Revision as of 22:07, 2 June 2006 editMark Kilby (talk | contribs)Extended confirmed users544 editsm →External links: updated Java video stream with more of similar video material← Previous edit | Latest revision as of 11:51, 27 December 2024 edit undoBunnysBot (talk | contribs)Bots8,984 editsm Fix CW Errors with GenFixes (T1)Tag: AWB | ||
Line 1: | Line 1: | ||
{{Short description|Colonial flying insect of genus Apis}} | |||
{{Taxobox | |||
{{Other uses}} | |||
| color = pink | |||
{{pp-pc}} | |||
| name = Honeybee | |||
{{Use British English|date=June 2015}} | |||
| status = {{StatusDomesticated}} | |||
{{Automatic taxobox | |||
| image = Honigbiene.JPG | |||
| name = Honey bee | |||
| image_width = 200px | |||
| fossil_range = {{fossil range|Oligocene|Recent}} | |||
| regnum = ]ia | |||
| image = The Lone Pollinator.jpg | |||
| phylum = ]a | |||
| image_caption = ] on the bars of a ] | |||
| classis = ]a | |||
| parent_authority = ], 1802 | |||
| ordo = ] | |||
| |
| taxon = Apis | ||
| authority = ], ] | |||
| familia = ] | |||
| display_parents = 2 | |||
| subfamilia = ] | |||
| |
| type_species = '']'' | ||
| type_species_authority = ], ] | |||
| genus = '']'' | |||
| subdivision_ranks = Species | | subdivision_ranks = Species | ||
| subdivision = | | subdivision = *†'']'' | ||
*†'']'' | |||
'']'' — western honeybee<br />''A. florea''<br />''A. dorsata''<br />'']'' — eastern honeybee<br />others (see text) | |||
* Subgenus ''Micrapis'': | |||
:*'']'' | |||
:*'']'' | |||
* Subgenus ''Megapis'': | |||
:*'']'' | |||
:*'']'' | |||
* Subgenus ''Apis'': | |||
:*'']'' | |||
:*'']'' | |||
:*'']'' | |||
:*'']'' | |||
}} | }} | ||
'''Honeybees''' are a subset of ]s which represent a far smaller fraction of bee diversity than most people suspect; of the approximately 20,000 known species of bees, there are only six to eleven species (depending on the authority) within the tribe Apini, all in the genus ''Apis'', and all of which produce and store honey to some degree. Four species have historically been cultured for or robbed of honey by humans: ''] (Western honeybee)'', ''] (Dwarf honeybee/little bee)'', '']'' and '']''. Two of these species have been domesticated, one ('']'') at least since the time of the building of the ]s. | |||
]. Followed by segment at one tenth speed.]] | |||
*'']'' and '']'' are small honeybees of southern and southeastern Asia. The former makes very small, exposed nests in trees and shrubs, while the latter makes nests in cavities and is cultured for honey in a similar fashion to '']''. Their stings are often not capable of penetrating human skin, so the ] and ]s can be handled with minimal protection. | |||
A '''honey bee''' (also spelled '''honeybee''') is a ] ] within the ] ''Apis'' of the ] ], all native to mainland ].<ref name="Whitfield-2006">{{cite journal|display-authors=3 |last1=Whitfield |first1=Charles W. |last2=Behura |first2=Susanta K. |last3=Berlocher |first3=Stewart H. |last4=Clark |first4=Andrew G. |last5=Johnston |first5=J. Spencer |last6=Sheppard |first6=Walter S. |last7=Smith |first7=Deborah R. |last8=Suarez |first8=Andrew V. |last9=Weaver |first9=Daniel |last10=Tsutsui |first10=Neil D. |title=Thrice Out of Africa: Ancient and Recent Expansions of the Honey Bee, Apis mellifera |journal=Science|pmid= 17068261|date=27 October 2006 |volume=314 |issue=5799 |pages=642–645 |doi=10.1126/science.1132772|bibcode=2006Sci...314..642W |s2cid=15967796 }}</ref><ref name="Han-2012">{{cite journal |last1=Han |first1=Fan |last2=Wallberg |first2=Andreas |last3=Webster |first3=Matthew T. |title=From where did the Western honeybee (''Apis mellifera'') originate? |journal=Ecology and Evolution |date=August 2012 |volume=2 |issue=8 |pages=1949–1957 |doi=10.1002/ece3.312|pmid=22957195 |pmc=3433997 |bibcode=2012EcoEv...2.1949H }}</ref> After bees spread naturally throughout Africa and ], humans became responsible for the current ] of honey bees, introducing multiple subspecies into ] (early ]), ] (early 17th century), and ] (early 19th century).<ref name="Whitfield-2006" /> | |||
*'']'', the giant honeybee, is native to south and southeastern Asia, and usually makes its exposed combs on high tree limbs, or on cliffs, and sometimes on buildings. It is wild and can be very fierce. It is robbed of its honey periodically by human honey gatherers, a practice known as honey hunting. Its colonies are easily capable of stinging a human being to death when provoked. | |||
Honey bees are known for their construction of ] ] nests from ], the large size of their colonies, and surplus production and storage of ], distinguishing their hives as a prized ] target of many animals, including ]s, ] and human ]s. Only 8 surviving ] of honey bee are recognized, with a total of 43 ], though historically 7 to 11 species are recognized. Honey bees represent only a small fraction of the roughly 20,000 known species of bees. | |||
==Origin and distribution of the genus Apis== | |||
] <small>Requires an ] ] enabled player, such as ].</small>]] | |||
] | |||
Honeybees as a group appear to have their center of origin in ] (including the ]), as all but one of the extant species are native to that region, including the most primitive living species ('']'' and '']''). The first ''Apis'' bees appear in the ] in deposits dating about 40 million years ago during the ] period; that these fossils are from ] does not necessarily indicate that Europe is where the genus originated, as the likelihood of fossils being found in Southeast Asia is very small, even if that is the true origin. At about 30 million years before present they appear to have developed social behavior and structurally are virtually identical with modern honeybees. Among the extant members of the genus, the more ancient species make single, exposed combs, while the more recently-evolved species nest in cavities and have multiple combs, which greatly facilitated their domestication. | |||
The best known honey bee is the ], (''Apis mellifera''), which was domesticated for honey production and crop ]. The only other domesticated bee is the eastern honey bee ('']''), which occurs in ], ], and ]. Only members of the genus ''Apis'' are true honey bees,<ref>{{cite book |last1=Buchmann |first1=Stephen L. |title=Honey Bees: Letters from the Hive |date=8 June 2010 |publisher=Random House Children's Books |location=New York |isbn=9780375895579 |page=157 |edition=1st}}</ref> but some other types of bees produce and store honey and have been kept by humans for that purpose, including the ]s belonging to the genus '']'' and the Indian stingless or dammar bee '']''. Modern humans also use ] in making ]s, ], ]s and various ], as a lubricant and in mould-making using the ]. | |||
''Apis mellifera'', the most commonly domesticated species, probably originated in Tropical ] and spread from there to ] and East into ]. It is also called the ]. There are many sub-species that have adapted to the environment of their geographic and climatic area. Behavior, color and anatomy can be quite different from one sub-species or race to another. In ], first European colonists brought the sub-species '']'' to ]. Many of the crops that depend on honeybees for pollination have also been imported since colonial times. Escaped swarms (known as wild bees, but actually ]) spread rapidly as far as the ], usually preceding the colonists. The ] called the honeybee "the white man's fly." Honeybees did not naturally cross the ]; they were carried by ship to ] in the early ]. | |||
==Etymology and name== | |||
==]== | |||
The ] name ''Apis'' is ] for "bee".<ref>{{cite web |title=Apis |url=http://latindictionary.wikidot.com/noun:apis |website=The Latin Dictionary |access-date=23 November 2021}}</ref><ref>{{cite web |title=Honeybee |publisher=Online Etymology Dictionary, Douglas Harper |date=2019 |url=http://www.etymonline.com/index.php?search=Honeybee |access-date=27 February 2016 }}</ref> Although modern dictionaries may refer to ''Apis'' as either honey bee or honeybee, ] ] asserts that ] requires two words, i.e., ''honey bee'', because it is a kind or type of bee. It is incorrect to run the two words together, as in ''dragonfly'' or ''butterfly'', which are appropriate because dragonflies and butterflies are not flies.<ref name="Snodgrass-1984">{{cite book|author=Robert E. Snodgrass|title=Anatomy of the Honey Bee|url=https://books.google.com/books?id=IHGmkX1zDS8C|year=1984|publisher=Cornell University Press|isbn=978-0-8014-9302-7|page=vii}}</ref> Honey bee, not honeybee, is the listed common name in the ], the ] Common Names of Insects Database, and the ].<ref>{{cite web |title=Integrated Taxonomic Information System – Search, ''Apinae''|url=https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=633913#null |access-date=26 February 2016|date=2008}}</ref><ref name="Entomological Society of America">{{cite web |title=Common Names of Insects Database|publisher=Entomological Society of America |url=http://entsoc.org/common-names |access-date=21 February 2016}}</ref><ref>{{cite web |publisher=Tree of Life Web Project |title=Apinae|url=http://tolweb.org/Apinae|date=2004 |access-date=25 February 2016 }}</ref> | |||
] or ]; see the ] article for an explanation of the color)]] | |||
The '''honeybee''' is a ] ] that is often maintained, fed, and transported by ]. | |||
==Origin, systematics, and distribution== | |||
Honeybees collect nectar and store it as ] in their hives. Nectar and honey provide the energy for the bees' flight muscles and for heating the hive during the winter period. Honeybees also collect ] which supplies protein for ] to grow. Centuries of selective breeding by humans has created honeybees that produce far more honey than the colony needs. ], also known as "apiarists", harvest the honey. | |||
] | |||
] of a sterile female worker honey bee]] | |||
Honey bees appear to have their center of origin in ] and ] (including the ]), as all the extant species except '']'' are native to that region. Notably, living representatives of the earliest lineages to diverge ('']'' and '']'') have their center of origin there.<ref name="Han-2012" /> | |||
Beekeepers often provide a place for the colony to live and to store honey in. There are seven basic types of ]: ]s, ]s, ]s, ]s, ]s, ]s and ]s. Most U.S. states require beekeepers to use movable frames to allow bee inspectors to check the brood for disease. This allows the Langstroth, top-bar and D.E. hives, but other types of hives require special permitting, such as for museum use. The type of beehive used significantly impacts colony health, and wax and honey production. | |||
The first ''Apis'' bees appear in the ] at the ]–] boundary (34 ]), in European deposits. The origin of these prehistoric honey bees does not necessarily indicate Europe as the place of origin of the genus, only that the bees were present in Europe by that time. Few fossil deposits are known from South Asia, the suspected region of honey bee origin, and fewer still have been thoroughly studied. | |||
Modern hives also enable beekeepers to transport bees, moving from field to field as the crop needs pollinating and allowing the beekeeper to charge for the pollination services they provide. | |||
No ''Apis'' species existed in the New World during human times before the introduction of ''A. mellifera'' by Europeans. Only one fossil species is documented from the New World, '']'', known from a single 14 million-year-old specimen from Nevada.<ref>{{cite journal |author1=Michael S. Engel |author2=I. A. Hinojosa-Diaz |author3=A. P. Rasnitsyn |year=2009 |title=A honey bee from the Miocene of Nevada and the biogeography of ''Apis'' (Hymenoptera: Apidae: Apini) |journal=] |volume=60 |issue=3 |pages=23–38}}</ref> | |||
In cold climates, some beekeepers have kept colonies alive (with varying success) by moving them indoors for winter. While this can protect the colonies from extremes of temperature and make winter care and feeding more convenient for the beekeeper, it can increase the risk of ] (see the ''Nosema'' section of ]) and can create an excessive buildup of ] from the respiration of the bees. Recently, inside wintering has been refined by Canadian beekeepers who build large barns just for wintering bees. Automated ventilation systems assist in the control of carbon dioxide build-up. | |||
The close relatives of modern honey bees – e.g., ]s and ]s – are also social to some degree, and social behavior is considered to be a trait that predates the origin of the genus. Among the extant members of ''Apis'', the more ] species make single, exposed combs, while the more recently evolved species nest in cavities and have multiple combs, which has greatly facilitated their domestication. | |||
==]== | |||
Like other ] bees, a colony generally contains one breeding female, or "]"; a few thousand males, or "drones"; and a large population of sterile female workers. The female workers mature from nurse bees to become foragers. The foragers die usually when their wings are worn out after approximately 500 miles of flight. Honeybee wings beat at a constant rate of 230 beats per second or 13,800 beats/minute. | |||
===Species=== | |||
The frequency of the wing beats was much higher than expected for an insect of this size. Honey bees make up for carrying heavier loads or for changes in ] by altering the amplitude of their wings and catching more air. This makes the wing muscles work harder, but it does not change the frequency of the wing beats. The science of bee flight remained an unsolved mystery until December of 2005. A study published in Proceedings of the National Academy of Science details the work supervised by Michael Dickinson from ]. | |||
While about 20,000 species of bees exist,<ref name="Nicholls-2015">{{cite web | last=Nicholls | first=Henry | title=The truth about bees | website=BBC | date=15 June 2015 | url=https://www.bbc.com/earth/story/20150615-the-truth-about-bees | access-date=9 July 2020}}</ref> only eight ] of honey bee are recognized, with a total of 43 ], although historically seven to 11 species are recognized:<ref name="Engel-1999">{{cite journal |author=Michael S. Engel |year=1999 |title=The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae: ''Apis'') |journal=] |volume=8 |pages=165–196 |author-link=Michael S. Engel}}</ref> '']'' (the black dwarf honey bee); '']'' (the eastern honey bee); '']'' (the giant honey bee); '']'' (the red dwarf honey bee); '']'' (Koschevnikov's honey bee); '']'' (the Himalayan giant honey bee); '']'' (the western honey bee); and '']'' (the Philippine honey bee).<ref name="Encyclopedia of Life">{{cite web | title=Honey Bees | website=Encyclopedia of Life | url=https://eol.org/pages/104135 | access-date=9 July 2020}}</ref> | |||
