall variations from year to year, and ] ]s. In the ], e.g. in ], ], savanna vegetation is similar from ] to ] and to the ].<ref name="Lentz2000">{{cite book |title=Imperfect balance: landscape transformations in the Precolumbian Americas |editor=David L. Lentz |publisher=] |location=New York City |year=2000 |pages=73–74 |isbn=0-231-11157-6}}</ref> | |||
In ] it has been noted that many savannas occur in areas of ]s and ]s.<ref name=cotton1961>{{Cite journal |title=The Theory of Savanna Planation |journal=] |last=Cotton |first=C.A.|url=https://www.jstor.org/stable/40565228 |issue=2 |volume=46 |pages=89–101 |year=1961 |jstor=40565228 |author-link=Charles Cotton (geologist)}}</ref> It has been posited that ] is not prominent but that rivers in savanna landscapes erode more by ].<ref name=cotton1961/> Flooding and associated ] have been proposed as dominant erosion processes in savanna plains.<ref name=cotton1961/> | |||
==Ecology== | |||
The savannas of tropical America comprise broadleaved trees such as ], ], and ], with grasses such as ] and ]. Bean relative ] is common in the Argentinian savannas. In the East African savannas, ], ], ]s, ], and ] are a common vegetation genera. Drier savannas there feature spiny shrubs and grasses, such as ], ], and ]. Wetter savannas include ] trees and ], and elephant grass type. West African savanna trees include ], ], and ]. Indian savannas are mostly cleared, but the reserved ones feature Acacia, ], and ] over a grass cover comprising ] and ]. The Australian savanna is abundant with sclerophyllous ] vegetation, which include the ], as well as Acacia, ], ] with grasses such as ] and kangaroo grass (Themeda).<ref name = britannica/> | |||
Animals in the African savanna generally include the giraffe, elephant, buffalo, zebra, gnu, hippopotamus, rhinoceros, and antelope, where they rely on grass and/or tree foliage to survive. In the Australian savanna, mammals in the family ] predominate, such as kangaroos and wallabies, though cattle, horses, camels, donkeys and the ], among others, have been introduced by humans.<ref name = britannica/> | |||
==Threats== | ==Threats== | ||
It is estimated that less than three percent of savanna ecosystems can be classified as highly intact.<ref>{{Cite journal |last1=Williams |first1=Brooke A. |last2=Watson |first2=James E. M. |last3=Beyer |first3=Hawthorne L. |last4=Grantham |first4=Hedley S. |last5=Simmonds |first5=Jeremy S. |last6=Alvarez |first6=Silvia J. |last7=Venter |first7=Oscar |last8=Strassburg |first8=Bernardo B. N. |last9=Runting |first9=Rebecca K. |date=2022-12-01 |title=Global drivers of change across tropical savannah ecosystems and insights into their management and conservation |url=https://www.sciencedirect.com/science/article/pii/S0006320722003391 |journal=Biological Conservation |language=en |volume=276 |pages=109786 |doi=10.1016/j.biocon.2022.109786 |bibcode=2022BCons.27609786W |s2cid=253503609 |issn=0006-3207}}</ref> Reasons for savanna degradation are manifold, as outlined below. | |||
===Changes in fire management=== | ===Changes in fire management=== | ||
] in ], Australia]] | |||
Savannas are subject to regular ]s and the ecosystem appears to be the result of human use of fire. For example, ] created the ] by periodically burning where fire-resistant plants were the dominant species.<ref>{{cite web |url=http://www.srs.fs.fed.us/sustain/report/fire/fire-06.htm |title=Use of Fire by Native Americans |work=The Southern Forest Resource Assessment Summary Report |publisher=Southern Research Station, USDA Forest Service |accessdate=2008-07-21}}</ref> ] in scattered locations from ] to coastal ] are remnants of these savannas. Aboriginal burning appears to have been responsible for the widespread occurrence of savanna in tropical ] and ],<ref name="Flannery">{{cite book |first=Timothy Fridtjof |last=Flannery |authorlink=Tim Flannery |year=1994 |title=The Future Eaters: An Ecological History of the Australasian Lands and People |location=] |publisher=Reed New Holland |isbn=978-0-8076-1403-7 |url=http://books.google.com/?id=qLqmGQAACAAJ&dq=isbn=0730104222}}</ref> and savannas in ] are a result of human fire use.<ref>{{cite journal |doi=10.1034/j.1600-0587.2003.03411.x |first=S. |last=Saha |year=2003 |title=Patterns in woody species diversity, richness and partitioning of diversity in forest communities of tropical deciduous forest biomes |journal=] |volume=26 |issue=1 |pages=80–86}}</ref> The ] shrub savannas of the ] region were likewise created and maintained by anthropogenic fire.<ref>{{cite book |first=Stephen J. |last=Pyne |authorlink=Stephen J. Pyne |year=1997 |title=Vestal Fire: An Environmental History, Told through Fire, of Europe and Europe's Encounter with the World |location=] |publisher=] |isbn=0-295-97596-2}}</ref> | |||
Savannas are subject to regular ]s and the ecosystem appears to be the result of human use of fire. For example, ] created the ] by periodically burning where fire-resistant plants were the dominant species.<ref>{{cite web |url=http://www.srs.fs.fed.us/sustain/report/fire/fire-06.htm |title=Use of Fire by Native Americans |work=The Southern Forest Resource Assessment Summary Report |publisher=Southern Research Station, USDA Forest Service |access-date=21 July 2008 |archive-date=5 March 2014 |archive-url=https://web.archive.org/web/20140305001331/http://www.srs.fs.fed.us/sustain/report/fire/fire-06.htm |url-status=dead }}</ref> ] appears to have been responsible for the widespread occurrence of savanna in tropical ] and ],<ref name="Flannery">{{cite book |first=Timothy Fridtjof |last=Flannery |author-link=Tim Flannery |year=1994 |title=The Future Eaters: An Ecological History of the Australasian Lands and People |location=] |publisher=Reed New Holland |isbn=978-0-8076-1403-7 |url=https://books.google.com/books?id=qLqmGQAACAAJ}}</ref> and savannas in ] are a result of human fire use.<ref>{{cite journal |doi=10.1034/j.1600-0587.2003.03411.x |first=S. |last=Saha |year=2003 |title=Patterns in woody species diversity, richness and partitioning of diversity in forest communities of tropical deciduous forest biomes |journal=] |volume=26 |issue=1 |pages=80–86|bibcode=2003Ecogr..26...80S }}</ref> The ] shrub savannas of the ] region were likewise created and maintained by anthropogenic fire.<ref>{{cite book |first=Stephen J. |last=Pyne |author-link=Stephen J. Pyne |year=1997 |title=Vestal Fire: An Environmental History, Told through Fire, of Europe and Europe's Encounter with the World |location=] |publisher=] |isbn=978-0-295-97596-2 |url-access=registration |url=https://archive.org/details/vestalfireenviro00pyne }}</ref> | |||
] | |||
Intentional ]s typically create fires confined to the ] that do little long term damage to mature trees. This prevents more catastrophic wildfires that could do much more damage.<ref>{{cite web |last1=Palmer |first1=Jane |title=Fire as Medicine: Learning from Native American Fire Stewardship |url=https://eos.org/features/fire-as-medicine-learning-from-native-american-fire-stewardship |website=eos.org|date=29 March 2021 }}</ref> However, these fires either kill or suppress tree seedlings, thus preventing the establishment of a continuous tree canopy which would prevent further grass growth. Prior to European settlement aboriginal land use practices, including fire, influenced vegetation<ref name="wilson">Wilson, B., S. Boulter, et al. (2000). Queensland's resources. Native Vegetation Management in Queensland. S. L. Boulter, B. A. Wilson, J. Westrupet eds. Brisbane, Department of Natural Resources {{ISBN|0-7345-1701-7}}.</ref> and may have maintained and modified savanna flora.<ref name="WernerIntro"/><ref name="Flannery" /> It has been suggested by many authors<ref name="wilson" /><ref name="lunt">{{cite journal |doi=10.1111/j.1365-2699.2006.01484.x |first=I. D. |last=Lunt |author2=N. Jones |year=2006 |title=Effects of European colonisation on indigenous ecosystems: post-settlement changes in tree stand structures in ''Eucalyptus''–''Callitris'' woodlands in central New South Wales, Australia |journal=] |volume=33 |issue=6 |pages=1102–1115|bibcode=2006JBiog..33.1102L |s2cid=85775764 }}</ref> that aboriginal burning created a structurally more open savanna landscape. Aboriginal burning certainly created a habitat mosaic that probably increased biodiversity and changed the structure of woodlands and geographic range of numerous woodland species.<ref name="Flannery" /><ref name="wilson" /> It has been suggested by many authors<ref name="lunt" /><ref>Archer S, (1994.) "Woody plant encroachment into southwestern grasslands and savannas: Rates, patterns and proximate causes." pp. 13–68 in Vavra, Laycock and Pieper (eds.) ''Ecological Implications of Livestock Herbivory in the West''. Society For Range Management, ] {{ISBN|1-884930-00-X}}.</ref> that with the removal or alteration of traditional burning regimes many savannas are being replaced by forest and shrub thickets with little herbaceous layer. | |||
The consumption of herbage by introduced grazers in savanna woodlands has led to a reduction in the amount of fuel available for burning and resulted in fewer and cooler fires.<ref name=r1>Pressland, A. J., J. R. Mills, et al. (1988). Landscape degradation in native pasture. Native pastures in Queensland their resources and management. W. H. Burrows, J. C. Scanlan and M. T. Rutherford. Queensland, Queensland Government Press ISBN |
The consumption of herbage by introduced grazers in savanna woodlands has led to a reduction in the amount of fuel available for burning and resulted in fewer and cooler fires.<ref name=r1>Pressland, A. J., J. R. Mills, et al. (1988). Landscape degradation in native pasture. Native pastures in Queensland their resources and management. W. H. Burrows, J. C. Scanlan and M. T. Rutherford. Queensland, Queensland Government Press {{ISBN|0-7242-2443-2}}.</ref> The introduction of exotic pasture ]s has also led to a reduction in the need to burn to produce a flush of green growth because legumes retain high nutrient levels throughout the year, and because fires can have a negative impact on legume populations which causes a reluctance to burn.<ref>Dyer, R., A. Craig, et al. (1997). Fire in northern pastoral lands. Fire in the management of northern Australian pastoral lands. T. C. Grice and S. M. Slatter. St. Lucia, Australia, Tropical Grassland Society of Australia {{ISBN|0-9590948-9-X}}.</ref> | ||
===Grazing and browsing animals=== | ===Grazing and browsing animals=== | ||
] |
]s grazing]] | ||
The closed forest types such as broadleaf forests and rainforests are usually not grazed owing to the closed structure precluding grass growth, and hence offering little opportunity for grazing.<ref>Lodge, G. M. and R. D. B. Whalley (1984). Temperate rangelands. Management of |
The closed forest types such as broadleaf forests and rainforests are usually not grazed owing to the closed structure precluding grass growth, and hence offering little opportunity for grazing.<ref>Lodge, G. M. and R. D. B. Whalley (1984). Temperate rangelands. Management of Australia's Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, ].</ref> In contrast the open structure of savannas allows the growth of a herbaceous layer and is commonly used for grazing domestic livestock.<ref>Mott, J. J., Groves, R.H. (1994). Natural and derived grasslands. Australian Vegetation. R. H. Groves. Cambridge, Cambridge University Press.</ref> As a result, much of the world's savannas have undergone change as a result of grazing by sheep, goats and cattle, ranging from changes in pasture composition to ].<ref>{{cite book |year=1991 |title=Savanna Ecology and Management: Australian Perspectives and Intercontinental Comparisons |editor=Patricia A. Werner |publisher=] |location=] |isbn=978-0-632-03199-3 |chapter-url=https://books.google.com/books?id=pDouvnGGgKEC |first=W. H. |last=Winter |chapter=Australia's northern savannas: a time for change in management philosophy |pages=181–186}}</ref> | ||
]s feeding on acorns of an ]]] | |||
The removal of grass by grazing affects the woody plant component of woodland systems in two major ways. Grasses compete with woody plants for water in the topsoil and removal by grazing reduces this competitive effect, potentially boosting tree growth.<ref>Burrows, W. H., J. C. Scanlan, et al. (1988). Plant ecological relations in open forests, woodlands and shrublands. Native pastures in Queensland their resources and management. W. H. Burrows, J. C. Scanlan and M. T. Rutherford eds. Brisbane, Department of Primary Industries ISBN 0-7242-2443-2.</ref> In addition to this effect, the removal of fuel reduces both the intensity and the frequency of fires which may control woody plant species.<ref>Smith, G., A. Franks, et al. (2000). Impacts of domestic grazing within remnant vegetation. Native Vegetation Management in Queensland. S. L. Boulter, B. A. Wilson, J. Westrupet al. Brisbane, Department of Natural Resources ISBN 0-7345-1701-7.</ref> Grazing animals can have a more direct effect on woody plants by the browsing of palatable woody species. There is evidence that unpalatable woody plants have increased under grazing in savannas.<ref>Florence, R. G. (1996). . Collingwood, CSIRO Publishing ISBN 0-643-10252-3.</ref> Grazing also promotes the spread of weeds in savannas by the removal or reduction of the plants which would normally compete with potential weeds and hinder establishment.<ref name="wilson" /> In addition to this, cattle and horses are implicated in the spread of the seeds of weed species such as Prickly Acacia ('']'') and Stylo ('']'' spp.).<ref name=r1/> Alterations in savanna species composition brought about by grazing can alter ecosystem function, and are exacerbated by overgrazing and poor land management practices. | |||
The removal of grass by grazing affects the woody plant component of woodland systems in two major ways. Grasses compete with woody plants for water in the topsoil and removal by grazing reduces this competitive effect, potentially boosting tree growth.<ref>Burrows, W. H., J. C. Scanlan, et al. (1988). Plant ecological relations in open forests, woodlands and shrublands. Native pastures in Queensland their resources and management. W. H. Burrows, J. C. Scanlan and M. T. Rutherford eds. Brisbane, Department of Primary Industries {{ISBN|0-7242-2443-2}}.</ref> In addition to this effect, the removal of fuel reduces both the intensity and the frequency of fires which may control woody plant species.<ref>Smith, G., A. Franks, et al. (2000). Impacts of domestic grazing within remnant vegetation. Native Vegetation Management in Queensland. S. L. Boulter, B. A. Wilson, J. Westrupet al. Brisbane, Department of Natural Resources {{ISBN|0-7345-1701-7}}.</ref> Grazing animals can have a more direct effect on woody plants by the browsing of palatable woody species. There is evidence that unpalatable woody plants have increased under grazing in savannas.<ref>Florence, R. G. (1996). . Collingwood, CSIRO Publishing {{ISBN|0-643-10252-3}}.</ref> Grazing also promotes the spread of weeds in savannas by the removal or reduction of the plants which would normally compete with potential weeds and hinder establishment.<ref name="wilson" /> In addition to this, cattle and horses are implicated in the spread of the seeds of weed species such as prickly acacia ('']'') and stylo ('']'' species).<ref name=r1/> Alterations in savanna ] brought about by grazing can alter ecosystem function, and are exacerbated by overgrazing and poor land management practices. | |||
Introduced grazing animals can also affect soil condition through physical compaction and break-up of the soil caused by the hooves of animals and through the erosion effects caused by the removal of protective plant cover. Such effects are most likely to occur on land subjected to repeated and heavy grazing.<ref>Foran, B. D. (1984). Central arid woodlands. Management of |
Introduced grazing animals can also affect soil condition through physical compaction and break-up of the soil caused by the hooves of animals and through the erosion effects caused by the removal of protective plant cover. Such effects are most likely to occur on land subjected to repeated and heavy grazing.<ref>Foran, B. D. (1984). Central arid woodlands. Management of Australia's Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing {{ISBN|0-643-03615-6}}.</ref> The effects of overstocking are often worst on soils of low fertility and in low rainfall areas below 500 mm, as most soil nutrients in these areas tend to be concentrated in the surface so any movement of soils can lead to severe degradation. Alteration in soil structure and nutrient levels affects the establishment, growth and survival of plant species and in turn can lead to a change in woodland structure and composition. That being said, impact of grazing animals can be reduced. Looking at Elephant impact on Savannas, the overall impact is reduced in the presence of rainfall and fences.<ref>{{Cite journal |last1=Guldemond |first1=Robert |last2=Van Aarde |first2=Rudi |date=May 2008 |title=A Meta-Analysis of the Impact of African Elephants on Savanna Vegetation |url=https://wildlife.onlinelibrary.wiley.com/doi/10.2193/2007-072 |journal=The Journal of Wildlife Management |language=en |volume=72 |issue=4 |pages=892–899 |doi=10.2193/2007-072 |issn=0022-541X}}</ref> | ||