Honey bees are the only extant members of the ] Apini. Today's honey bees constitute three ]s: ''Micrapis'' (the dwarf honey bees), ''Megapis'' (the giant honey bee), and ''Apis'' (the western honey bee and its close relatives).<ref name="Engel-1999"/><ref name="Arias-2005">{{cite journal |author1=Maria C. Arias |author2=Walter S. Sheppard |year=2005 |title=Phylogenetic relationships of honey bees (Hymenoptera:Apinae:Apini) inferred from nuclear and mitochondrial DNA sequence data |journal=] |volume=37 |issue=1 |pages=25–35 |doi=10.1016/j.ympev.2005.02.017 |pmid=16182149|bibcode=2005MolPE..37...25A }}<br />{{cite journal |author1=Maria C. Arias |author2=Walter S. Sheppard | year=2005 |title=Corrigendum to "Phylogenetic relationships of honey bees (Hymenoptera:Apinae:Apini) inferred from nuclear and mitochondrial DNA sequence data" |journal=] |volume=40 |issue=1 |page=315 |doi=10.1016/j.ympev.2006.02.002|doi-access=free }}</ref> | |||
The population of a healthy hive in mid-summer can average between 40,000 and 80,000 bees. | |||
The workers cooperate to find food and are widely believed to use a pattern of "dancing" (known as ''the ]'') to communicate with each other. | |||
Most species have historically been cultured or at least exploited for honey and ] by humans indigenous to their native ranges. Only two species have been truly ]: '']'' and '']''. ''A. mellifera'' has been cultivated at least since the time of the building of the ]s, and only that species has been moved extensively beyond its native range.<ref>{{Cite book |last=Clark |first=Michael C. |url=https://books.google.com/books?id=ZPyFDwAAQBAJ&dq=A.+mellifera+has+been+cultivated+at+least+since+the+time+of+the+building+of+the+Egyptian+pyramids%2C+and+only+that+species+has+been+moved+extensively+beyond+its+native+range&pg=PT291 |title=Coexisting on Earth Homo sapiens Quagmire |date=2018-04-03 |publisher=Michael C. Clark |language=en}}</ref> | |||
== Products of the honeybee == | |||
===Pollination=== | |||
''Main article: ] | |||
] | |||
The honeybee's primary commercial value is as a ] of crops. Orchards and fields have grown larger; at the same time ]. In several areas of the world the pollination shortage is compensated by migratory beekeeping, with beekeepers supplying the hives during the crop bloom and moving them after bloom is complete. In many higher latitude locations it is difficult or impossible to winter over enough bees, or at least to have them ready for early blooming plants, so much of the migration is seasonal, with many hives wintering in warmer climates and moving to follow the bloom to higher latitudes. | |||
===''Micrapis''=== | |||
As an example, in ], the pollination of ]s occurs in February, early in the growing season, before local hives have built up their populations. Almond ]s require two hives per ] (2,000 m² per hive) for maximum yield and so the pollination is highly dependent upon the importation of hives from warmer climates. | |||
'']'' and '']'' are small honey bees of southern and southeastern Asia. They make very small, exposed nests in trees and shrubs. Their stings are often incapable of penetrating human skin, so the ] and ]s can be handled with minimal protection. They occur largely ]ally, though they are very distinct ]arily and are probably the result of ], their distribution later converging. | |||
Given that ''A. florea'' is more widely distributed and ''A. andreniformis'' is considerably more aggressive, honey is, if at all, usually harvested from the former only. They are the most ancient extant lineage of honey bees, maybe diverging in the ] (some 40 million years ago or slightly later) from the other lineages, but do not seem to have diverged from each other a long time before the ].<ref name="Arias-2005"/> '']'' have smaller wing spans than its sister species.<ref name="Wongsiri-1997">{{cite journal | last1 = Wongsiri | first1 = S. | display-authors = etal | year = 1997 | title = Comparative biology of Apis andreniformis and Apis florea in Thailand | journal = Bee World | volume = 78 | issue = 1| pages = 23–35 | doi = 10.1080/0005772X.1997.11099328 }}</ref> ''Apis florea'' are also completely yellow with the exception of the scutellum of workers, which is black.<ref name="Wongsiri-1997" /> | |||
===Honey=== | |||
===''Megapis''=== | |||
''Main article: ]'' | |||
Two species are recognized in the subgenus ''Megapis''. They usually build single or a few exposed combs on high tree limbs, on cliffs, and sometimes on buildings. They can be very fierce. Periodically robbed of their honey by human "honey hunters", colonies are easily capable of ] a human being to death if provoked. | |||
*'']'', the giant honey bee, is native and widespread across most of South and Southeast Asia. | |||
Honey is the complex substance made when the nectar and sweet deposits from plants and trees are gathered, modified and stored in the honeycomb by honey bees. Honey is sometimes also gathered by humans from the nests of various ]s. | |||
**''A. d. binghami'', the Indonesian giant honey bee, is classified as the ]n subspecies of the giant honey bee or a distinct species; in the latter case, ''A. d. breviligula'' and/or other lineages would probably also have to be considered species.<ref>{{cite journal |author1=Nathan Lo |author2=Rosalyn S. Gloag |author3=Denis L. Anderson |author4=Benjamin P. Oldroyd |year=2009 |title=A molecular phylogeny of the genus ''Apis'' suggests that the Giant Honey Bee of the Philippines, ''A. breviligula'' Maa, and the Plains Honey Bee of southern India, ''A. indica'' Fabricius, are valid species |journal=] |volume=35 |issue=2 |pages=226–233 |doi=10.1111/j.1365-3113.2009.00504.x|s2cid=84531938 }}</ref> | |||
*'']'', the Himalayan giant honey bee, was initially described as a distinct species. Later, it was included in ''A. dorsata'' as a subspecies<ref name="Engel-1999"/> based on the ], though authors applying a genetic species concept have suggested it should be considered a separate species<ref name="Arias-2005"/> and more recent research has confirmed this classification.<ref name="Kitnya-2020">Kitnya N, Prabhudev MV, Bhatta CP, Pham TH, Nidup T, Megu K, Chakravorty J, Brockmann A, Otis GW (2020) Geographical distribution of the giant honey bee ''Apis laboriosa'' Smith, 1871 (Hymenoptera, Apidae). ZooKeys 951: 67–81. https://doi.org/10.3897/zookeys.951.49855</ref> Essentially restricted to the ], it differs little from the giant honey bee in appearance, but has extensive behavioral ] that enable it to nest in the open at high altitudes despite low ambient temperatures. It is the largest living honey bee. | |||
===''Apis''=== | |||
] | |||
Eastern ''Apis'' species include three or four species, including '']'', '']'', and '']''. The genetics of the western honey bee ('']'') are unclear. | |||
====Koschevnikov's honey bee==== | |||
Koschevnikov's honey bee ('']'') is often referred to in the literature as the "red bee of Sabah"; however, ''A. koschevnikovi'' is pale reddish in ], ], ], but a dark, coppery colour in the ] and ], ].<ref name="Hadisoesilo-2008">{{Cite journal|title = Morphometric analysis and biogeography of Apis koschevnikovi Enderlein (1906)|journal = Apidologie|date = 1 September 2008|issn = 0044-8435|pages = 495–503|volume = 39|issue = 5|doi = 10.1051/apido:2008029|first1 = S.|last1 = Hadisoesilo|first2 = Rika|last2 = Raffiudin|first3 = Wirian|last3 = Susanti|first4 = Tri|last4 = Atmowidi|first5 = Colleen|last5 = Hepburn|first6 = Sarah E.|last6 = Radloff|first7 = Stefan|last7 = Fuchs|first8 = H. Randall|last8 = Hepburn|s2cid = 6605920}}</ref> Its habitat is limited to the tropical evergreen forests of the ], ] and ] and they do not live in tropical evergreen rain forests which extend into ], ], ] and ].<ref name="Hadisoesilo-2008"/> | |||
====Philippine honey bee==== | |||
'']'' is a cavity-nesting species. The species has rust-coloured ], legs, and ], with reddish-tan hair colour that covers most of the body.<ref name="Hadisoesilo-1995">{{cite journal |last1=Hadisoesilo |first1=S. |last2=Otis |first2=G. W. |last3=Meixner |first3=M. |title=Two distinct populations of cavity-nesting honey bees (Hymenoptera: Apidae) in South Sulawesi, Indonesia |journal=Journal of the Kansas Entomological Society |volume=68 |issue=4 |year=1995 |pages=399–407 |jstor=25085613 }}</ref> | |||
====Eastern honey bee==== | |||
'']'', the eastern honey bee proper, is the traditional honey bee of southern and eastern Asia. One of its subspecies, the Indian honey bee ('']''), was ] and kept in hives in a fashion similar to ''A. mellifera'', though on a more limited, regional scale. | |||
It has not been possible yet to resolve its relationship to the Bornean honey bee '']'' and '']'' from the Philippines to satisfaction; some researchers argue that these are indeed distinct species, but that '']'' as defined is still ], consisting of several separate species,<ref name="Arias-2005" /> though other researchers argue ''cerana'' is a single monophyletic species.<ref name="Radloff-2010">{{cite journal |last1=Radloff |first1=Sarah E. |last2=Hepburn |first2=Colleen |last3=Randall Hepburn |first3=H. |last4=Fuchs |first4=Stefan |last5=Hadisoesilo |first5=Soesilawati |last6=Tan |first6=Ken |last7=Engel |first7=Michael S. |last8=Kuznetsov |first8=Viktor |title=Population structure and classification of ''Apis cerana'' |journal=Apidologie |date=15 March 2010 |volume=41 |issue=6 |pages=589–601 |doi=10.1051/apido/2010008|s2cid=32751472 |url=https://hal.archives-ouvertes.fr/hal-00892035/file/hal-00892035.pdf }}</ref> | |||
====Western honey bee==== | |||
{{Main|Apis mellifera}} | |||
].]] | |||
''A. mellifera'', the most common domesticated<ref>{{Cite web|url=http://scientificbeekeeping.com/whats-happening-to-the-bees-part-5-is-there-a-difference-between-domesticated-and-feral-bees/|title=What's Happening To The Bees? – Part 5: Is There A Difference Between Domesticated And Feral Bees?|date=26 June 2014}}</ref> species, was first domesticated before 2600 BC<ref>{{Cite web|url=https://www.fondazioneslowfood.com/en/ark-of-taste-slow-food/egyptian-honeybee/|title=Egyptian honeybee - Arca del Gusto|website=Slow Food Foundation}}</ref> and was the third insect to have its ] mapped. It seems to have originated in eastern tropical ] and spread from there to ] and eastwards into ] to the ] range. It is variously called the European, western, or common honey bee in different parts of the world. Many ] have adapted to the local geographic and climatic environments; in addition, breeds such as the ] have been bred. Behavior, colour, and anatomy can be quite different from one subspecies or even strain to another.<ref name="Reuber-2015"/> | |||
''A. mellifera'' ] is the most enigmatic of all honey bee species. It seems to have diverged from its eastern relatives only during the ]. This would fit the hypothesis that the ancestral stock of cave-nesting honey bees was separated into the western group of East Africa and the eastern group of tropical Asia by ] in the ] and adjacent regions, which caused declines of food plants and trees that provided nest sites, eventually causing ] to cease.<ref name="Reuber-2015">{{cite book |last1=Reuber |first1=Brant |title=21st Century Homestead: Beekeeping |date=21 February 2015 |publisher=lulu.com |isbn=978-1-312-93733-8 |page=116 |edition=First}}</ref> | |||
The diversity of ''A. mellifera'' subspecies is probably the product of a largely ] ] aided by climate and habitat changes during the ]. That the western honey bee has been intensively managed by humans for many millennia – including hybridization and introductions – has apparently increased the speed of its ] and confounded the DNA sequence data to a point where little of substance can be said about the exact relationships of many ''A. mellifera'' subspecies.<ref name="Arias-2005" /> | |||
''Apis mellifera'' is not native to ], so it was not present when the European explorers and colonists arrived. However, other native bee species were kept and traded by indigenous peoples.<ref>{{cite journal | author=Villanueva, Rogel |display-authors=etal | title=Extinction of ''Melipona beecheii'' and traditional beekeeping in the Yucatán peninsula| journal=Bee World| year=2005 | volume=86 | issue=2 | pages=35–41 | doi=10.1080/0005772X.2005.11099651 |s2cid=31943555 }}</ref> In 1622, European colonists brought the ] (''A. m. mellifera'') to the Americas first, followed later by the ] (''A. m. ligustica'') and others. Many of the crops that depend on western honey bees for pollination have also been imported since colonial times. Escaped swarms (known as "wild" honey bees, but actually ]) spread rapidly as far as the ], usually preceding the colonists. Honey bees did not naturally cross the ]; they were transported by the ] pioneers to Utah in the late 1840s, and by ship to ] in the early 1850s.<ref>{{cite web|author=Head RJ|title=A Brief Survey of Ancient Near Eastern Beekeeping; A Final Note|url=http://maxwellinstitute.byu.edu/publications/review/?vol=20&num=1&id=694#_ednref30|date=2008|publisher=The FARMS Review|access-date=16 January 2012|archive-url=https://web.archive.org/web/20130730162629/http://maxwellinstitute.byu.edu/publications/review/?vol=20&num=1&id=694#_ednref30|archive-date=30 July 2013|url-status=dead}}</ref> | |||
] | |||
====Africanized honey bee==== | |||
{{Main|Africanized bee}} | |||
Africanized honey bees (known colloquially as "killer bees") are ]s between European stock and the East African lowland subspecies '']''. They are often more aggressive than European honey bees and do not create as much of a honey surplus, but are more resistant to disease and are better foragers.<ref>{{Cite web|url=http://entnemdept.ufl.edu/creatures/misc/bees/ahb.htm|title=Africanized honey bee – Apis mellifera scutellata Lepeletier|website=entnemdept.ufl.edu|access-date=1 May 2019}}</ref> Accidentally released from quarantine in ], they have spread to North America and constitute a ] in some regions. However, these strains do not overwinter well, so they are not often found in the colder, more northern parts of North America. The original breeding experiment for which the East African lowland honey bees were brought to Brazil in the first place has continued (though not as originally intended). Novel hybrid strains of domestic and re-domesticated Africanized honey bees combine high resilience to tropical conditions and good yields. They are popular among beekeepers in Brazil.<ref>{{Cite web |others=Department of Systematic Biology |title=Africanized Bees |url=https://www.si.edu/spotlight/buginfo/killbee |access-date=2024-10-28 |website=Smithsonian Institution}}</ref> | |||