===Tree clearing=== | ===Tree clearing=== | ||
] | |||
]]] | |||
Large areas of Australian and South American savannas have been cleared of trees, and this clearing continues today. For example, land clearing and ] threaten the Northern Territory, Australia savanna,<ref>{{Cite web |last=Murphy |first=Brett |last2=Ritchie |first2=Euan |last3=Woinarski |first3=John |date=2023-06-29 |title=Land clearing and fracking in Australia’s Northern Territory threatens the world’s largest intact tropical savanna |url=http://theconversation.com/land-clearing-and-fracking-in-australias-northern-territory-threatens-the-worlds-largest-intact-tropical-savanna-208028 |access-date=2024-07-10 |website=The Conversation |language=en-US}}</ref> and 480,000 ] of savanna were being cleared annually in Queensland in the 2000s, primarily to improve pasture production.<ref name="wilson" /><ref>{{Cite web |title=Deforestation explained |url=https://www.wilderness.org.au/protecting-nature/deforestation/deforestation-explained |access-date=2024-07-10 |website=Wilderness Society |language=en}}</ref> Substantial savanna areas have been cleared of woody vegetation and much of the area that remains today is vegetation that has been disturbed by either clearing or thinning at some point in the past. | |||
Clearing is carried out by the grazing industry in an attempt to increase the quality and quantity of feed available for stock and to improve the management of livestock. The removal of trees from savanna land removes the competition for water from the grasses present, and can lead to a two to fourfold increase in pasture production, as well as improving the quality of the feed available.<ref>Scanlan, J. and C. Chilcott (2000). Management and production aspects. Native Vegetation Management in Queensland. S. L. Boulter, B. A. Wilson, J. Westrupet al. Brisbane, Department of Natural Resources.</ref> Since stock ] is strongly correlated with herbage yield, there can be major financial benefits from the removal of trees,<ref>Harrington, G. N., M. H. Friedel, et al. (1984). Vegetation ecology and management. Management of Australia's Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing {{ISBN|0-643-03615-6}}.</ref> such as assisting with grazing management: regions of dense tree and shrub cover harbors predators, leading to increased stock losses, for example,<ref>Harrington, G. N., D. M. D. Mills, et al. (1984). Semi-arid woodlands. Management of Australia's Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing {{ISBN|0-643-03615-6}}.</ref> while woody plant cover hinders mustering in both sheep and cattle areas.<ref>Harrington, G. N., D. M. D. Mills, et al. (1984). Management of Rangeland Ecosystems. Management of Australia's Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing {{ISBN|0-643-03615-6}}.</ref> | |||
Large areas of Australian and South American savannas have been cleared of trees, and this clearing is continuing today. For example until recently 480,000 ] of savanna were cleared annually in Australia alone primarily to improve pasture production.<ref name="wilson" /> Substantial savanna areas have been cleared of woody vegetation and much of the area that remains today is vegetation that has been disturbed by either clearing or thinning at some point in the past. | |||
A number of techniques have been employed to clear or kill woody plants in savannas. Early pastoralists used felling and ], the removal of a ring of ] and ], as a means of clearing land.<ref>Partridge, I. (1999). Managing grazing in northern Australia. Brisbane, Department of Primary Industries {{ISBN|0-7345-0035-1}}.</ref> In the 1950s arboricides suitable for stem injection were developed. War-surplus heavy machinery was made available, and these were used for either pushing timber, or for pulling using a chain and ball strung between two machines. These two new methods of timber control, along with the introduction and widespread adoption of several new pasture grasses and legumes promoted a resurgence in tree clearing. The 1980s also saw the release of soil-applied arboricides, notably ], that could be utilised without cutting and injecting each individual tree. | |||
Clearing is carried out by the grazing industry in an attempt to increase the quality and quantity of feed available for stock and to improve the management of livestock. The removal of trees from savanna land removes the competition for water from the grasses present, and can lead to a two to fourfold increase in pasture production, as well as improving the quality of the feed available.<ref>Scanlan, J. and C. Chilcott (2000). Management and production aspects. Native Vegetation Management in Queensland. S. L. Boulter, B. A. Wilson, J. Westrupet al. Brisbane, Department of Natural Resources.</ref> Since stock carrying capacity is strongly correlated with herbage yield, there can be major financial benefits from the removal of trees,<ref>Harrington, G. N., M. H. Friedel, et al. (1984). Vegetation ecology and management. Management of Australia's Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing ISBN 0-643-03615-6.</ref> such as assisting with grazing management: regions of dense tree and shrub cover harbors predators, leading to increased stock losses, for example,<ref>Harrington, G. N., D. M. D. Mills, et al. (1984). Semi-arid woodlands. Management of Australia's Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing ISBN 0-643-03615-6.</ref> while woody plant cover hinders mustering in both sheep and cattle areas.<ref>Harrington, G. N., D. M. D. Mills, et al. (1984). Management of Rangeland Ecosystems. Management of Australia's Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing ISBN 0-643-03615-6.</ref> | |||
In many ways "artificial" clearing, particularly pulling, mimics the effects of fire and, in savannas adapted to regeneration after fire as most Queensland savannas are, there is a similar response to that after fire.<ref name="scanlantree">Scanlan, J. C. (1988). Managing tree and shrub populations. Native pastures in Queensland their resources and management. W. H. Burrows, J. C. Scanlan and M. T. Rutherford. Queensland, Queensland Government Press {{ISBN|0-7242-2443-2}}.</ref> Tree clearing in many savanna communities, although causing a dramatic reduction in basal area and canopy cover, often leaves a high percentage of woody plants alive either as seedlings too small to be affected or as plants capable of re-sprouting from lignotubers and broken stumps. A population of woody plants equal to half or more of the original number often remains following pulling of eucalypt communities, even if all the trees over 5 metres are uprooted completely. | |||
A number of techniques have been employed to clear or kill woody plants in savannas. Early pastoralists used felling and ], the removal of a ring of ] and ], as a means of clearing land.<ref>Partridge, I. (1999). Managing grazing in northern Australia. Brisbane, Department of Primary Industries ISBN 0-7345-0035-1.</ref> In the 1950s arboricides suitable for stem injection were developed. War-surplus heavy machinery was made available, and these were used for either pushing timber, or for pulling using a chain and ball strung between two machines. These two new methods of timber control, along with the introduction and widespread adoption of several new pasture grasses and legumes promoted a resurgence in tree clearing. The 1980s also saw the release of soil-applied arboricides, notably ], that could be utilized without cutting and injecting each individual tree. | |||
In many ways "artificial" clearing, particularly pulling, mimics the effects of fire and, in savannas adapted to regeneration after fire as most Queensland savannas are, there is a similar response to that after fire.<ref name="scanlantree">Scanlan, J. C. (1988). Managing tree and shrub populations. Native pastures in Queensland their resources and management. W. H. Burrows, J. C. Scanlan and M. T. Rutherford. Queensland, Queensland Government Press ISBN 0-7242-2443-2.</ref> Tree clearing in many savanna communities, although causing a dramatic reduction in basal area and canopy cover, often leaves a high percentage of woody plants alive either as seedlings too small to be affected or as plants capable of re-sprouting from lignotubers and broken stumps. A population of woody plants equal to half or more of the original number often remains following pulling of eucalypt communities, even if all the trees over 5 metres are uprooted completely. | |||
===Exotic plant species=== | ===Exotic plant species=== | ||
Line 53: | Line 67: | ||
], ].]] | ], ].]] | ||
A number of exotic plants species have been introduced to |
A number of exotic plants species have been introduced to savannas around the world. Amongst the woody plant species are serious environmental weeds such as Prickly Acacia ('']''), Rubbervine ('']''), Mesquite ('']'' spp.), Lantana ('']'' and '']'') and Prickly Pear ('']'' spp.). A range of herbaceous species have also been introduced to these woodlands, either deliberately or accidentally including Rhodes grass and other '']'' species, Buffel grass ('']''), Giant rat's tail grass ('']'') ] ('']'') and stylos ('']'' spp.) and other ]s. These introductions have the potential to significantly alter the structure and composition of savannas worldwide, and have already done so in many areas through a number of processes including altering the fire regime, increasing grazing pressure, competing with native vegetation and occupying previously vacant ecological niches.<ref name="scanlantree" /><ref>Tothill, J. C. and C. Gillies (1992). The pasture lands of northern Australia. Brisbane, Tropical Grassland Society of Australia {{ISBN|0-9590948-4-9}}.</ref> Other plant species include: white sage, spotted cactus, cotton seed, rosemary.{{Citation needed|date=July 2024}} | ||
Other plant species include: white sage, spotted cactus, cotton seed, rosemary. | |||
===Climate change=== | ===Climate change=== | ||
Human induced ] resulting from the ] may result in an alteration of the structure and function of savannas. Some authors<ref>{{cite book |year=1991 |title=Savanna Ecology and Management: Australian Perspectives and Intercontinental Comparisons |editor=Patricia A. Werner |publisher=] |location=] |isbn=978-0-632-03199-3 |chapter-url=https://books.google.com/books?id=pDouvnGGgKEC |first=S. |last=Archer |chapter=Development and stability of grass/woody mosaics in a subtropical savanna parkland, Texas, USA |pages=109–118}}</ref> have suggested that savannas and grasslands may become even more susceptible to ] as a result of ]. However, a recent case described a savanna increasing its range at the expense of forest in response to climate variation, and potential exists for similar rapid, dramatic shifts in vegetation distribution as a result of global climate change, particularly at ecotones such as savannas so often represent.<ref>{{cite journal|author1=Allen, C. D. |author2=D. D. Breshears |name-list-style=amp |year=1998|title=Drought-induced shift of a forest–woodland ecotone: Rapid landscape response to climate variation |volume=95|pages=14839–14842|pmid=9843976|journal=Proceedings of the National Academy of Sciences|doi=10.1073/pnas.95.25.14839|issue=25|pmc=24536|bibcode=1998PNAS...9514839A |doi-access=free }}</ref> | |||
==Savanna ecoregions== | == Savanna ecoregions == | ||
{{Multiple image | |||
] region, ].]] | |||
| total_width = 400 | |||
| image1 = Savanna towards the south-east from the south of Taita Hills Game Lodge within the Taita Hills Wildlife Sanctuary in Kenya 3.jpg | |||
Savanna ] are of several different types: | |||
| image2 = Cumberlain Plain Woodland6.jpg | |||
*'''Tropical and subtropical savannas''' are classified with tropical and subtropical grasslands and shrublands as the ] biome. The savannas of Africa, including the ], famous for its wildlife, are typical of this type. | |||
| perrow = 2 / 3 | |||
*'''Temperate savannas''' are mid-latitude savannas with wetter summers and drier winters. They are classified with temperate savannas and shrublands as the ] biome, that for example cover much of the ] of the ]. (See areas such as the ]). | |||
| image3 = AlentejoPortugal1994.jpg | |||
*'''Mediterranean savannas''' are mid-latitude savannas in ] regions, with mild, rainy winters and hot, dry summers, part of the ] biome. The ] savannas of ], part of the ] ecoregion, fall into this category. | |||
| image4 = Flickr - shaimaa85 - palm tree island Nile river egypt beni suef.jpg | |||
*'''Flooded savannas''' are savannas that are flooded seasonally or year-round. They are classified with flooded savannas as the ] biome, which occurs mostly in the tropics and subtropics. | |||
| image5 = Cordillera oriental Colombia.jpg | |||
*'''] savannas''' are high-altitude savannas, located in a few spots around the world's high mountain regions, part of the ] biome. The lowland savannas of the ] ecoregion are an example. | |||
| caption3 = Mediterranean savanna in the ], ]. | |||
| caption4 = ]. | |||
| caption5 = A montane savanna in the ]. | |||
| caption1 = Tropical savanna in ]. | |||
| caption2 = Temperate savanna in ]. | |||
| align = right | |||
| direction = horizontal | |||
}} | |||
A savanna can simply be distinguished by the open savanna, where grass prevails and trees are rare; and the wooded savanna, where the trees are densest, bordering an open woodland or forest. Specific savanna ] of several different types include: | |||
* '''Tropical savannas''' are classified with tropical and subtropical grasslands and shrublands as the ] biome. The savannas of Africa, including the ], famous for its wildlife, are typical of this type. The Brazilian savanna (]) is also included in this category, known for its ]. Other examples include the ], ], ], ], ], ] and the ]. | |||
* '''Subtropical and temperate savannas''' are mid-latitude savannas with wetter summers and drier winters. They are classified with temperate savannas and shrublands as the ] biome, that for example cover much of the plains of southeastern Australia, northern India, Southern Africa, southeastern Argentina and Uruguay. Examples of subtropical and temperate savannas include the ], ], ], ], ], ] and the ]. | |||
* '''Mediterranean savannas''' are mid-latitude savannas in ] regions, with mild, rainy winters and hot, dry summers, part of the ] biome. The ] savannas of ], part of the ] ecoregion, fall into this category, including the ], which features eucalyptuses. Parts of the ] and the ] may also feature savanna-like landscapes. | |||
* '''Flooded savannas''' are savannas that are flooded seasonally or year-round. They are classified with flooded savannas as the ] biome, which occurs mostly in the tropics and subtropics. Examples include the ], ], ], ], ], ], and the ]. | |||
* '''] savannas''' are mid- to high-altitude savannas, located in a few spots around the world's high mountain regions, part of the ] biome. The ], located at an average altitude of {{convert|2550|m|ft}} on the ], ] of the ], is an example of a montane savanna.<ref name=Tadeo>{{cite journal |last=Calvachi Zambrano |first=Byron |year=2002 |title=La biodiversidad bogotana |url=http://avalon.utadeo.edu.co/dependencias/publicaciones/tadeo_67/67089.pdf |journal=Revista la Tadeo |volume=67 |publisher=] |pages=89–98 |access-date=4 March 2017 |language=es |archive-date=29 September 2018 |archive-url=https://web.archive.org/web/20180929155430/http://avalon.utadeo.edu.co/dependencias/publicaciones/tadeo_67/67089.pdf |url-status=dead }}</ref><ref name=Preciado2000>{{cite book |last=Pérez Preciado |first=Alfonso |year=2000 |title=La estructura ecológica principal de la Sabana de Bogotá |url=https://www.sogeocol.edu.co/documentos/est_eco.pdf |publisher=Sociedad Geográfica de Colombia |pages=1–37 |access-date=4 March 2017 |language=es |archive-url=https://web.archive.org/web/20151211154643/https://www.sogeocol.edu.co/documentos/est_eco.pdf |archive-date=11 December 2015 |url-status=live }}</ref> The savannas of the ] ecoregion are a lower altitude example, up to {{convert|1000|m|ft}}.<ref></ref> Other examples include the ] and the southern part of the ]. | |||
==See also== | ==See also== | ||
{{colbegin|3}} | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | *] | ||
*] | *] | ||
*] | |||
*] | *] | ||
*] | *] | ||
*] | *] | ||
*] | *] | ||
*] | |||
*] | |||
{{colend}} | |||
==References== | ==References== | ||
Line 95: | Line 108: | ||
==External links== | ==External links== | ||
{{Commons category |
{{Commons category}} | ||
* | * at barrameda.com.ar {{In lang|es|pt-BR}} | ||
* {{Cite EB1911|wstitle=Savanna|short=x}} | |||
* {{Cite NIE|wstitle=Savannas|short=x}} | |||
{{ |
{{Vegetation}} | ||
{{Authority control}} | |||
] | |||
] | ] | ||
] | |||
] | ] | ||
] | ] | ||
] |
Latest revision as of 01:32, 14 January 2025
Mixed woodland-grassland ecosystem "Savannah" redirects here. For the city in the U.S. state of Georgia, see Savannah, Georgia. For other uses, see Savannah (disambiguation).