== Living and fossil honey bees (Apini: ''Apis'') == | |||
'''Tribe Apini Latreille'''<ref>{{cite journal |author=Michael S. Engel, Ismael A. Hinojosa-Díaz & Alexandr P. Rasnitsyn |year=2009 |url=http://susquehannabeekeepers.com/pdfs/A_honey_bee_from_the_Miocene_of_Nevada_and_the_bio.pdf |title=A honey bee from the Miocene of Nevada and the biogeography of ''Apis'' (Hymenoptera: Apidae: Apini) |journal=] |series=4 |volume=60 |issue=3 |pages=23–38 }}</ref> | |||
Genus ''Apis'' Linnaeus (''sensu lato'') | |||
*''henshawi'' species group (†''Priorapis'' Engel, †''Synapis'' Cockerell) | |||
***†''A. vetusta'' Engel | |||
***†''A. henshawi'' Cockerell | |||
***†''A. petrefacta'' (Říha) | |||
***†''A. miocenica'' Hong | |||
***†''A. "longtibia"'' Zhang | |||
***†''A.'' "Miocene 1" | |||
*''armbrusteri'' species group (†''Cascapis'' Engel) | |||
***†''A. armbrusteri'' Zeuner | |||
***†''A. nearctica'', species novus | |||
*''florea'' species group (''Micrapis'' Ashmead) | |||
***''A. florea'' Fabricius | |||
***''A. andreniformis'' Smith | |||
*''dorsata'' species group (''Megapis'' Ashmead) | |||
***†''A. lithohermaea'' Engel | |||
***''A. dorsata'' Fabricius | |||
***''A. laboriosa'' Smith | |||
*''mellifera'' species group (''Apis'' Linnaeus ''sensu stricto'') | |||
**''mellifera'' subgroup | |||
***''A. mellifera'' Linnaeus (''Apis'' Linnaeus ''sensu strictissimo'') | |||
**''cerana'' subgroup (''Sigmatapis'' Maa) | |||
***''A. cerana'' Fabricius | |||
***''A. nigrocincta'' Smith | |||
***''A. koschevnikovi'' Enderlein | |||
==Life cycle== | |||
As in a few other types of ] bees, a colony generally contains one ], a female; seasonally up to a few thousand ]s, or males;<ref name="Gould-1995">{{cite book |author1=James L. Gould |author2=Carol Grant Gould |title=The Honey Bee |publisher=Scientific American Library |year=1995 |page=19 |isbn=978-0-7167-6010-8 }}</ref> and tens of thousands of female ]s. Details vary among the different species of honey bees, but common features include: | |||
#Eggs are laid singly in a cell in a wax ], produced and shaped by the worker bees. Using her ], the queen can choose to fertilize the egg she is laying, usually depending on which cell she is laying it into. Drones develop from unfertilised eggs and are ], while females (queens and worker bees) develop from fertilised eggs and are ]. Larvae are initially fed with ] produced by worker bees, later switching to honey and pollen. The exception is a larva fed solely on royal jelly, which will develop into a queen bee. The larva undergoes several moultings before spinning a cocoon within the cell, and ]. | |||
#Young worker bees, sometimes called "nurse bees", clean the hive and feed the larvae. When their royal jelly-producing glands begin to ], they begin building comb cells. They progress to other within-colony tasks as they become older, such as receiving nectar and pollen from foragers, and guarding the hive. Later still, a worker takes her first orientation flights and finally leaves the hive and typically spends the remainder of her life as a forager. | |||
#Worker bees cooperate to find food and use a pattern of "dancing" (known as the ] or waggle dance) to communicate information regarding resources with each other; this dance varies from species to species, but all living species of ''Apis'' exhibit some form of the behavior. If the resources are very close to the hive, they may also exhibit a less specific dance commonly known as the "round dance". | |||
#Honey bees also perform ]s, which recruit receiver bees to collect nectar from returning foragers. | |||
#Virgin queens go on mating flights away from their home colony to a ] and mate with multiple drones before returning. The drones die in the act of mating. Queen honey bees do not mate with drones from their home colony. | |||
#Colonies are established not by solitary queens, as in most bees, but by groups known as "]s", which consist of a mated queen and a large contingent of worker bees. This group moves ''en masse'' to a nest site which was scouted by worker bees beforehand and whose location is communicated with a special type of dance. Once the swarm arrives, they immediately construct a new wax comb and begin to raise new worker brood. This type of nest founding is not seen in any other living bee genus, though several groups of ] wasps also found new nests by swarming (sometimes including multiple queens). Also, ]s will start new nests with large numbers of worker bees, but the nest is constructed before a queen is escorted to the site, and this worker force is not a true "swarm". | |||
===Gallery=== | |||
<gallery mode="packed"> | |||
File:Bienenwabe mit Eiern 39.jpg|Honey bee eggs shown in opened wax cells | |||
File:Bienenwabe mit Eiern und Brut 5.jpg|Eggs and larvae | |||
File:Drohnenpuppen 79b.jpg|Drone pupae | |||
File:Birth of black bee (Apis mellifera mellifera).jpg|Emergence of a European dark honey bee (''A. m. mellifera'') | |||
</gallery> | |||
===Winter survival=== | |||
In cold climates, honey bees stop flying when the temperature drops below about {{convert|10|C|F}} and crowd into the central area of the hive to form a "winter cluster". The worker bees huddle around the queen bee at the center of the cluster, shivering to keep the center between {{convert|27|C|F}} at the start of winter (during the broodless period) and {{convert|34|C|F}} once the queen resumes laying. The worker bees rotate through the cluster from the outside to the inside so that no bee gets too cold. The outside edges of the cluster stay at about {{convert|8-9|C|F}}. The colder the weather is outside, the more compact the cluster becomes. During winter, they consume their stored honey to produce body heat. The amount of honey consumed during the winter is a function of winter length and severity, but ranges in temperate climates from {{convert|15 to 50|kg|lb}}.<ref>{{cite web|url=http://www.bees-online.com/Winter.htm|title=What do bees do in the winter?|access-date=12 March 2016|url-status=dead|archive-url=https://web.archive.org/web/20160304175741/http://www.bees-online.com/Winter.htm|archive-date=4 March 2016}}</ref> In addition, certain bees, including the ] as well as '']'', are known to engage in effective methods of nest thermoregulation during periods of varying temperature in both summer and winter. During the summer, however, this is achieved through fanning and water evaporation from water collected in various fields.<ref>Oldroyd, Benjamin P.; Wongsiri, Siriwat (2006). ''Asian Honey Bees (Biology, Conservation, and Human Interactions)''. Cambridge, Massachusetts and London, England: Harvard University Press.{{ISBN|0674021940}}.</ref><ref>{{cite web |title=Conservation Work for Honey Bees |url=https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/plantsanimals/pollinate/?cid=stelprdb1263263 |website=USDA |access-date=24 November 2021}}</ref> | |||
<!-- Question: This paragraph is true for European honey bees. Is it applicable on this page?--> | |||
==Pollination== | |||
{{Main|Pollination management|List of crop plants pollinated by bees}} | |||
] | |||
] | |||
Of all the honey bee species, only ''A. mellifera'' has been used extensively for commercial pollination of fruit and vegetable crops. The scale of these pollination services is commonly measured in the billions of dollars, credited with adding about 9% to the value of crops across the world. However, despite contributing substantially to crop pollination, there is debate about the potential spillover to natural landscapes and competition between managed honey bees and many of the ~20,000 species of wild pollinators.<ref name="Geldmann-2018">{{cite journal |last1=Geldmann |first1=Jonas |last2=González-Varo|first2=Juan P. |title=Conserving honey bees does not help wildlife |journal=Science |volume=359 |issue=6374 |year=2018 |pages=392–393 |doi=10.1126/science.aar2269|pmid=29371456 |bibcode=2018Sci...359..392G |s2cid=206665383 }}</ref> | |||
Species of ''Apis'' are generalist floral visitors, and pollinate many species of flowering plants, but because of their "generalized" nature, they often do so inefficiently. Without specialized adaptations for specific flowers, their ability to reach pollen and nectar is often limited. This combined with their behavioural flexibility may be why they are the most commonly documented ].<ref>{{Cite journal |last1=Hargreaves |first1=Anna L. |last2=Harder |first2=Lawrence D. |last3=Johnson |first3=Steven D. |date=2009 |title=Consumptive emasculation: the ecological and evolutionary consequences of pollen theft |url=https://onlinelibrary.wiley.com/doi/10.1111/j.1469-185X.2008.00074.x |journal=Biological Reviews |language=en |volume=84 |issue=2 |pages=259–276 |doi=10.1111/j.1469-185X.2008.00074.x|pmid=19382932 |s2cid=205599079 }}</ref> Indeed, for plant species with more specialized pollinators, experiments show that increased honeybee visitation can actually reduce pollination, both where honey bees are non-native<ref>{{Cite journal |last1=do Carmo |first1=Roselaini Mendes |last2=Franceschinelli |first2=Edivani Villaron |last3=da Silveira |first3=Fernando Amaral |date=2004 |title=Introduced Honeybees (Apis mellifera) Reduce Pollination Success without Affecting the Floral Resource Taken by Native Pollinators |url=https://www.jstor.org/stable/30043128 |journal=Biotropica |volume=36 |issue=3 |pages=371–376 |doi=10.1111/j.1744-7429.2004.tb00329.x |jstor=30043128 |bibcode=2004Biotr..36..371D |s2cid=86316179 |issn=0006-3606}}</ref> and even where they are native.<ref>{{Cite journal |last1=Hargreaves |first1=Anna L. |last2=Harder |first2=Lawrence D. |last3=Johnson |first3=Steven D. |date=2010 |title=Native pollen thieves reduce the reproductive success of a hermaphroditic plant, Aloe maculata |url=http://doi.wiley.com/10.1890/09-0792.1 |journal=Ecology |language=en |volume=91 |issue=6 |pages=1693–1703 |doi=10.1890/09-0792.1 |pmid=20583711 |bibcode=2010Ecol...91.1693H |issn=0012-9658}}</ref> What's more, their tendency to visit all species in a given area means that the pollen they carry for any one species is often very diluted. As such, they can provide some pollination to many plants, but most plants have some native pollinator that is more effective at pollinating that species.<ref> {{Webarchive|url=https://web.archive.org/web/20180919094322/https://www.decodedscience.org/plants-pollinators-and-the-price-of-almonds/28797/2 |date=2018-09-19 }}<br />"Flowers set more seeds when visited by wild insects, and the more plants that were visited by wild insects, the more likely they were to set fruit. In some places the researchers considered, wild insects were pollinating most of the plants despite rented honey bees being present."</ref> When honey bees are present as an invasive species in an area, they compete for flowers with native pollinators, which can actually push out the native species.<ref><br />The problem is that there are only so many flowers and places to nest. And once the numbers of honeybees have been artificially inflated (commercial-scale beekeeping would not exist without humans) the increased competition for these resources can push native non-''Apis'' pollinators out of their natural habitats. Honeybees also spread exotic plants and transmit pathogens, both of which have been shown to harm other pollinators.</ref> | |||
===Claims of human dependency=== | |||
]s have been described as essential to human food production, leading to claims that without their pollination humanity would starve or die out.<ref>{{Cite web|url=https://www.elitedaily.com/news/world/humans-need-bees-to-survive/755737|title=If All The Bees In The World Die, Humans Will Not Survive|website=Elite Daily|date=15 September 2014 }}</ref><ref><br />"A world without honeybees would also mean a world without fruits, vegetables, nuts, and seeds."</ref> Apples, blueberries, and cherries, for example, are 90 percent dependent on honeybee pollination.<ref name="AgBioResearch-2018">{{cite web | title=Supporting pollination in agriculture | website=AgBioResearch, ] | date=2018-10-01 | url=https://www.canr.msu.edu/news/supporting-pollination-in-agriculture | access-date=2022-07-09}}</ref> ] is sometimes misquoted as saying "If bees disappeared off the face of the earth, man would only have four years left to live"''.''<ref><br />"First, the easy part: "I've never seen anything definitively link the quote to Einstein," says Mark Dykes, the chief inspector for Texas Apiary Inspection Service. Quote checkers like this one, and this one agree. But debunking its message? That's more complicated."</ref> Einstein did not say this and there is no science to support this prediction.<ref><br />"Albert Einstein is sometimes quoted as saying, "If the bee disappears from the surface of the earth, man would have no more than four years to live." It's highly unlikely that Einstein said that. For one thing, there's no evidence of him saying it. For another, the statement is hyperbolic and wrong (and Einstein was rarely wrong)."</ref> | |||
Many important crops need no insect pollination at all. The ten most important crops,<ref>{{Cite web|url=https://www.businessinsider.com/10-crops-that-feed-the-world-2011-9|title=The 10 Most Important Crops In The World|first=Eric|last=Goldschein|website=Business Insider}}</ref> comprising 60% of all human food energy,<ref>{{Cite web|url=https://www.worldatlas.com/articles/most-important-staple-foods-in-the-world.html|title=What Are the World's Most Important Staple Foods?|website=WorldAtlas|date=7 June 2019}}</ref> fall into this category: ]s are sterile and propagated by cuttings, as are ]; ]es, ]s, and ]es are root vegetables propagated by ]s; ]s are ]; and ], ], ], and ], are ], as are most other grasses.<ref>{{Cite book| last=Gibson | first=D.J. | title=Grasses and grassland ecology | year=2009 | location=Oxford | publisher=Oxford University Press | page=82 | isbn=9780198529187 }}</ref> | |||