A savanna or savannah is a mixed woodland-grassland (i.e. grassy woodland) biome and ecosystem characterised by the trees being sufficiently widely spaced so that the canopy does not close. The open canopy allows sufficient light to reach the ground to support an unbroken herbaceous layer consisting primarily of grasses. Four savanna forms exist; savanna woodland where trees and shrubs form a light canopy, tree savanna with scattered trees and shrubs, shrub savanna with distributed shrubs, and grass savanna where trees and shrubs are mostly nonexistent.
Savannas maintain an open canopy despite a high tree density. It is often believed that savannas feature widely spaced, scattered trees. However, in many savannas, tree densities are higher and trees are more regularly spaced than in forests. The South American savanna types cerrado sensu stricto and cerrado dense typically have densities of trees similar to or higher than that found in South American tropical forests, with savanna ranging from 800 to 3300 trees per hectare (trees/ha) and adjacent forests with 800–2000 trees/ha. Similarly Guinean savanna has 129 trees/ha, compared to 103 for riparian forest, while Eastern Australian sclerophyll forests have average tree densities of approximately 100 per hectare, comparable to savannas in the same region.
Savannas are also characterised by seasonal water availability, with the majority of rainfall confined to one season. They are associated with several types of biomes, and are frequently in a transitional zone between forest and desert or grassland, though mostly a transition between desert to forest. Savanna covers approximately 20% of the Earth's land area. Unlike the prairies in North America and steppes in Eurasia, which feature cold winters, savannas are mostly located in areas having warm to hot climates, such as in Africa, Australia, Thailand, South America and India.
Etymology
The word derives from the Spanish sabana, which is itself a loanword from Taíno, which means "treeless grassland" in the West Indies. The letter b in Spanish, when positioned in the middle of a word, is pronounced almost like an English v; hence the change of grapheme when transcribed into English.
The word originally entered English as the Zauana in a description of the ilands of the kinges of Spayne from 1555. This was equivalent in the orthography of the times to zavana (see history of V). Peter Martyr reported it as the local name for the plain around Comagre, the court of the cacique Carlos in present-day Panama. The accounts are inexact, but this is usually placed in present-day Madugandí or at points on the nearby Guna Yala coast opposite Ustupo or on Point Mosquitos. These areas are now either given over to modern cropland or jungle.
Distribution
Many grassy landscapes and mixed communities of trees, shrubs, and grasses were described as savanna before the middle of the 19th century, when the concept of a tropical savanna climate became established. The Köppen climate classification system was strongly influenced by effects of temperature and precipitation upon tree growth, and oversimplified assumptions resulted in a tropical savanna classification concept which considered it as a "climatic climax" formation. The common usage to describe vegetation now conflicts with a simplified yet widespread climatic concept. The divergence has sometimes caused areas such as extensive savannas north and south of the Congo and Amazon Rivers to be excluded from mapped savanna categories.
In different parts of North America, the word "savanna" has been used interchangeably with "barrens", "prairie", "glade", "grassland" and "oak opening". Different authors have defined the lower limits of savanna tree coverage as 5–10% and upper limits range as 25–80% of an area. Two factors common to all savanna environments are rainfall variations from year to year, and dry season wildfires. In the Americas, e.g. in Belize, Central America, savanna vegetation is similar from Mexico to South America and to the Caribbean. The distinction between woodland and savanna is vague and therefore the two can be combined into a single biome as both woodlands and savannas feature open-canopied trees with crowns not usually interlinking (mostly forming 25-60% cover).
Over many large tropical areas, the dominant biome (forest, savanna or grassland) can not be predicted only by the climate, as historical events plays also a key role, for example, fire activity. In some areas, indeed, it is possible for there to be multiple stable biomes. The annual rainfall ranges from 500 mm (19.69 in) to 1,270 mm (50.00 in) per year, with the precipitation being more common in six or eight months of the year, followed by a period of drought. Savannas may at times be classified as forests.
In climatic geomorphology it has been noted that many savannas occur in areas of pediplains and inselbergs. It has been posited that river incision is not prominent but that rivers in savanna landscapes erode more by lateral migration. Flooding and associated sheet wash have been proposed as dominant erosion processes in savanna plains.
Ecology
The savannas of tropical America comprise broadleaved trees such as Curatella, Byrsonima, and Bowdichia, with grasses such as Leersia and Paspalum. Bean relative Prosopis is common in the Argentinian savannas. In the East African savannas, Acacia, Combretum, baobabs, Borassus, and Euphorbia are a common vegetation genera. Drier savannas there feature spiny shrubs and grasses, such as Andropogon, Hyparrhenia, and Themeda. Wetter savannas include Brachystegia trees and Pennisetum purpureum, and elephant grass type. West African savanna trees include Anogeissus, Combretum, and Strychnos. Indian savannas are mostly cleared, but the reserved ones feature Acacia, Mimosa, and Zizyphus over a grass cover comprising Sehima and Dichanthium. The Australian savanna is abundant with sclerophyllous evergreen vegetation, which include the eucalyptus, as well as Acacia, Bauhinia, Pandanus with grasses such as Heteropogon and kangaroo grass (Themeda).
Animals in the African savanna generally include the giraffe, elephant, buffalo, zebra, gnu, hippopotamus, rhinoceros, and antelope, where they rely on grass and/or tree foliage to survive. In the Australian savanna, mammals in the family Macropodidae predominate, such as kangaroos and wallabies, though cattle, horses, camels, donkeys and the Asian water buffalo, among others, have been introduced by humans.
Threats
It is estimated that less than three percent of savanna ecosystems can be classified as highly intact. Reasons for savanna degradation are manifold, as outlined below.
Changes in fire management
Savannas are subject to regular wildfires and the ecosystem appears to be the result of human use of fire. For example, Native Americans created the Pre-Columbian woodlands of North America by periodically burning where fire-resistant plants were the dominant species. Fire-stick farming appears to have been responsible for the widespread occurrence of savanna in tropical Australia and New Guinea, and savannas in India are a result of human fire use. The maquis shrub savannas of the Mediterranean region were likewise created and maintained by anthropogenic fire.
Intentional controlled burns typically create fires confined to the herbaceous layer that do little long term damage to mature trees. This prevents more catastrophic wildfires that could do much more damage. However, these fires either kill or suppress tree seedlings, thus preventing the establishment of a continuous tree canopy which would prevent further grass growth. Prior to European settlement aboriginal land use practices, including fire, influenced vegetation and may have maintained and modified savanna flora. It has been suggested by many authors that aboriginal burning created a structurally more open savanna landscape. Aboriginal burning certainly created a habitat mosaic that probably increased biodiversity and changed the structure of woodlands and geographic range of numerous woodland species. It has been suggested by many authors that with the removal or alteration of traditional burning regimes many savannas are being replaced by forest and shrub thickets with little herbaceous layer.