No crops originating in the ] depend on the western honey bee (''Apis mellifera'') at all, as the bee is an ] brought over with colonists in the last few centuries.<ref>{{Cite web|url=https://www.usgs.gov/faqs/are-honey-bees-native-north-america|title=Are honey bees native to North America?|website=USGS|date=7 May 2024}}</ref> ]es, ]s, ], and all other New World crops evolved with native pollinators such as ]s, ]s, and other native bees.{{Citation needed|date=August 2021}} The ]s mentioned by Jefferson{{Clarify|date=August 2021}} are distant relatives of the honey bees, in the genus '']''.{{Citation needed|date=August 2021}} | |||
Still, honey bees are considered "crucial to the food supply, pollinating more than 100 of the crops we eat, including nuts, vegetables, berries, citrus and melons."<ref name="PBS News-2023">{{Cite web|url=https://www.pbs.org/newshour/economy/struggling-beekeepers-stabilize-u-s-honeybee-population-after-nearly-half-of-colonies-died-last-year|title=Struggling beekeepers stabilize U.S. honeybee population after nearly half of colonies died last year|date=June 22, 2023|website=PBS News}}</ref> The ] reports "Three-fourths of the world’s flowering plants and about 35 percent of the world’s food crops depend on animal pollinators to reproduce"<ref>{{Cite web|url=https://www.usda.gov/peoples-garden/pollinators|title=The Importance of Pollinators | USDA|website=www.usda.gov}}</ref> and honey bees "pollinate 80 percent of all flowering plants, including more than 130 types of fruits and vegetables."<ref>{{Cite web|url=https://www.farmers.gov/blog/value-birds-and-bees|title=The Value of Birds and Bees|date=June 22, 2020|website=Farmers.gov}}</ref> | |||
==Nutrition== | |||
] flower|alt=The foraging behavior of a honeybee]] | |||
Honey bees obtain all of their nutritional requirements from a diverse combination of pollen and nectar. Pollen is the only natural protein source for honey bees. Adult worker honey bees consume 3.4–4.3 mg of pollen per day to meet a dry matter requirement of 66–74% protein.<ref name="Brodschneider-2010">{{Cite journal |last1=Brodschneider |first1=Robert |last2=Crailsheim|first2=Karl|date=1 May 2010 |title=Nutrition and health in honey bees |journal=Apidologie |language=en |volume=41|issue=3|pages=278–294|doi=10.1051/apido/2010012|s2cid=40046635 |issn=0044-8435|url=https://hal.archives-ouvertes.fr/hal-00892087/file/hal-00892087.pdf }}</ref> The rearing of one larva requires 125-187.5 mg pollen or 25–37.5 mg protein for proper development.<ref name="Brodschneider-2010" /> Dietary proteins are broken down into amino acids, ten of which are considered essential to honey bees: methionine, tryptophan, arginine, lysine, histidine, phenylalanine, isoleucine, threonine, leucine, and valine. Of these amino acids, honey bees require highest concentrations of leucine, isoleucine, and valine, however elevated concentrations of arginine and lysine are required for brood rearing.<ref name="Anderson-1976">{{Cite journal|last1=Anderson|first1=Leroy M|last2=Dietz|first2=A.|date=1976|title=Pyridoxine Requirement of the Honey Bee (Apis mellifera) For Brood Rearing|url=https://hal.archives-ouvertes.fr/hal-00890394/document|journal=Apidologie|doi=10.1051/apido:19760105|volume=7|pages=67–84|doi-access=free}}</ref> In addition to these amino acids, some B vitamins including biotin, folic acid, nicotinamide, riboflavin, thiamine, pantothenate, and most importantly, pyridoxine are required to rear larvae. Pyridoxine is the most prevalent B vitamin found in royal jelly and concentrations vary throughout the foraging season with lowest concentrations found in May and highest concentrations found in July and August. Honey bees lacking dietary pyridoxine were unable to rear brood.<ref name="Anderson-1976" /> | |||
] | |||
Pollen is also a lipid source for honey bees ranging from 0.8% to 18.9%.<ref name="Brodschneider-2010" /> Lipids are metabolized during the brood stage for precursors required for future biosynthesis. Fat-soluble vitamins A, D, E, and K are not considered essential but have shown to significantly improve the number of brood reared.<ref name="Brodschneider-2010" /> Honey bees ingest phytosterols from pollen to produce 24-methylenecholesterol and other sterols as they cannot directly synthesize cholesterol from phytosterols. Nurse bees have the ability to selectively transfer sterols to larvae through brood food.<ref name="Brodschneider-2010" /> | |||
Nectar is collected by foraging worker bees as a source of water and carbohydrates in the form of sucrose. The dominant monosaccharides in honey bee diets are fructose and glucose but the most common circulating sugar in hemolymph is trehalose which is a disaccharide consisting of two glucose molecules.<ref>{{Cite book|title=Physiological Ecology: How Animals Process Energy, Nutrients, and Toxins|last1=Karasov|first1=William H.|last2=Martinez del Rio|first2=Carlos|publisher=Princeton|year=2008|pages=63–66}}</ref> Adult worker honey bees require 4 mg of utilizable sugars per day and larvae require about 59.4 mg of carbohydrates for proper development.<ref name="Brodschneider-2010" /> | |||
Honey bees require water to maintain osmotic homeostasis, prepare liquid brood food, and to cool the hive through evaporation. A colony's water needs can generally be met by nectar foraging as it has high water content. Occasionally on hot days or when nectar is limited, foragers will collect water from streams or ponds to meet the needs of the hive.<ref>{{Cite journal|last=Kuhnholz|first=Susanne|date=1997|title=The Control of Water Collection in Honey Bee Colonies|journal=Behavioral Ecology and Sociobiology|doi=10.1007/s002650050402|volume=41|issue=6|pages=407–422|bibcode=1997BEcoS..41..407K |s2cid=41311766}}</ref> | |||
==Beekeeping== | |||
{{Main|Beekeeping}} | |||
] from a ]. The modular design allows for easier management and honey harvesting.]] | |||
].]] | |||
] inspects a well-developed jumbo frame hive.]] | |||
] | |||
The only domesticated species of honey bee are ''A. mellifera'' and '']'', and they are often maintained, fed, and transported by beekeepers. In Japan, where ''A. mellifera'' is vulnerable to local hornets and disease, the Japanese honey bee '']'' is used in its place. Modern hives also enable beekeepers to transport bees, moving from field to field as the crop needs pollinating and allowing the beekeeper to charge for the pollination services they provide, revising the historical role of the self-employed beekeeper, and favoring large-scale commercial operations. Bees of various types other than honey bees are also domesticated and used for pollination or other means around the world, including '']'' in India, the ] for tree nut and fruit pollination in the United States, and a number of species of '']'' (bumblebees) for pollination in various regions globally, such as ]es, which are not effectively pollinated by honey bees.<ref>{{Cite web|url=https://www.biobestgroup.com/en/biobest/pollination/things-to-know-about-bumblebees-7052/species-6674/|title=Bumblebee species | Biobest|website=www.biobestgroup.com}}</ref> | |||
===Colony collapse disorder=== | |||
{{Main|Colony collapse disorder}} | |||
Primarily in places where western honey bees were imported by humans, periodic collapses in western honey bee populations have occurred at least since the late 19th century.<ref>{{Cite news|url=https://www.megabeepestcontrol.com/wp-content/uploads/2024/03/Colony-Collapse-Disorder-The-Vanishing-Honeybee-Apis-Mellifera.pdf|title=Colony Collapse Disorder: The Vanishing Honeybee (Apis Mellifera)|date=12 March 2011|work=CU Scholar|access-date=26 March 2024|language=en-US}}</ref> | |||
However, as humans continued to manipulate the western honey bee and deliberately transferred them on a global scale, diseases simultaneously spread and harmed managed colonies. Colony losses have occurred periodically throughout history. Fungus, mites, and starvation have all been thought to be the cause of the deaths. Limited occurrences resembling CCD were documented as early as 1869.<ref>{{cite news|author1=Robyn M. Underwood |author2=Dennis van Engelsdorp |title = Colony Collapse Disorder: Have We Seen This Before?|url=http://ento.psu.edu/pollinators/publications/underwood | publisher = The Pennsylvania State University, Department of Entomology|access-date = 2010-05-02}}</ref><ref>{{cite news|url=http://www.cosmosmagazine.com/node/1087?page=1|title=Mystery of the dying bees|author=Benjamin Lester|work=] |date=7 March 2007|url-status=dead|archive-url=https://web.archive.org/web/20080324131409/http://www.cosmosmagazine.com/node/1087?page=1|archive-date=24 March 2008}}</ref> Colony collapses were called "May Disease" in Colorado in 1891 and 1896.<ref>{{cite journal|title=Colony Collapse Disorder: A Descriptive Study|author=Dennis vanEngelsdorp|author2= Jay D. Evans|author3=Claude Saegerman|author4=Chris Mullin|author5=Eric Haubruge|author6=Bach Kim Nguyen|author7=Maryann Frazier|author8=Jim Frazier|author9=Diana Cox-Foster|author10=Yanping Chen|author11=Robyn Underwood|author12=David R. Tarpy|author13=Jeffery S. Pettis|url=https://nature.berkeley.edu/garbelottoat/wp-content/uploads/vanengelsdorp2009.pdf|journal=PLOS ONE|date=August 2009 | volume=4 | issue=8|pages=e6481 |doi=10.1371/journal.pone.0006481 |doi-access=free |pmid=19649264 |pmc=2715894 |bibcode=2009PLoSO...4.6481V }}</ref> | |||
Starting in the first decade of the 21st century, abnormally high die-offs (30–70% of hives) of western honey bee colonies have occurred in North America. This has been dubbed "colony collapse disorder" (CCD) and was at first unexplained.<ref>{{cite journal|last1=Bryony|first1=Bonning|title=Honey Bee Disease Overview|journal=Journal of Invertebrate Pathology|date=11 November 2009|volume=103|pages=S2-4|doi=10.1016/j.jip.2009.07.015 |pmid=19909974}}</ref> It seems to be caused by a combination of factors rather than a single ] or ], possibly including ] pesticides<ref>{{cite news|last1=McDonald-Gibson|first1=Charlotte|title='Victory for bees' as European Union bans neonicotinoid pesticides blamed for destroying bee population|url=https://www.independent.co.uk/environment/nature/victory-for-bees-as-european-union-bans-neonicotinoid-pesticides-blamed-for-destroying-bee-population-8595408.html|newspaper=The Independent|access-date=2 July 2014}}</ref> or ].<ref>{{cite web|title=Colony Collapse Disorder |url=http://www.beeologics.com/colony-health/colony-collapse-disorder/ |archive-url=https://web.archive.org/web/20130206024748/http://www.beeologics.com/colony-health/colony-collapse-disorder/ |url-status=dead |archive-date=6 February 2013 |website=Beeologics |access-date=23 October 2014 }}</ref> | |||
A survey by the ] and ] published in 2023 found the number of United States honeybee colonies "remained relatively stable" although 48% of colonies were lost in the year that ended April 1, 2023, with a 12-year average annual mortality rate of 39.6%. The previous year (2021-2022) the loss was 39% and the 2020-2021 loss was 50.8%. Beekeepers told the surveying scientists that 21% loss over the winter is acceptable and more than three-fifths of beekeepers surveyed said their losses were higher than that in 2022-2023.<ref name="PBS News-2023"/> | |||
=== Parasites === | |||
{{for| parasites affecting Apis cerana |Apis cerana#Pathogens and parasites affecting Apis cerana}} | |||
====Acarapis woodi==== | |||
'']'' (or "tracheal mites") are parasitic mites which live and reproduce in adult bees' tracheae, or respiratory tubes, piercing the tube walls with their mouthparts to feed on haemolymph. To infest new hosts, the mites must find newly emerged bees; after three days, the bristles (setae) guarding the ] are firm enough to prevent the mites' entry into the tracheae. Mite infestations are known as acarine, and have been called "Isle of Wight disease".<ref>{{cite web|url=http://www.sel.barc.usdj.gov/acari/content/trachealmites.html |title="Tracheal mites" Tarsonemidae |publisher=], ] |date=February 18, 2005 |accessdate=March 10, 2011 |url-status=dead |archiveurl=https://web.archive.org/web/20110517030353/http://www.sel.barc.usda.gov/acari/content/trachealmites.html |archivedate=May 17, 2011 }}</ref> | |||
====''Galleria mellonella''==== | |||
Larval stages of the moth '']'' parasitize both wild and cultivated honey bees, in particular ''Apis mellifera'' and ''Apis cerana''. Eggs are laid within the hive, and the ]e that hatch tunnel through and destroy the honeycombs that contain bee larva and their honey stores. The tunnels they create are lined with silk, which entangles and starves emerging bees. Destruction of honeycombs also result in honey leaking and being wasted. Both ''G. mellonella'' adults and larvae are possible vectors for pathogens that can infect bees, including the ] and the ].<ref name="Kwadha-2017">{{Cite journal|last1=Kwadha|first1=Charles A.|last2=Ong'amo|first2=George O.|last3=Ndegwa|first3=Paul N.|last4=Raina|first4=Suresh K.|last5=Fombong|first5=Ayuka T.|date=9 June 2017|title=The Biology and Control of the Greater Wax Moth, Galleria mellonella|journal=Insects|language=en|volume=8|issue=2|pages=61|doi=10.3390/insects8020061|pmid=28598383|pmc=5492075|doi-access=free}}</ref> | |||
To manage the mite, temperature treatments are possible, but also distorts wax of the honeycombs. Chemical fumigants, particularly CO<sub>2</sub>, are also used.<ref name="Kwadha-2017" /> | |||
====''Varroa'' mites==== | |||
] are arguably the biggest threat to honey bees in the United States.<ref name="PBS News-2023"/> These mites invade hives and reproduce by laying eggs on pupa. The hatching mites eat away at the pupa, causing deformities as well as spreading disease. If not detected and treated early on, the mite population may increase to such an extent that the hive will succumb to the diseases and deformities caused by the mites. It was widely believed that the mites drank the blood of bees. However, a 2018 study showed that they actually feed on the fat body tissue of live bees, not the blood. | |||
Mite treatment is accomplished by several methods, including treatment strips and acid vaporization. | |||
==Bee products== | |||
===Honey=== | |||
{{Main|Honey}} | |||