The consumption of herbage by introduced grazers in savanna woodlands has led to a reduction in the amount of fuel available for burning and resulted in fewer and cooler fires. The introduction of exotic pasture legumes has also led to a reduction in the need to burn to produce a flush of green growth because legumes retain high nutrient levels throughout the year, and because fires can have a negative impact on legume populations which causes a reluctance to burn.
Grazing and browsing animals
The closed forest types such as broadleaf forests and rainforests are usually not grazed owing to the closed structure precluding grass growth, and hence offering little opportunity for grazing. In contrast the open structure of savannas allows the growth of a herbaceous layer and is commonly used for grazing domestic livestock. As a result, much of the world's savannas have undergone change as a result of grazing by sheep, goats and cattle, ranging from changes in pasture composition to woody plant encroachment.
The removal of grass by grazing affects the woody plant component of woodland systems in two major ways. Grasses compete with woody plants for water in the topsoil and removal by grazing reduces this competitive effect, potentially boosting tree growth. In addition to this effect, the removal of fuel reduces both the intensity and the frequency of fires which may control woody plant species. Grazing animals can have a more direct effect on woody plants by the browsing of palatable woody species. There is evidence that unpalatable woody plants have increased under grazing in savannas. Grazing also promotes the spread of weeds in savannas by the removal or reduction of the plants which would normally compete with potential weeds and hinder establishment. In addition to this, cattle and horses are implicated in the spread of the seeds of weed species such as prickly acacia (Acacia nilotica) and stylo (Stylosanthes species). Alterations in savanna species composition brought about by grazing can alter ecosystem function, and are exacerbated by overgrazing and poor land management practices.
Introduced grazing animals can also affect soil condition through physical compaction and break-up of the soil caused by the hooves of animals and through the erosion effects caused by the removal of protective plant cover. Such effects are most likely to occur on land subjected to repeated and heavy grazing. The effects of overstocking are often worst on soils of low fertility and in low rainfall areas below 500 mm, as most soil nutrients in these areas tend to be concentrated in the surface so any movement of soils can lead to severe degradation. Alteration in soil structure and nutrient levels affects the establishment, growth and survival of plant species and in turn can lead to a change in woodland structure and composition. That being said, impact of grazing animals can be reduced. Looking at Elephant impact on Savannas, the overall impact is reduced in the presence of rainfall and fences.
Tree clearing
Large areas of Australian and South American savannas have been cleared of trees, and this clearing continues today. For example, land clearing and fracking threaten the Northern Territory, Australia savanna, and 480,000 ha of savanna were being cleared annually in Queensland in the 2000s, primarily to improve pasture production. Substantial savanna areas have been cleared of woody vegetation and much of the area that remains today is vegetation that has been disturbed by either clearing or thinning at some point in the past.
Clearing is carried out by the grazing industry in an attempt to increase the quality and quantity of feed available for stock and to improve the management of livestock. The removal of trees from savanna land removes the competition for water from the grasses present, and can lead to a two to fourfold increase in pasture production, as well as improving the quality of the feed available. Since stock carrying capacity is strongly correlated with herbage yield, there can be major financial benefits from the removal of trees, such as assisting with grazing management: regions of dense tree and shrub cover harbors predators, leading to increased stock losses, for example, while woody plant cover hinders mustering in both sheep and cattle areas.
A number of techniques have been employed to clear or kill woody plants in savannas. Early pastoralists used felling and girdling, the removal of a ring of bark and sapwood, as a means of clearing land. In the 1950s arboricides suitable for stem injection were developed. War-surplus heavy machinery was made available, and these were used for either pushing timber, or for pulling using a chain and ball strung between two machines. These two new methods of timber control, along with the introduction and widespread adoption of several new pasture grasses and legumes promoted a resurgence in tree clearing. The 1980s also saw the release of soil-applied arboricides, notably tebuthiuron, that could be utilised without cutting and injecting each individual tree.
In many ways "artificial" clearing, particularly pulling, mimics the effects of fire and, in savannas adapted to regeneration after fire as most Queensland savannas are, there is a similar response to that after fire. Tree clearing in many savanna communities, although causing a dramatic reduction in basal area and canopy cover, often leaves a high percentage of woody plants alive either as seedlings too small to be affected or as plants capable of re-sprouting from lignotubers and broken stumps. A population of woody plants equal to half or more of the original number often remains following pulling of eucalypt communities, even if all the trees over 5 metres are uprooted completely.
Exotic plant species
A number of exotic plants species have been introduced to savannas around the world. Amongst the woody plant species are serious environmental weeds such as Prickly Acacia (Acacia nilotica), Rubbervine (Cryptostegia grandiflora), Mesquite (Prosopis spp.), Lantana (Lantana camara and L. montevidensis) and Prickly Pear (Opuntia spp.). A range of herbaceous species have also been introduced to these woodlands, either deliberately or accidentally including Rhodes grass and other Chloris species, Buffel grass (Cenchrus ciliaris), Giant rat's tail grass (Sporobolus pyramidalis) parthenium (Parthenium hysterophorus) and stylos (Stylosanthes spp.) and other legumes. These introductions have the potential to significantly alter the structure and composition of savannas worldwide, and have already done so in many areas through a number of processes including altering the fire regime, increasing grazing pressure, competing with native vegetation and occupying previously vacant ecological niches. Other plant species include: white sage, spotted cactus, cotton seed, rosemary.
Climate change
Human induced climate change resulting from the greenhouse effect may result in an alteration of the structure and function of savannas. Some authors have suggested that savannas and grasslands may become even more susceptible to woody plant encroachment as a result of greenhouse induced climate change. However, a recent case described a savanna increasing its range at the expense of forest in response to climate variation, and potential exists for similar rapid, dramatic shifts in vegetation distribution as a result of global climate change, particularly at ecotones such as savannas so often represent.
Savanna ecoregions
Tropical savanna in Kenya.Temperate savanna in New South Wales.Mediterranean savanna in the Alentejo region, Portugal.Nile Delta flooded savanna.A montane savanna in the Colombian Andes.A savanna can simply be distinguished by the open savanna, where grass prevails and trees are rare; and the wooded savanna, where the trees are densest, bordering an open woodland or forest. Specific savanna ecoregions of several different types include:
- Tropical savannas are classified with tropical and subtropical grasslands and shrublands as the tropical and subtropical grasslands, savannas, and shrublands biome. The savannas of Africa, including the Serengeti, famous for its wildlife, are typical of this type. The Brazilian savanna (Cerrado) is also included in this category, known for its exotic and varied flora. Other examples include the Kimberley tropical savanna, Central Zambezian miombo woodlands, Guinean forest–savanna mosaic, Cape York Peninsula tropical savanna, Somali Acacia–Commiphora bushlands and thickets, Terai–Duar savanna and grasslands and the Victoria Basin forest–savanna mosaic.
- Subtropical and temperate savannas are mid-latitude savannas with wetter summers and drier winters. They are classified with temperate savannas and shrublands as the temperate grasslands, savannas, and shrublands biome, that for example cover much of the plains of southeastern Australia, northern India, Southern Africa, southeastern Argentina and Uruguay. Examples of subtropical and temperate savannas include the Southeast Australia temperate savanna, Argentine Espinal, Pampas, Cumberland Plain Woodland, Southern Cone Mesopotamian savanna, New England Peppermint Grassy Woodland and the Uruguayan savanna.