Honey is the complex substance made when bees ingest nectar, process it, and store the substance into honey combs.<ref name="Crane-1990">{{cite journal | author= Crane E| title = Honey from honeybees and other insects | journal = Ethology Ecology & Evolution | volume = 3 | issue = sup1 | pages = 100–105 | year = 1990 | doi = 10.1080/03949370.1991.10721919| author-link = Eva Crane }}</ref> All living species of ''Apis'' have had their honey gathered by indigenous peoples for consumption. ''A. mellifera'' and ''A. cerana'' are the only species that have had their honey harvested for commercial purposes. | |||
===Beeswax=== | ===Beeswax=== | ||
{{Main|Beeswax}} | |||
Worker bees of a certain age secrete ] from a series of exocrine glands on their abdomens.<ref name="Sanford-1976">{{cite journal |last1=Sanford |first1=M.T. |last2=Dietz |first2=A. |year=1976 |title=The fine structure of the wax gland of the honey bee (Apis mellifera L.). |journal=Apidologie |volume=7 |issue=3 |pages=197–207 |doi=10.1051/apido:19760301|doi-access=free }}</ref> They use the wax to form the walls and caps of the comb. As with honey, beeswax is gathered by humans for various purposes such as candle making, waterproofing, soap and cosmetics manufacturing, pharmaceuticals, art, furniture polish and more.<ref>{{Cite news|url=https://www.beeculture.com/wax-rendering/|title=Wax Rendering {{!}} Bee Culture|date=23 March 2016|work=Bee Culture|access-date=26 October 2018|language=en-US}}</ref> | |||
''Main article: ]'' | |||
===Bee bread=== | |||
Worker bees of a certain age will secrete beeswax from a series of glands on their abdomen. They use the wax to form the walls and caps of the comb. When honey is harvested, the wax can be gathered to be used in various wax products like ]s and ]. | |||
{{Main|Bee pollen}} | |||
Bees collect ] in their ]s and carry it back to the hive.<ref>{{cite book |author=Gillott, Cedric |title=Entomology |publisher=Springer |year=1995 |page=79}}</ref> | |||
Worker bees combine pollen, honey and glandular secretions and allow it to ferment in the comb to make bee bread. The fermentation process releases additional nutrients from the pollen and can produce antibiotics and fatty acids which inhibit spoilage.<ref>{{cite journal |last1=Anderson |first1=Kirk E. |last2=Carroll |first2=Mark J. |last3=Sheehan |first3=Tim |last4=Lanan |first4=Michele C. |last5=Mott |first5=Brendon M. |last6=Maes |first6=Patrick |last7=Corby-Harris |first7=Vanessa |date=5 November 2014 |title=Hive-stored pollen of honey bees: many lines of evidence are consistent with pollen preservation, not nutrient conversion |journal=Molecular Ecology |volume=23 |issue=23 |pages=5904–5917 |doi=10.1111/mec.12966 |pmc=4285803 |pmid=25319366|bibcode=2014MolEc..23.5904A }}</ref> Bee bread is eaten by ] (younger workers) which produce the protein-rich royal jelly needed by the queen and developing larvae in their hypopharyngeal glands. | |||
===Pollen=== | |||
In the hive, pollen is used as a ] source necessary during brood-rearing. In certain environments, excess pollen can be collected from the hives of ''A. mellifera'' and ''A. cerana''. The product is used as a health supplement. It has been used with moderate success as a source of pollen for ]. | |||
''Main article: ]'' | |||
===Bees as food=== | |||
Bees collect pollen in the ] and carry it back to the hive. In the hive, pollen is used as a ] source necessary during brood-rearing. In certain environments, excess pollen can be collected from the hive. It is often eaten as a health supplement. | |||
{{Main|Bee brood#As food}} | |||
Bee brood'' ''– the eggs, larvae or ]e of honey bees'' ''– is nutritious and seen as a delicacy in countries such as Indonesia,<ref name="Haris-2013">{{cite web |last1=Haris |first1=Emmaria |title=Sensasi Rasa Unik Botok Lebah yang Menyengat (Unique taste sensation botok with stinging bees) |url=http://www.sayangi.com/gayahidup1/kuliner/read/12669/sensasi-rasa-unik-botok-lebah-yang-menyengat |publisher=Sayangi.com |access-date=14 February 2018 |language=id |date=6 December 2013 |archive-url=https://web.archive.org/web/20150622203413/http://www.sayangi.com/gayahidup1/kuliner/read/12669/sensasi-rasa-unik-botok-lebah-yang-menyengat |archive-date=22 June 2015 |url-status=dead }}</ref> Mexico, Thailand, and many African countries; it has been consumed since ancient times by the Chinese and Egyptians.{{efn|The Mayans kept and collected honey and brood, but from stingless social bees such as '']'', not from ''Apis'' honeybees.<ref>{{cite magazine|last1=Pearson|first1=Gwen|title=Women Work to Save Native Bees of Mexico|url=https://www.wired.com/2014/03/women-work-save-native-bees-mexico/|magazine=Wired|access-date=15 May 2018|date=3 May 2014}}</ref>}}<ref name="UN FAO-2016">{{cite web|url=http://teca.fao.org/read/8775|title=How to collect drone larvae from the beehive|publisher=Home technologies and practices for small agricultural producers, UN Food and Agriculture Organization|date=29 August 2016|access-date=13 February 2018|archive-url=https://web.archive.org/web/20180213135222/http://teca.fao.org/read/8775|archive-date=13 February 2018|url-status=dead}}</ref><ref name="Holland-2013">{{cite web |url=http://news.nationalgeographic.com/news/2013/13/130514-edible-insects-entomophagy-science-food-bugs-beetles/ |archive-url=https://web.archive.org/web/20130606223425/http://news.nationalgeographic.com/news/2013/13/130514-edible-insects-entomophagy-science-food-bugs-beetles |url-status=dead |archive-date=June 6, 2013 |title=U.N. Urges Eating Insects: 8 Popular Bugs to Try |author=Holland, Jennifer |date=14 May 2013 |work=National Geographic}}</ref> | |||
Adult wild honeybees are also consumed as a food in parts of ], including ]. According to a worker at a Yunnan-based specialty restaurant, the bees are best served "deep-fried with salt and pepper", and they are "naturally sweet and tasty". Kellie Schmitt of ] described the dish as one of "]'s weirdest foods".<ref name="Schmitt-2011">{{cite news|last=Schmitt|first=Kellie|date=26 December 2011|title=Shanghai's weirdest foods|newspaper=CNN|url=http://travel.cnn.com/shanghai/eat/shanghais-weird-eats-779548|url-status=dead|archiveurl=https://web.archive.org/web/20130328112430/http://travel.cnn.com/shanghai/eat/shanghais-weird-eats-779548|archivedate=28 March 2013}}</ref> | |||
===Propolis=== | ===Propolis=== | ||
{{Main|Propolis}} | |||
Propolis is a resinous mixture collected by honey bees from tree buds, sap flows or other botanical sources, which is used as a sealant for unwanted open spaces in the hive.<ref>{{cite journal |last1=Simone-Finstrom |first1=Michael |last2=Spivak |first2=Marla |doi=10.1051/apido/2010016 |title=Propolis and bee health: The natural history and significance of resin use by honey bees |journal=Apidologie |volume=41 |issue=3 |pages=295–311 |date=May–June 2010|doi-access=free |hdl=11299/182451 |hdl-access=free }}</ref> Propolis may cause severe ]s and have ] with ]s in some individuals.<ref>{{cite web|url=https://www.nlm.nih.gov/medlineplus/druginfo/natural/390.html|title=Propolis|publisher=U.S. National Library of Medicine |date= 28 July 2022|accessdate=5 February 2023}}</ref> Propolis is also used in wood finishes on ]s.<ref>{{cite journal |author=Gambichler T |author2=Boms S |author3=Freitag M |title=Contact dermatitis and other skin conditions in instrumental musicians |journal=BMC Dermatol. |volume=4|pages=3 |date=April 2004 |pmid=15090069 |pmc=416484 |doi=10.1186/1471-5945-4-3 |doi-access=free }}</ref> | |||
''Main article: ]'' | |||
===Royal jelly=== | |||
] (or bee glue) is created from resins, balsams and ]s. Honeybees use propolis to seal cracks in the hive. Propolis is also sold for its reported health benefits. Holistic therapists often utilize propolis for the relief of many inflammations, viral diseases, ulcers, superficial burns or scalds, in conjunction with acupuncture, ayurveda or homeopathy. Propolis is also believed to promote heart health and reduce the chances of cataracts. | |||
{{Main|Royal jelly}} | |||
Royal jelly is a honey bee secretion used to nourish the larvae.<ref>{{cite journal | last1=Jung-Hoffmann | first1=L | year=1966 | title=Die Determination von Königin und Arbeiterin der Honigbiene | journal=Z Bienenforsch | volume=8 | pages=296–322 }}</ref> It is marketed for its alleged but unsupported claims of health benefits.<ref>{{cite journal | journal = EFSA Journal | date = 2011 | volume = 9 | issue = 4| pages = 2083 | doi = 10.2903/j.efsa.2011.2083 | title = Scientific Opinion on the substantiation of health claims related to: anthocyanidins and proanthocyanidins (ID 1787, 1788, 1789, 1790, 1791); sodium alginate and ulva (ID 1873); vitamins, minerals, trace elements and standardised ginseng G115 extract (ID 8, 1673, 1674); vitamins, minerals, lysine and/or arginine and/or taurine (ID 6, 1676, 1677); plant-based preparation for use in beverages (ID 4210, 4211); Carica papaya L. (ID 2007); "fish protein" (ID 651); acidic water-based, non-alcoholic flavoured beverages containing calcium in the range of 0.3 to 0.8 mol per mol of acid with a pH not lower than 3.7 (ID 1170); royal jelly (ID 1225, 1226, 1227, 1228, 1230, 1231, 1326, 1328, 1329, 1982, 4696, 4697); foods low in cholesterol (ID 624); and foods low in trans-fatty acids (ID 672, 4333) pursuant to Article 13(1) of Regulation (EC) No 1924/2006|author=EFSA Panel on Dietetic Products, Nutrition and Allergies, European Food Safety Authority| doi-access = free }}</ref><ref>{{cite web | url = https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm207416.htm | title = Federal Government Seizes Dozens of Misbranded Drug Products: FDA warned company about making medical claims for bee-derived products | date = 5 April 2010 | publisher = ]}}</ref> On the other hand, it may cause severe ]s in some individuals.<ref>{{cite journal | pmid = 9088660 | volume=27 | issue=3 | title=Royal jelly consumption and hypersensitivity in the community |date=March 1997 | journal=Clin. Exp. Allergy | pages=333–6 | doi = 10.1111/j.1365-2222.1997.tb00712.x | last1 = Leung | first1 = R | last2 = Ho | first2 = A | last3 = Chan | first3 = J | last4 = Choy | first4 = D | last5 = Lai | first5 = CK| s2cid=19626487 }}</ref> | |||
== Hazards to honeybee survival == | |||
*]n and European honeybee populations were severely depleted by ] infestations in the early ]. Chemical treatments saved most commercial operations and improved cultural practices and bee breeds are starting to reduce the dependency on miticides (acaracides) by beekeepers. Feral bee populations were greatly reduced during this period but now are slowly recovering, mostly in areas of mild climate, owing to ] for varroa resistance and repopulation by resistant breeds. | |||
==Sexes and castes== | |||
*Crop dusting ]s and ] also deplete bees. | |||
Honey bees have three ]s: ], ], and ].<ref>{{cite book |last1=Cervoni |first1=Mário Sérgio |last2=Hartfelder |first2=Klaus |chapter=Caste Differentiation: Honey Bees |title=Encyclopedia of Social Insects |date=2021 |pages=177–184 |doi=10.1007/978-3-030-28102-1_151|isbn=978-3-030-28101-4 }}</ref><ref>{{cite web|url=http://www.ikonet.com/en/visualdictionary/animal-kingdom/insects-and-arachnids/honeybee/castes.php|title=Bee castes|publisher=Visual Dictionary, QA International|date=2017|access-date=18 May 2017}}</ref><ref name="University of Georgia-2017">{{cite web|title=Getting Started: Honey Bee Biology|url=http://caes2.caes.uga.edu/bees/get-started/biology.html|publisher=University of Georgia College of Agricultural and Environmental Sciences|access-date=18 May 2017|date=2017|archive-date=24 January 2018|archive-url=https://web.archive.org/web/20180124075205/http://caes2.caes.uga.edu/bees/get-started/biology.html|url-status=dead}}</ref> Drones are male, while workers and queens are female.<ref name="University of Georgia-2017"/> | |||
===Drones=== | |||
*]s have spread across the southern ] where they pose a small danger to humans, although they may make beekeeping (particularly hobby beekeeping) difficult and potentially dangerous. | |||
{{Main|Drone (bee)}} | |||
] system of sex determination.]] | |||
Drones are typically ], having only one set of ]s, and primarily exist for the purpose of ].<ref name="University of Georgia-2017"/> They are produced by the queen if she chooses not to fertilize an egg or by an unfertilized laying worker. There are rare instances of diploid drone larvae. This phenomenon usually arises when there are more than two generations of brother-sister mating.<ref>Woyka, J.; Pszczelnictwa, Zaklad; {{Webarchive|url=https://web.archive.org/web/20141022232521/http://jerzy_woyke.users.sggw.pl/1963_dipldrlarvae.pdf |date=2014-10-22 }} Journal of Apiculture Research, (1963), pages 19–24</ref> Sex determination in honey bees is initially due to a single locus, called the complementary sex determiner (''csd'') gene. In developing bees, if the conditions are that the individual is heterozygous for the ''csd'' gene, they will develop into females. If the conditions are so that the individual is ] or homozygous for the ''csd'' gene, they will develop into males. The instances where the individual is homozygous at this gene are the instances of diploid males.<ref>Weinstock, George M.; Robinson, Gene E., & the Honeybee Genome Sequencing Consortium '']'', volume "'443'" (2006), pages 931–949</ref> Drones take 24 days to develop, and may be produced from summer through to autumn, numbering as many as 500 per hive.<ref name="University of Georgia-2017"/> They are expelled from the hive during the winter months when the hive's primary focus is warmth and food conservation.<ref name="University of Georgia-2017"/> Drones have large eyes used to locate queens during mating flights. They do not defend the hive or kill intruders, and do not have a ].<ref name="PerfectBee-2017"/> | |||
===Workers=== | |||
*Various bee pests and diseases are becoming resistant to medications (e.g. ], ] and ]). | |||
{{Main|Worker bee}} | |||
Workers have two sets of chromosomes.<ref>{{cite web|url=http://beesource.com/resources/usda/breeding-and-genetics-of-honey-bees/|title=Breeding and Genetics of Honey Bees|vauthors=Harbo JR, Rinderer TE|publisher=Beesource Beekeeping|date=1980|access-date=18 May 2017}}</ref> They are produced from an egg that the queen has selectively fertilized from stored sperm. Workers typically develop in 21 days. A typical colony may contain as many as 60,000 worker bees.<ref name="University of Georgia-2017"/> Workers exhibit a wider range of behaviors than either queens or drones. Their duties change with age in the following order (beginning with cleaning out their own cell after eating through their capped brood cell): feed brood, receive nectar, clean hive, guard duty, and foraging.<ref name="University of Georgia-2017"/><ref name="PerfectBee-2017">{{cite web|url=https://www.perfectbee.com/learn-about-bees/types-of-bees/|title=Worker, drone and queen bees|publisher=PerfectBee LLC|date=2017|access-date=18 May 2017}}</ref> Some workers engage in other specialized behaviors, such as "undertaking" (removing corpses of their nestmates from inside the hive).<ref name="PerfectBee-2017"/> | |||
Workers have morphological specializations, including the ] ''(corbicula)'',<ref>{{cite web|url=http://www.ikonet.com/en/visualdictionary/animal-kingdom/insects-and-arachnids/honeybee/morphology-of-a-honeybee-worker.php|title=Morphology of a honeybee: worker|publisher=Visual Dictionary, QA International|date=2017|access-date=18 May 2017}}</ref> abdominal glands that produce beeswax, brood-feeding glands, and barbs on the sting. Under certain conditions (for example, if the colony becomes queenless), a worker may develop ovaries. | |||
== Environmental problems == | |||
As an ], feral honeybees have become a significant environmental problem in places where they are not native, including ]. Imported bees may compete with and displace native bees and birds, and may also promote the reproduction of ] that native pollinators do not visit. Also, unlike native bees, they do not properly extract or transfer pollen from plants with ] (anthers that only release pollen through tiny apical pores), as this requires ], a behavior which honeybees rarely exhibit. Gross and Mackay (1998) found that honeybees reduce fruiting in '']'' (a plant with poricidal anthers) by robbing stigmas of previously-deposited pollen. | |||
Worker honey bees perform different behavioural tasks that cause them to be exposed to different local environments.<ref name="Jones-2018a">{{cite journal|doi=10.1002/ece3.3597|pmid=29321884|pmc=5756847|title=Gut microbiota composition is associated with environmental landscape in honey bees|journal=Ecology and Evolution|volume=8|issue=1|pages=441–451|year=2018|last1=Jones|first1=Julia C|last2=Fruciano|first2=Carmelo|last3=Hildebrand|first3=Falk|last4=Al Toufalilia|first4=Hasan|last5=Balfour|first5=Nicholas J|last6=Bork|first6=Peer|last7=Engel|first7=Philipp|last8=Ratnieks|first8=Francis LW|last9=Hughes|first9=William OH|bibcode=2018EcoEv...8..441J }}</ref><ref name="Jones-2018b">{{cite journal|doi=10.1007/s00040-018-0624-9|pmid=30100619|pmc=6061168|title=The gut microbiome is associated with behavioural task in honey bees|journal=Insectes Sociaux|volume=65|issue=3|pages=419–429|year=2018|last1=Jones|first1=J. C|last2=Fruciano|first2=C|last3=Marchant|first3=J|last4=Hildebrand|first4=F|last5=Forslund|first5=S|last6=Bork|first6=P|last7=Engel|first7=P|last8=Hughes|first8=W. O. H}}</ref> The ] composition of workers varies according to the landscape and plant species they ], such as differences in ] crops,<ref name="Jones-2018a"/> and with different hive tasks, such as nursing or food processing.<ref name="Jones-2018b"/> | |||
==Honeybee predators== | |||
===Insects=== | |||
*] | |||
*] | |||
*] | |||
**] | |||
*] - Japan | |||
**] | |||
*] | |||
*] | |||
=== |
===Queens=== | ||
{{Main|Queen bee}} | |||
*] | |||
Queen honey bees are created when worker bees feed a single female larva an exclusive diet of a food called "]".<ref name="University of Georgia-2017"/><ref name="PerfectBee-2017"/> Queens are produced in oversized cells and develop in only 16 days; they differ in physiology, morphology, and behavior from worker bees. In addition to the greater size of the queen, she has a functional set of ovaries, and a spermatheca, which stores and maintains sperm after she has mated. ''Apis'' queens practice ], with one female mating with multiple males. The highest documented mating frequency for an ''Apis'' queen is in '']'', where queens mate with an extremely high number of males with observed numbers of different matings ranging from 42 to 69 drones per queen.<ref>Hadisoesilo, Soesilawati. "The Comparative Study of Two Species of Cavity-Nesting Honey Bees of Sulawesi, Indonesia" (PDF).</ref> The sting of queens is not barbed like a worker's sting, and queens lack the glands that produce beeswax. Once mated, queens may lay up to 2,000 eggs per day.<ref name="PerfectBee-2017"/> They produce a variety of pheromones that regulate the behavior of workers, and help swarms track the queen's location during the swarming.<ref name="PerfectBee-2017"/> | |||
*] | |||
*] | |||
*] | |||
=== Queen-worker conflict === | |||
===Reptiles and amphibians=== | |||
{{Main|Worker policing}} | |||
*] | |||
When a fertile female worker produces drones, a conflict arises between her interests and those of the queen. The worker shares half her genes with the drone and one-quarter with her brothers, favouring her offspring over those of the queen. The queen shares half her genes with her sons and one-quarter with the sons of fertile female workers.<ref>{{cite journal | last1 = Wenseleers | first1 = T. | last2 = Helanterä | first2 = H. | last3 = Hart | first3 = A. | last4 = Ratnieks | first4 = F. L. W. | year = 2004 | title = Worker reproduction and policing in insect societies: an ESS analysis | journal = Journal of Evolutionary Biology | volume = 17 | issue = 5| pages = 1035–1047 | doi = 10.1111/j.1420-9101.2004.00751.x | pmid = 15312076 | s2cid = 7239058 | doi-access = free }}</ref> This pits the worker against the queen and other workers, who try to maximize their ] by rearing the offspring most related to them. This relationship leads to a phenomenon known as "worker policing". In these rare situations, other worker bees in the hive who are genetically more related to the queen's sons than those of the fertile workers will patrol the hive and remove worker-laid eggs. Another form of worker-based policing is aggression toward fertile females.<ref>{{cite journal | last1 = Ratnieks | first1 = F. | last2 = Visscher | first2 = P. Kirk | year = 1989 | title = Worker policing in the honeybee | journal = Nature | volume = 342 | issue = 6251| pages = 796–797 | doi = 10.1038/342796a0 | bibcode=1989Natur.342..796R| s2cid = 4366903 }}</ref> Some studies have suggested a queen pheromone which may help workers distinguish worker- and queen-laid eggs, but others indicate egg viability as the key factor in eliciting the behavior.<ref>{{cite journal | last1 = Pirk | first1 = C. | last2 = Neumann | first2 = P. | last3 = Hepburn | first3 = R. | last4 = Moritz | first4 = R. | last5 = Tautz | first5 = J. | year = 2003 | title = Egg viability and worker policing in honey bees | journal = PNAS | volume = 101 | issue = 23| pages = 8649–8651 | doi = 10.1073/pnas.0402506101 | pmid = 15169961 | pmc = 423249 | bibcode = 2004PNAS..101.8649P | doi-access = free }}</ref><ref>{{cite journal | last1 = Oldroyd | first1 = B. | last2 = Ratnieks | first2 = Francis | year = 2002 | title = Egg-marking pheromones in honey-bees Apis mellifera | journal = Behavioral Ecology and Sociobiology | volume = 51 | issue = 6| pages = 590–591 | doi = 10.1007/s00265-002-0480-4 | bibcode = 2002BEcoS..51..590O | s2cid = 30446742 }}</ref> Worker policing is an example of ], where the benefits of worker reproduction are minimized and that of rearing the queen's offspring maximized. | |||
*] | |||
*] | |||
*] | |||
In very rare instances workers subvert the policing mechanisms of the hive, laying eggs which are removed at a lower rate by other workers; this is known as anarchic syndrome. Anarchic workers can activate their ovaries at a higher rate and contribute a greater proportion of males to the hive. Although an increase in the number of drones would decrease the overall productivity of the hive, the reproductive fitness of the drones' mother would increase. Anarchic syndrome is an example of selection working in opposite directions at the ] for the stability of the hive.<ref>{{cite journal | last1 = Barron | first1 = A. | last2 = Oldroyd | first2 = B | last3 = Ratnieks | first3 = F.L.W. | year = 2001 | title = Worker reproduction in honey-bees (Apis) and the anarchic syndrome: a review | journal = Behavioral Ecology and Sociobiology | volume = 50 | issue = 3| pages = 199–208 | doi = 10.1007/s002650100362 | bibcode = 2001BEcoS..50..199B | s2cid = 17246102 }}</ref> | |||
===Birds=== | |||
*] | |||
*] | |||
*] | |||
**] | |||
*] | |||
Under ordinary circumstances the death (or removal) of a queen increases reproduction in workers, and a significant proportion of workers will have active ovaries in the absence of a queen. The workers of the hive produce a last batch of drones before the hive eventually collapses. Although during this period worker policing is usually absent, in certain groups of bees it continues.<ref>{{cite journal | last1 = Châline | first1 = N. | last2 = Martin | first2 = S.J. | last3 = Ratnieks | first3 = F.L.W. | title = Worker policing persists in a hopelessly queenless honey bee colony (Apis mellifera) | journal = Insectes Soc | year = 2004 | volume = 51 | issue = 2 | pages = 1–4 | doi = 10.1007/s00040-003-0708-y | s2cid = 11988371 }}</ref> | |||
===Mammals=== | |||
''Contrary to popular perception, bears and honey badgers are brood predators; honey is only of secondary interest.'' | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
According to the strategy of ], worker policing is not favored if a queen does not mate multiple times. Workers would be related by three-quarters of their genes, and the difference in ] between sons of the queen and those of the other workers would decrease. The benefit of policing is negated, and policing is less favored. Experiments confirming this hypothesis have shown a correlation between higher mating rates and increased rates of worker policing in many species of social ].<ref>Davies, N.R., Krebs, J.R., and West, S.A. An Introduction to Behavioral Ecology. 4th ed. West Sussex: Wiley-Blackwell, 2012. Print. pp. 387–388</ref> | |||
==Honeybee communication== | |||
See also: ] | |||
== Timeline of reproduction == | |||
] | |||
For ''Apis mellifera'', queens are the central reproducers among their colonies. Although reproduction may occur around the calendar, it may stop in the late fall due to falling temperatures. If a colony does not have a queen or she is unable to reproduce, workers are able to lay unfertilized eggs that may develop into males. The queens, however, do not reach this point immediately. Typically, it takes a queen 16 days to reach adulthood, with an additional week to begin developing and laying eggs.<ref name="Hammond-2009">{{Cite web |last1=Hammond |first1=George |last2=Blankenship |first2=Madison |title=''Apis mellifera'' (honey bee) |url=https://animaldiversity.org/accounts/Apis_mellifera/ |access-date=2023-04-17 |website=Animal Diversity Web |language=en}}</ref> To begin the process of reproduction in a honeybee colony, workers begin to produce queen larvae while simultaneously finding a place to create a new hive.<ref name="Hammond-2009" /> The queen larvae will then hatch at the old hive, and the queens will fight one another until there is only a single queen left to begin reproducing.<ref name="Hammond-2009" /> | |||
== Reproductive strategies == | |||
Honey bees are an excellent animal to study with regards to behavior because they are abundant and familiar to most people. An animal that is disregarded every day has very specific behaviors that go unnoticed by the normal person. ] studied the behavior of honey bees with regards to communication and was awarded the ] for physiology and medicine in 1973. Von Frisch noticed that honey bees communicate with the language of dance. Honey bees are able to direct other bees to food sources through the ] and the ]. The round dance tells the other foragers that food is within 50 meters of the hive, but it does not provide much information regarding direction. The waggle dance, which may be vertical or horizontal, provides more detail about both the distance and the direction of the located food source. It is also hypothesized that the bees rely on their olfactory sense to help locate the food source once the foragers are given directions from the dances. | |||
Once a queen matures and is ready to begin reproducing, she will begin making flights to orient to mating in free flight and finding mates before actually beginning to mate. Queens that are ready to mate take between 1 and 6 flights across multiple consecutive days, called nuptial flights.<ref>{{Cite journal |last1=Heidinger |first1=Ina Monika Margret |last2=Meixner |first2=Marina Doris |last3=Berg |first3=Stefan |last4=Büchler |first4=Ralph |date=2014-07-01 |title=Observation of the Mating Behavior of Honey Bee (Apis mellifera L.) Queens Using Radio-Frequency Identification (RFID): Factors Influencing the Duration and Frequency of Nuptial Flights |journal=Insects |volume=5 |issue=3 |pages=513–527 |doi=10.3390/insects5030513 |issn=2075-4450 |pmc=4592583 |pmid=26462822 |doi-access=free }}</ref> Over the course of their nuptial flights, queens engage with multiple mates and have little control over the number of times they do so.<ref name="Hammond-2009" /> | |||