- Mediterranean savannas are mid-latitude savannas in Mediterranean climate regions, with mild, rainy winters and hot, dry summers, part of the Mediterranean forests, woodlands, and scrub biome. The oak tree savannas of California, part of the California chaparral and woodlands ecoregion, fall into this category, including the Temperate Grassland of South Australia, which features eucalyptuses. Parts of the Middle East steppe and the Eastern Mediterranean conifer–sclerophyllous–broadleaf forests may also feature savanna-like landscapes.
- Flooded savannas are savannas that are flooded seasonally or year-round. They are classified with flooded savannas as the flooded grasslands and savannas biome, which occurs mostly in the tropics and subtropics. Examples include the Everglades, Mesopotamian Marshes, Pantanal, Nile Delta flooded savanna, Lake Chad flooded savanna, Zambezian flooded grasslands, and the Sudd.
- Montane savannas are mid- to high-altitude savannas, located in a few spots around the world's high mountain regions, part of the montane grasslands and shrublands biome. The Bogotá savanna, located at an average altitude of 2,550 metres (8,370 ft) on the Altiplano Cundiboyacense, Eastern Ranges of the Andes, is an example of a montane savanna. The savannas of the Angolan Scarp savanna and woodlands ecoregion are a lower altitude example, up to 1,000 metres (3,300 ft). Other examples include the Al Hajar montane woodlands and the southern part of the Eastern Anatolian montane steppe.
See also
References
- Anderson, Roger A., Fralish, James S. and Baskin, Jerry M. editors.1999. Savannas, Barrens, and Rock Outcrop Plant Communities of North America. Cambridge University Press.
- McPherson, G. R. (1997). Ecology and management of North American Savannas. Tucson, AZ: University of Arizona Press.
- ^ Werner, Patricia A.; B. H. Walker; P. A Stott (1991). "Introduction". In Patricia A. Werner (ed.). Savanna Ecology and Management: Australian Perspectives and Intercontinental Comparisons. Oxford: Blackwell Publishing. ISBN 978-0-632-03199-3.
- ^ Smith, Jeremy M.B.. "savanna". Encyclopedia Britannica, 5 Sep. 2016, https://www.britannica.com/science/savanna/Environment. Accessed 17 September 2022.
- Alexandro Solórzano, Jeanine Maria Felfili 2008 "Comparative analysis of the international terminaoolgy for cerrado" IX Symposio Nacional Cerrado 13 a 17 de outubro de 2008 Parlamundi Barsilia, DF
- ^ Manoel Cláudio da Silva Jánior, Christopher William Fagg, Maria Cristina Felfili, Paulo Ernane Nogueira, Alba Valéria Rezende, and Jeanine Maria Felfili 2006 "Chapter 4. Phytogeography of Cerrado Sensu Stricto and Land System Zoning in Central Brazil" in "Neotropical Savannas and Seasonally Dry Forests: Plant Diversity, Biogeography, and Conservation" R. Toby Pennington, James A. Ratter (eds) 2006 CRC Press
- ^ Abdullahi Jibrin 2013 "A Study of Variation in Physiognomic Characteristics of Guinea Savanna Vegetation" Environment and Natural Resources Research 3:2
- ^ Erika L. Geiger, Sybil G. Gotsch, Gabriel Damasco, M. Haridasan, Augusto C. Franco & William A. Hoffmann 2011 "Distinct roles of savanna and forest tree species in regeneration under fire suppression in a Brazilian savanna" Journal of Vegetation Science 22
- ^ Scholz, Fabian G.; Bucci, Sandra J.; Goldstein, Guillermo; Meinzer, Frederick C.; Franco, Augusto C.; Salazar, Ana. 2008 "Plant- and stand-level variation in biophysical and physiological traits along tree density gradients in the Cerrado", Brazilian Journal of Plant Physiology
- Tait, L 2010, Structure and dynamics of grazed woodlands in North-eastern Australia, Master of Applied Science Thesis, Central Queensland University, Faculty of Science, Engineering and Health, Rockhampton.
- "Savanna". Ask a Biologist. 25 May 2014. Retrieved 31 August 2022.
- Sankaran, Mahesh; Hanan, Niall P.; Scholes, Robert J.; Ratnam, Jayashree; Augustine, David J.; Cade, Brian S.; Gignoux, Jacques; Higgins, Steven I.; Le Roux, Xavier (December 2005). "Determinants of woody cover in African savannas". Nature. 438 (7069): 846–849. Bibcode:2005Natur.438..846S. doi:10.1038/nature04070. ISSN 0028-0836. PMID 16341012. S2CID 4344778.
- ^ "The grassland biome". UCMP. Retrieved 31 August 2022.
- ^ WOODLAND SAVANNA Wrangle - WORLD RANGELAND LEARNING EXPERIENCE. 2022 Arizona Board of Regents. Retrieved 17 September 2022.
- ASALE, RAE-; RAE. "sabana – Diccionario de la lengua española". «Diccionario de la lengua española» – Edición del Tricentenario (in Spanish). Retrieved 6 March 2023.
- B. A., Seattle Pacific University. "How to Pronounce B and V in Spanish". ThoughtCo. Retrieved 29 August 2021.
- Oxford English Dictionary, 3rd ed. "savannah", n. Oxford University Press (Oxford), 2012.
- ^ D'Anghiera, Peter Martyr. De Orbe Novo Decades. Cum Ejusdem Legatione Babylonica. Arnao Guillén de Brocar (Alcala), 1516 (in Latin). Trans. Richard Eden as The decades of the newe worlde or west India conteynyng the nauigations and conquestes of the Spanyardes with the particular description of the moste ryche and large landes and Ilands lately founde in the west Ocean perteynyng to the inheritaunce of the kinges of Spayne, Book III, §3. William Powell (London), 1555.
- Richard Eden: "The palace of this Comogrus, is ſituate at the foote of a ſtiepe hyll well cultured. Hauynge towarde the ſouthe a playne of twelue leages in breadth and veary frutefull. This playne, they caule Zauana."
- Eden (1555), Book III, §6.
- The account of Peter Martyr itself differs in places, variously placing Comagre 25 leagues west of and accessible by ship from Dariena or 70 leagues (roughly 290 kilometers or 180 miles) west of Dariena and beside a river flowing into the southern ocean.
- Bancroft, Hubert H. (1882). "History of Central America. 1501–1530". San Francisco: A.L. Bancroft & Co. p. LXXIV.
- Bancroft (1882), p. 362.
- Bancroft (1882), p. 347.
- NASA. "" from Earth Observatory. The Image Composite Explorer. Exercise 4: Vegetation Vital Signs. Accessed 1 August 2014.
- David R. Harris, ed. (1980). Human Ecology in Savanna Environments. London: Academic Press. pp. 3, 5–9, 12, 271–278, 297–298. ISBN 978-0-12-326550-0.
- Roger C. Anderson; James S. Fralish; Jerry M. Baskin, eds. (1999). Savannas, Barrens, and Rock Outcrop Plant Communities of North America. Cambridge University Press. p. 157. ISBN 978-0-521-57322-1.
- David L. Lentz, ed. (2000). Imperfect balance: landscape transformations in the Precolumbian Americas. New York City: Columbia University Press. pp. 73–74. ISBN 978-0-231-11157-7.
- Moncrieff, G. R., Scheiter, S., Langan, L., Trabucco, A., Higgins, S. I. (2016). The future distribution of the savannah biome: model-based and biogeographic contingency, Philos. T. R. Soc. B, 371, 2015.0311, 2016. link.
- Staver, A.C., Archibald, S., Levin, S.A. (2011). The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232. link.
- ^ Cotton, C.A. (1961). "The Theory of Savanna Planation". Geography. 46 (2): 89–101. JSTOR 40565228.
- Williams, Brooke A.; Watson, James E. M.; Beyer, Hawthorne L.; Grantham, Hedley S.; Simmonds, Jeremy S.; Alvarez, Silvia J.; Venter, Oscar; Strassburg, Bernardo B. N.; Runting, Rebecca K. (1 December 2022). "Global drivers of change across tropical savannah ecosystems and insights into their management and conservation". Biological Conservation. 276: 109786. Bibcode:2022BCons.27609786W. doi:10.1016/j.biocon.2022.109786. ISSN 0006-3207. S2CID 253503609.
- "Use of Fire by Native Americans". The Southern Forest Resource Assessment Summary Report. Southern Research Station, USDA Forest Service. Archived from the original on 5 March 2014. Retrieved 21 July 2008.
- ^ Flannery, Timothy Fridtjof (1994). The Future Eaters: An Ecological History of the Australasian Lands and People. Frenchs Forest, New South Wales: Reed New Holland. ISBN 978-0-8076-1403-7.
- Saha, S. (2003). "Patterns in woody species diversity, richness and partitioning of diversity in forest communities of tropical deciduous forest biomes". Ecography. 26 (1): 80–86. Bibcode:2003Ecogr..26...80S. doi:10.1034/j.1600-0587.2003.03411.x.
- Pyne, Stephen J. (1997). Vestal Fire: An Environmental History, Told through Fire, of Europe and Europe's Encounter with the World. Seattle: University of Washington Press. ISBN 978-0-295-97596-2.
- Palmer, Jane (29 March 2021). "Fire as Medicine: Learning from Native American Fire Stewardship". eos.org.
- ^ Wilson, B., S. Boulter, et al. (2000). Queensland's resources. Native Vegetation Management in Queensland. S. L. Boulter, B. A. Wilson, J. Westrupet eds. Brisbane, Department of Natural Resources ISBN 0-7345-1701-7.
- ^ Lunt, I. D.; N. Jones (2006). "Effects of European colonisation on indigenous ecosystems: post-settlement changes in tree stand structures in Eucalyptus–Callitris woodlands in central New South Wales, Australia". Journal of Biogeography. 33 (6): 1102–1115. Bibcode:2006JBiog..33.1102L. doi:10.1111/j.1365-2699.2006.01484.x. S2CID 85775764.
- Archer S, (1994.) "Woody plant encroachment into southwestern grasslands and savannas: Rates, patterns and proximate causes." pp. 13–68 in Vavra, Laycock and Pieper (eds.) Ecological Implications of Livestock Herbivory in the West. Society For Range Management, Denver ISBN 1-884930-00-X.
- ^ Pressland, A. J., J. R. Mills, et al. (1988). Landscape degradation in native pasture. Native pastures in Queensland their resources and management. W. H. Burrows, J. C. Scanlan and M. T. Rutherford. Queensland, Queensland Government Press ISBN 0-7242-2443-2.
- Dyer, R., A. Craig, et al. (1997). Fire in northern pastoral lands. Fire in the management of northern Australian pastoral lands. T. C. Grice and S. M. Slatter. St. Lucia, Australia, Tropical Grassland Society of Australia ISBN 0-9590948-9-X.
- Lodge, G. M. and R. D. B. Whalley (1984). Temperate rangelands. Management of Australia's Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing.
- Mott, J. J., Groves, R.H. (1994). Natural and derived grasslands. Australian Vegetation. R. H. Groves. Cambridge, Cambridge University Press.
- Winter, W. H. (1991). "Australia's northern savannas: a time for change in management philosophy". In Patricia A. Werner (ed.). Savanna Ecology and Management: Australian Perspectives and Intercontinental Comparisons. Oxford: Blackwell Publishing. pp. 181–186. ISBN 978-0-632-03199-3.
- Burrows, W. H., J. C. Scanlan, et al. (1988). Plant ecological relations in open forests, woodlands and shrublands. Native pastures in Queensland their resources and management. W. H. Burrows, J. C. Scanlan and M. T. Rutherford eds. Brisbane, Department of Primary Industries ISBN 0-7242-2443-2.
- Smith, G., A. Franks, et al. (2000). Impacts of domestic grazing within remnant vegetation. Native Vegetation Management in Queensland. S. L. Boulter, B. A. Wilson, J. Westrupet al. Brisbane, Department of Natural Resources ISBN 0-7345-1701-7.
- Florence, R. G. (1996). Ecology and silviculture of eucalypt forests. Collingwood, CSIRO Publishing ISBN 0-643-10252-3.
- Foran, B. D. (1984). Central arid woodlands. Management of Australia's Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing ISBN 0-643-03615-6.
- Guldemond, Robert; Van Aarde, Rudi (May 2008). "A Meta-Analysis of the Impact of African Elephants on Savanna Vegetation". The Journal of Wildlife Management. 72 (4): 892–899. doi:10.2193/2007-072. ISSN 0022-541X.
- Murphy, Brett; Ritchie, Euan; Woinarski, John (29 June 2023). "Land clearing and fracking in Australia's Northern Territory threatens the world's largest intact tropical savanna". The Conversation. Retrieved 10 July 2024.
- "Deforestation explained". Wilderness Society. Retrieved 10 July 2024.
- Scanlan, J. and C. Chilcott (2000). Management and production aspects. Native Vegetation Management in Queensland. S. L. Boulter, B. A. Wilson, J. Westrupet al. Brisbane, Department of Natural Resources.
- Harrington, G. N., M. H. Friedel, et al. (1984). Vegetation ecology and management. Management of Australia's Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing ISBN 0-643-03615-6.
- Harrington, G. N., D. M. D. Mills, et al. (1984). Semi-arid woodlands. Management of Australia's Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing ISBN 0-643-03615-6.
- Harrington, G. N., D. M. D. Mills, et al. (1984). Management of Rangeland Ecosystems. Management of Australia's Rangelands. G. N. Harrington and A. D. Wilson. Melbourne, CSIRO Publishing ISBN 0-643-03615-6.
- Partridge, I. (1999). Managing grazing in northern Australia. Brisbane, Department of Primary Industries ISBN 0-7345-0035-1.
- ^ Scanlan, J. C. (1988). Managing tree and shrub populations. Native pastures in Queensland their resources and management. W. H. Burrows, J. C. Scanlan and M. T. Rutherford. Queensland, Queensland Government Press ISBN 0-7242-2443-2.
- Tothill, J. C. and C. Gillies (1992). The pasture lands of northern Australia. Brisbane, Tropical Grassland Society of Australia ISBN 0-9590948-4-9.
- Archer, S. (1991). "Development and stability of grass/woody mosaics in a subtropical savanna parkland, Texas, USA". In Patricia A. Werner (ed.). Savanna Ecology and Management: Australian Perspectives and Intercontinental Comparisons. Oxford: Blackwell Publishing. pp. 109–118. ISBN 978-0-632-03199-3.
- Allen, C. D. & D. D. Breshears (1998). "Drought-induced shift of a forest–woodland ecotone: Rapid landscape response to climate variation". Proceedings of the National Academy of Sciences. 95 (25): 14839–14842. Bibcode:1998PNAS...9514839A. doi:10.1073/pnas.95.25.14839. PMC 24536. PMID 9843976.
- Calvachi Zambrano, Byron (2002). "La biodiversidad bogotana" (PDF). Revista la Tadeo (in Spanish). 67. Universidad Jorge Tadeo Lozano: 89–98. Archived from the original (PDF) on 29 September 2018. Retrieved 4 March 2017.
- Pérez Preciado, Alfonso (2000). La estructura ecológica principal de la Sabana de Bogotá (PDF) (in Spanish). Sociedad Geográfica de Colombia. pp. 1–37. Archived (PDF) from the original on 11 December 2015. Retrieved 4 March 2017.
- Angolan Scarp savanna and woodlands
External links
- The Savanna at barrameda.com.ar (in Spanish and Brazilian Portuguese)
- "Savanna" . Encyclopædia Britannica (11th ed.). 1911.
- "Savannas" . New International Encyclopedia. 1905.
Phytogeography: Vegetation classification | |
---|---|
Physiognomy |
|
Latitude | |
Climatic regime | |
Altitude | |
Leaves |
|
Substrate | |
See also |