The process of queens engaging with their mates is not widely understood because the process takes place in free flight, so it is difficult to observe despite various advances in technology and observation techniques. It begins with drones flying in the same area where they know the queen will soon arrive, waiting for her to join them.<ref>{{Cite journal |last1=Barron |first1=Andrew B. |last2=Oldroyd |first2=Benjamin P. |last3=Ratnieks |first3=Francis L. |date=2001-08-01 |title=Worker reproduction in honey-bees (Apis) and the anarchic syndrome: a review |url=https://doi.org/10.1007/s002650100362 |journal=Behavioral Ecology and Sociobiology |language=en |volume=50 |issue=3 |pages=199–208 |doi=10.1007/s002650100362 |bibcode=2001BEcoS..50..199B |s2cid=17246102 |issn=1432-0762}}</ref> When the queen arrives, she is crowded immediately by the drones who are eager to mate with her. The drones receive a signal from the queen that her "sting chamber" is open, which induces the drones to mate with her and bring forward their physical contact which warrants reproduction. A successful drone clasps onto the queen and releases seminal fluid and spermatozoa into the queen. After this process is complete, the drone typically remains inside of the queen, which is indicative of the drone's desire to deter other drones from engaging with the queen and reproducing.<ref>{{Cite web |title=Chapter 8: Most Spectacular Mating {{!}} The University of Florida Book of Insect Records {{!}} Department of Entomology & Nematology {{!}} UF/IFAS |url=https://entnemdept.ufl.edu/walker/ufbir/chapters/chapter_08.shtml |access-date=2023-04-17 |website=entnemdept.ufl.edu}}</ref> This behavior also indicates that if the drone blocks other drones from mating with the queen, it will allow the mating drone to fertilize a greater number of the queen's eggs. If the drone does not remain within the queen and removes itself from her, the drone is able to reproduce again with slim chances. Finally, the drone will die after mating with the queen within minutes or hours after reproduction is complete. | |||
Another signal for communication is the shaking signal, also known as the jerking dance, vibration dance, or vibration signal. It is a modulatory communication signal because it appears to manipulate the overall arousal or activity of behaviors. The shaking signal is most common in worker communication, but it is also evident in reproductive swarming. A worker bee vibrates its body dorsoventrally while holding another honey bee with its front legs. Jacobus Biesmeijer examined the incidence of shaking signals in a forager’s life and the conditions that led to its performance to investigate why the shaking signal is used in communication for food sources. Biesmeijer found that the experienced foragers executed 92.1% of the observed shaking signals. He also observed that 64% of the shaking signals were executed by experienced foragers after they had discovered a food source. About 71% of the shaking signal sessions occurred after the first five foraging success within one day. Then other communication signals, such as the waggle dance, were performed more often after the first five successes. Biesmeijer proved that most shakers are foragers and that the shaking signal is most often executed by foraging bees over pre-foraging bees. Beismeijer concluded that the shaking signal presents the overall message of transfer work for various activities or activity levels. Sometimes the signal serves to increase activity, when bees shake inactive bees. At other times, the signal serves as an inhibitory mechanism such as the shaking signal at the end of the day. However, the shaking signal is preferentially directed towards inactive bees. All three types of communication between honey bees are effective in their jobs with regards to foraging and task managing. | |||
== |
==Defense== | ||
{{Main|Bee sting}} | |||
* Honeybees are one of the very few invertebrates in which sleep-like behavior, similar in many respects to mammalian sleep, is known to exist. | |||
]'' forming a ball around two ]: The body heat trapped by the ball will overheat and kill the hornets.]] | |||
* Honey, as well as ], has antibiotic properties. | |||
All honey bees live in colonies where the workers ] intruders as a form of defense, and alarmed bees release a ] that stimulates the attack response in other bees. The different species of honey bees are distinguished from all other bee species by the possession of small barbs on the sting, but these barbs are found only in the worker bees.<ref>{{cite web |title=Bee Bonanza. The story of Honey Bees. |url=https://askabiologist.asu.edu/bee-honey |website=askabiologist.asu.edu |date=13 June 2017 |publisher=Arizona State University |access-date=15 March 2022}}</ref> | |||
* Honeybees are one of the very few invertebrates that produce a sort of "milk" for their young, ], which is the only food the larvae will eat early in development.<!--I thought that royal jelly turned some larve into queens, while honey turned others into workers--> | |||
* Like other social insects, they have an advanced immune system. | |||
* They have specially modified hairs on their body that develop a static electricity charge to attract pollen grains to their bodies. | |||
* They have a well developed sense of time (]). | |||
* They navigate by using a combination of memory, visual landmarks, colors, the position of the sun, smell, polarized light and magnetic anomalies. | |||
* Their aging is controlled by a hormone which regulates the production of a protein called ]. | |||
*The honeybee was a prominent political symbol in the empire of ], representing the ] bureaucratic and political system. | |||
*Honeybees have a form of non-viable ]. Although the workers are able to produce drones as offspring, the drones' main purpose is to mate with the queen. Should the queen die, the drones do not reproduce. | |||
The sting apparatus, including the barbs, may have evolved specifically in response to predation by vertebrates, as the barbs do not usually function (and the sting apparatus does not detach) unless the sting is embedded in fleshy tissue. While the sting can also penetrate the membranes between joints in the exoskeleton of other insects (and is used in fights between queens), in the case of ''Apis cerana japonica'', defense against larger insects such as predatory wasps (e.g. ]) is usually performed by surrounding the intruder with a mass of defending worker bees, which vibrate their muscles vigorously to raise the temperature of the intruder to a lethal level ("balling").<ref>{{cite web |url=http://www.bio.davidson.edu/people/midorcas/animalphysiology/websites/2001/Thawley/defense.htm |title=Heat tolerance as a weapon |author=C. H. Thawley |publisher=] |access-date=1 June 2010 |url-status=dead |archive-url=https://web.archive.org/web/20100718201646/http://www.bio.davidson.edu/people/midorcas/animalphysiology/websites/2001/Thawley/defense.htm |archive-date=18 July 2010 }}</ref> Previously, heat alone was thought to be responsible for killing intruding wasps, but recent experiments have demonstrated the increased temperature in combination with increased carbon dioxide levels within the ball produce the lethal effect.<ref>{{cite journal|title=Heat and carbon dioxide generated by honeybees jointly act to kill hornets|journal=] |year=2009 |author1=Michio Sugahara |author2=Fumio Sakamoto |volume=96 |issue=9 |pages=1133–6 |doi=10.1007/s00114-009-0575-0 |pmid=19551367|bibcode=2009NW.....96.1133S |s2cid=22080257 }}</ref><ref>{{cite news |author=Victoria Gill |title=Honeybee mobs overpower hornets |url=http://news.bbc.co.uk/2/hi/science/nature/8129536.stm |work=BBC News |date=3 July 2009 |access-date=5 July 2009}}</ref> This phenomenon is also used to kill a queen perceived as intruding or defective, an action known to beekeepers as 'balling the queen', named for the ball of bees formed. | |||
==Designated state insect== | |||
*] (1973) | |||
Defense can vary based on the habitat of the bee. In the case of those honey bee species with open combs (e.g., ''A. dorsata''), would-be predators are given a warning signal that takes the form of a "]" that spreads as a ripple across a layer of bees densely packed on the surface of the comb when a threat is perceived, and consists of bees momentarily arching their bodies and flicking their wings.<ref>{{Cite web|url=https://www.sciencedaily.com/releases/2008/09/080909204550.htm|title=Giant Honeybees Use Shimmering 'Mexican Waves' To Repel Predatory Wasps|website=ScienceDaily}}</ref> In cavity dwelling species such as '']'', '']'', and '']'', entrances to these cavities are guarded and checked for intruders in incoming traffic. Another act of defense against nest invaders, particularly wasps, is "body shaking", a violent and pendulum like swaying of the abdomen, performed by worker bees.<ref>Radloff, Sara E.; Hepburn, H. Randall; Engel, Michael S. (2011). ''Honeybees of Asia''. Berlin: Springer Science & Business Media. {{ISBN|978-3642164217}}.</ref> | |||
*] (1973) | |||
*] (1974) - ''state bug'' | |||
A 2020 study of '']'' in ] found that they use ] and even human urine to defend their hives against raids by hornets ('']''), a strategy not replicated by their European and North American counterparts,<ref name="Mattila-2020">{{cite journal | last1=Mattila | first1=Heather R. | last2=Otis | first2=Gard W. | last3=Nguyen | first3=Lien T. P. | last4=Pham | first4=Hanh D. | last5=Knight | first5=Olivia M. | last6=Phan | first6=Ngoc T. | editor-last=Blenau | editor-first=Wolfgang | title=Honey bees (Apis cerana) use animal feces as a tool to defend colonies against group attack by giant hornets (''Vespa soror'') | journal=PLOS ONE | volume=15 | issue=12 | date=9 December 2020 | issn=1932-6203 | doi=10.1371/journal.pone.0242668 | page=e0242668| pmid=33296376 | pmc=7725375 | bibcode=2020PLoSO..1542668M | s2cid=228087051 | doi-access=free }}</ref> though collection and use of feces in nest construction is well-known in ]s.<ref>Basari N, Ramli SN, Mohd Khairi NS. (2018) Food reward and distance influence the foraging pattern of stingless bee, ''Heterotrigona itama''. Insects 9(4):138. doi:10.3390/insects9040138</ref><ref>Jalil, A.H. (2014) ''Beescape for Meliponines: Conservation of Indo-Malayan Stingless Bees''</ref> | |||
*] (1975) | |||
*] (1975) | |||
===Venom=== | |||
*] (1975) | |||
The stings of honey bees are barbed and therefore embed themselves into the sting site, and the sting apparatus has its own musculature and ganglion which keep delivering venom even after detachment.<ref name="Biller-2014">{{cite book |last1=Biller |first1=Jose |last2=Ferro |first2=Jose M |title=Neurologic Aspects of Systemic Disease, Part II |date=7 February 2014 |publisher=Elsevier |isbn=9780702040870 |page=995 |edition=1st}}</ref> The gland which produces the alarm pheromone is also associated with the sting apparatus. The embedded stinger continues to emit additional alarm pheromone after it has torn loose; other defensive workers are thereby attracted to the sting site. The worker dies after the sting becomes lodged and is subsequently torn loose from the bee's abdomen. The honey bee's venom, known as ], carries several active components, the most abundant of which is ],<ref name="Chen-2016">{{cite journal | vauthors = Chen J, Guan SM, Sun W, Fu H | title = Melittin, the Major Pain-Producing Substance of Bee Venom | journal = Neuroscience Bulletin | volume = 32 | issue = 3 | pages = 265–72 | year = 2016 | pmid = 26983715 | pmc = 5563768 | doi = 10.1007/s12264-016-0024-y }}</ref> and the most biologically active are ]s, particularly ].<ref>{{cite journal|pmc=4548770|year=2015|last1=Ramanadham|first1=S|title=Calcium-independent phospholipases A2 and their roles in biological processes and diseases|journal=Journal of Lipid Research|volume=56|issue=9|pages=1643–1668|last2=Ali|first2=T|last3=Ashley|first3=J. W|last4=Bone|first4=R. N|last5=Hancock|first5=W. D|last6=Lei|first6=X|doi=10.1194/jlr.R058701 |doi-access=free |pmid=26023050}}</ref> | |||
*] (1976) | |||
*] (1977) | |||
Honey bee venom is under laboratory and ] for its potential properties and uses in reducing risks for ]s from bee venom ],<ref>{{cite journal|pmc=4440710|year=2015|last1=Park|first1=J. H|title=Risk Associated with Bee Venom Therapy: A Systematic Review and Meta-Analysis|journal=PLOS ONE|volume=10|issue=5|pages=e0126971|last2=Yim|first2=B. K|last3=Lee|first3=J. H|last4=Lee|first4=S|last5=Kim|first5=T. H|doi=10.1371/journal.pone.0126971|pmid=25996493|bibcode=2015PLoSO..1026971P|doi-access=free}}</ref> ],<ref>{{cite journal|pmc=4225238|year=2014|last1=Lee|first1=J. A|title=Bee venom acupuncture for rheumatoid arthritis: A systematic review of randomised clinical trials|journal=BMJ Open|volume=4|issue=11|pages=e006140|last2=Son|first2=M. J|last3=Choi|first3=J|last4=Jun|first4=J. H|last5=Kim|first5=J. I|last6=Lee|first6=M. S|doi=10.1136/bmjopen-2014-006140|pmid=25380812}}</ref> and use as an ] for protection against ] from insect stings.<ref>{{cite journal|pmid=23076950|year=2012|last1=Boyle|first1=R. J|title=Venom immunotherapy for preventing allergic reactions to insect stings|journal=Cochrane Database of Systematic Reviews|volume=10|pages=CD008838|last2=Elremeli|first2=M|last3=Hockenhull|first3=J|last4=Cherry|first4=M. G|last5=Bulsara|first5=M. K|last6=Daniels|first6=M|last7=Oude Elberink|first7=J. N|issue=2|doi=10.1002/14651858.CD008838.pub2|pmc=8734599 |url=https://pure.rug.nl/ws/files/67436563/Boyle_et_al_2012_Cochrane_Database_of_Systematic_Reviews.pdf}}</ref> Bee venom products are marketed in many countries, but, as of 2018, there are no approved clinical uses for these products which carry various warnings for potential allergic reactions.<ref name="Drugs.com-2018">{{cite web |title=Wasp and Bee venom |url=https://www.drugs.com/pro/wasp-and-bee-venom.html |publisher=Drugs.com |access-date=29 June 2018 |date=2018}}</ref> | |||
*] (1977) | |||
*] (1977) | |||
==Competition== | |||
*] (1978) | |||
{{further|Western honey bee#As an environmental threat}} | |||
*] (1980) | |||
With an increased number of honey bees in a specific area due to beekeeping, Western honey bees (as an ]) and native wild bees often have to compete for the limited habitat and food sources available,<ref>{{Cite journal|last1=Hudewenz|first1=Anika|last2=Klein|first2=Alexandra-Maria|date=1 December 2013|title=Competition between honey bees and wild bees and the role of nesting resources in a nature reserve|journal=Journal of Insect Conservation|language=en|volume=17|issue=6|pages=1275–1283|doi=10.1007/s10841-013-9609-1|bibcode=2013JICon..17.1275H |s2cid=16268870|issn=1366-638X}}</ref> and Western honey bees may become defensive in response to the seasonal arrival of competition from other colonies, particularly Africanized bees which may be on the offence and defence year round due to their tropical origin.<ref>{{Cite journal|last1=Johnson|first1=Brian R.|last2=Nieh|first2=James C.|date=1 November 2010|title=Modeling the Adaptive Role of Negative Signaling in Honey Bee Intraspecific Competition|journal=Journal of Insect Behavior|language=en|volume=23|issue=6|pages=459–471|doi=10.1007/s10905-010-9229-5|issn=0892-7553|pmc=2955239|pmid=21037953|bibcode=2010JIBeh..23..459J }}</ref> | |||
*] (1983) | |||
*] (1985) | |||
==Communication== | |||
*] (1990) - ''official agricultural insect'' | |||
{{Main|Bee learning and communication}} | |||
*] (1992) | |||
Honey bees are known to communicate through many different chemicals and odors, as is common in insects. They also rely on a sophisticated dance language that conveys information about the distance and direction to a specific location (typically a nutritional source, e.g., flowers or water). The dance language is also used during the process of colony fission, or swarming, when scouts communicate the location and quality of nesting sites.<ref>{{Cite web|url=https://content.ces.ncsu.edu/honey-bee-dance-language|title=The Honey Bee Dance Language|last=Tarpy|first=David|date=2016|website=NC State Extension}}</ref> | |||
*] (2002) | |||
The details of the signalling being used vary from species to species; for example, the two smallest species, '']'' and ''A. florea'', dance on the upper surface of the comb, which is horizontal (not vertical, as in other species), and worker bees orient the dance in the actual compass direction of the resource to which they are recruiting. | |||
]s (''Apis mellifera carnica'') use their antennae asymmetrically for social interactions, with a strong lateral preference to use their right antennae.<ref name="Rogers-2013">{{cite journal|last=Rogers|first=Lesley J.|author2=Elisa Rigosi |author3=Elisa Frasnelli |author4=Giorgio Vallortigara|author-link4=Giorgio Vallortigara |title=A right antenna for social behaviour in honeybees|journal=Scientific Reports|date=27 June 2013|pages=2045|doi=10.1038/srep02045|pmid=23807465|pmc=3694496|volume=3|bibcode=2013NatSR...3.2045R}}</ref><ref>{{cite web|url=http://www.sciencenews.org/view/generic/id/351355/description/Honeybees_use_right_antennae_to_tell_friend_from_foe|title=Honeybees use right antennae to tell friend from foe|author=Jessica Shugart|work=Science News|access-date=12 March 2016}}</ref> | |||
There has been speculation as to honey bee ].<ref>{{cite news|url=https://www.nytimes.com/2016/04/19/science/honeybees-insects-consciousness-brains.html|title=Do Honeybees Feel? Scientists Are Entertaining the Idea|first=James|last=Gorman|newspaper=The New York Times|date=18 April 2016}}</ref> While honey bees lack the parts of the brain that a human being uses for consciousness like the cerebral cortex or even the cerebrum itself, when those parts of a human brain are damaged, the midbrain seems able to provide a small amount of consciousness. Honey bees have a tiny structure that appears similar to a human midbrain, so if it functions the same way they may possibly be able to achieve a small amount of simple awareness of their bodies. | |||
==Symbolism== | |||
{{Main|Bee (mythology)}} | |||
The bee was used as a symbol of government by ] of France.<ref>{{cite web |url=http://www.napoleon.org/en/essential_napoleon/symbols/index.asp |title=The symbols of empire |publisher=Napoleon.org |access-date=1 June 2010}}</ref> Both the ] '']''<ref>"O Asvins, lords of brightness, anoint me with the honey of the bee, that I may speak forceful speech among men! ''Atharva Veda'' 91–258, quoted in Maguelonne Toussaint-Samat (Anthea Bell, tr.) ''The History of Food'', 2nd ed. 2009:14.</ref> and the ancient Greeks associated lips anointed with honey with the gift of eloquence and even of prescience. The priestess at ] was the "Delphic Bee". | |||
The '']'' has a ] (chapter) titled "]". It is named after honey bees, and contains a comparison of the industry and adaptability of honey bees to the industry of man.<ref>{{Cite web|url=http://www.islamicity.com/science/quranandscience/animals/generatedfiles/thehoneybee.htm|title=THE HONEY BEE|website=www.islamicity.com}}</ref> | |||
{{blockquote|And your Lord inspired the bees: “Make ˹your˺ homes in the mountains, the trees, and in what people construct, and feed from ˹the flower of˺ any fruit ˹you please˺ and follow the ways your Lord has made easy for you.” From their bellies comes forth liquid of varying colours, in which there is healing for people. Surely in this is a sign for those who reflect.|{{qref|16|68–69|c=y}}<ref>{{Cite web|url=http://www.miracles-of-quran.com/honey_bees.htm|title=Honey Bees in Quran|website=www.miracles-of-quran.com}}</ref>}} | |||
In ancient Egyptian mythology, honey bees were believed to be born from the tears of the ], ].<ref>{{cite news|url=https://www.theguardian.com/science/2017/may/24/honey-i-love-you-our-40000-year-relationship-with-the-humble-bee|title=Honey, I love you: our 40,000-year relationship with the humble bee|author=Holly Norton|date=24 May 2017|newspaper=The Guardian|access-date=29 June 2018}}</ref> Because of their divine origin, they were used to represent the Pharaoh. They were also used as a symbol of Lower Egypt in conjuction with the sedge, which represented Upper Egypt.<ref>{{Cite book |last=Haynes |first=Dawn |url=https://scholar.sun.ac.za/bitstream/10019.1/79920/1/haynes_symbolism_2013.pdf |title=The Symbolism and Significance of the Butterfly in Ancient Egypt}}</ref> | |||
In Joseph and Asenath, a work composed by ancient Egyptian Jews who may have been affiliated with the ], bee and honey imagery appears when Asenath converts and is visited by an angel. If the work was indeed connected to the Leontopolis temple, the bees likely represent Levite priests, and the imagery intends to signify the legitimacy of a Jewish temple in Egypt.<ref>{{Cite book |last=Piotrkowski |first=Meron M. |url=https://www.worldcat.org/title/on1076801783 |title=Priests in exile: the history of the temple of Onias and its community in the Hellenistic Period |date=2019 |publisher=De Gruyter |isbn=978-3-11-059107-1 |series=Studia Judaica |location=Berlin |oclc=on1076801783}}</ref> | |||
A community of honey bees has often been employed by political theorists as a model of human society, from Aristotle and Plato to Virgil.<ref>Virgil, '']'', book IV.</ref><ref>{{cite book |author=Bee Wilson |year=2004 |title=The Hive: The Story of the Honeybee |publisher=] |location=London |isbn=978-0-7195-6598-4 |page=14}}</ref> Honey bees, signifying immortality and resurrection, were royal emblems of the ]. The state of ] is called the "Beehive State", the state emblem is the beehive, the state insect is the honey bee, and a beehive and the word "industry" appear on both the state flag and seal.<ref>{{cite web |title=Utah State Motto and Emblem |url=http://onlinelibrary.utah.gov/research/utah_symbols/motto.html |publisher=Utah State Library |access-date=13 October 2017 |archive-date=21 October 2017 |archive-url=https://web.archive.org/web/20171021011044/http://onlinelibrary.utah.gov/research/utah_symbols/motto.html |url-status=dead }}</ref> | |||
==Gallery== | |||
<gallery mode="packed" heights="150"> | |||
File:Bienenkoenigin.JPG|A coloured dot applied by a beekeeper identifies a ] ]. | |||
File:Honeybee02.jpg| ] foragers loaded with pollen on the hive landing board | |||
File:Cerana.jpg|] (''A. cerana'') in ] | |||
File:ApisDorsataHive.jpg|] (''A. dorsata'') | |||
File:Pollinationn.jpg|] visiting flowers | |||
File:Natural Beehive and Honeycombs.jpg|A colony of giant honey bees (''A. dorsata'') on their comb | |||
File:Bee-apis.jpg|] | |||
File:Honey bee on rock rose.jpg|] on rock rose ('']'') in Oakland, California | |||
File:Honeybee pollen turnips.jpg|] collecting pollen from turnip blossoms in ] | |||
File:Green Bee-eater Merops orientalis feeding on Honey-bee by Dr. Raju Kasambe DSCN1640 (1).jpg|A predator, the ] | |||
File:A natural beehive in Chandigarh.jpg|A wild colony in Chandigarh | |||
File:Honeybee on Lavender.jpg|alt=Honeybee on Lavender|] on lavender ('']'') in ] | |||
</gallery> | |||
==See also== | ==See also== | ||
* ] | |||
{{Wiktionary}} | |||
* ] | |||
{{commons|Apis mellifera|Honeybee}} | |||
* ] | |||
{{HoneybeeArticles}} | |||
* '']'' – a 2012 Swiss documentary film about honey bees | |||
*] (also known as apiology) – the study of bees | |||
*{{annotated link |Brachygastra}} (honey wasps) known to collect and store nectar as honey | |||
*{{annotated link|Pollen wasp}} unique among wasps in feeding their larvae exclusively with pollen and nectar, in a fashion quite similar to many solitary bees | |||
* ] | |||
== |
==Notes== | ||
{{notelist}} | |||
*Biesmeijer, Jacobus. "The Occurrence and Context of the Shaking Signal in Honey Bees (''Apis mellifera'') Exploiting Natural Food Sources". '']''. 2003. | |||
*Kak, Subhash C. "The Honey Bee Dance Language Controversy". ''The Mankind Quarterly''. 2001. | |||
*Schneider, S. S., P. K. Visscher, Camazine, S. "Vibration Signal Behavior of Waggle-dancers in Swarms of the Honey Bee, ''Apis mellifera'' (Hymenoptera: Apidae). ''Ethology''. 1998. | |||
*Gross, C. L., Mackay, D. "Honeybees reduce fitness in the pioneer shrub ''Melastoma affine'' (Melastomataceae)". ''Biological Conservation'', November 1998. | |||
* {{cite web | url = http://www.fcps.k12.va.us/StratfordLandingES/Ecology/mpages/honey_bee.htm | title = 'Honey Bee - Study of Northern Virginia Ecology' | accessdate = 2006-01-01}} | |||
==References== | |||
== External links == | |||
{{Reflist|30em}} | |||
* | |||
A very beneficial site for beekeepers, with lists of bee and equipment suppliers, helpful articles, and an excellent discussion board. | |||
* | |||
* Beekeeping explained by FAO http://www.fao.org/docrep/x0083e/X0083E06.htm | |||
* Types of hives by FAO http://www.fao.org/documents/show_cdr.asp?url_file=/docrep/006/y5110e/y5110e0b.htm | |||
* | |||
* | |||
==External links== | |||
{{Commons category|Apis (insect)}} | |||
{{Wiktionary}} | |||
{{Wikispecies|Apis|''Apis''}} | |||
* '''' Documentary produced by ], 14 October 2015 | |||
{{BeeColonyMemberTypes}} | |||
{{Insects in culture}} | |||
{{Eusociality}} | |||
{{Taxonbar|from=Q102857}} | |||
{{Authority control}} | |||
{{DEFAULTSORT:Honey Bee}} | |||
] | |||
] | ] | ||
] | |||
] | ] | ||
] | ] | ||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | ] | ||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] |
Latest revision as of 11:51, 27 December 2024
Colonial flying insect of genus Apis For other uses, see Honey bee (disambiguation).
Honey bee Temporal range: Oligocene–Recent PreꞒ Ꞓ O S D C P T J K Pg N | |
---|---|
Western honey bee on the bars of a horizontal top-bar hive | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Class: | Insecta |
Order: | Hymenoptera |
Family: | Apidae |
Clade: | Corbiculata |
Tribe: | Apini Latreille, 1802 |
Genus: | Apis Linnaeus, 1758 |
Type species | |
Apis mellifera Linnaeus, 1758 | |
Species | |
|
A honey bee (also spelled honeybee) is a eusocial flying insect within the genus Apis of the bee clade, all native to mainland Afro-Eurasia. After bees spread naturally throughout Africa and Eurasia, humans became responsible for the current cosmopolitan distribution of honey bees, introducing multiple subspecies into South America (early 16th century), North America (early 17th century), and Australia (early 19th century).
Honey bees are known for their construction of perennial colonial nests from wax, the large size of their colonies, and surplus production and storage of honey, distinguishing their hives as a prized foraging target of many animals, including honey badgers, bears and human hunter-gatherers. Only 8 surviving species of honey bee are recognized, with a total of 43 subspecies, though historically 7 to 11 species are recognized. Honey bees represent only a small fraction of the roughly 20,000 known species of bees.
The best known honey bee is the western honey bee, (Apis mellifera), which was domesticated for honey production and crop pollination. The only other domesticated bee is the eastern honey bee (Apis cerana), which occurs in South, Southeast, and East Asia. Only members of the genus Apis are true honey bees, but some other types of bees produce and store honey and have been kept by humans for that purpose, including the stingless bees belonging to the genus Melipona and the Indian stingless or dammar bee Tetragonula iridipennis. Modern humans also use beeswax in making candles, soap, lip balms and various cosmetics, as a lubricant and in mould-making using the lost wax process.
Etymology and name
The genus name Apis is Latin for "bee". Although modern dictionaries may refer to Apis as either honey bee or honeybee, entomologist Robert Snodgrass asserts that correct usage requires two words, i.e., honey bee, because it is a kind or type of bee. It is incorrect to run the two words together, as in dragonfly or butterfly, which are appropriate because dragonflies and butterflies are not flies. Honey bee, not honeybee, is the listed common name in the Integrated Taxonomic Information System, the Entomological Society of America Common Names of Insects Database, and the Tree of Life Web Project.
Origin, systematics, and distribution
Honey bees appear to have their center of origin in South and Southeast Asia (including the Philippines), as all the extant species except Apis mellifera are native to that region. Notably, living representatives of the earliest lineages to diverge (Apis florea and Apis andreniformis) have their center of origin there.
The first Apis bees appear in the fossil record at the Eocene–Oligocene boundary (34 mya), in European deposits. The origin of these prehistoric honey bees does not necessarily indicate Europe as the place of origin of the genus, only that the bees were present in Europe by that time. Few fossil deposits are known from South Asia, the suspected region of honey bee origin, and fewer still have been thoroughly studied.
No Apis species existed in the New World during human times before the introduction of A. mellifera by Europeans. Only one fossil species is documented from the New World, Apis nearctica, known from a single 14 million-year-old specimen from Nevada.
The close relatives of modern honey bees – e.g., bumblebees and stingless bees – are also social to some degree, and social behavior is considered to be a trait that predates the origin of the genus. Among the extant members of Apis, the more basal species make single, exposed combs, while the more recently evolved species nest in cavities and have multiple combs, which has greatly facilitated their domestication.
Species
While about 20,000 species of bees exist, only eight species of honey bee are recognized, with a total of 43 subspecies, although historically seven to 11 species are recognized: Apis andreniformis (the black dwarf honey bee); Apis cerana (the eastern honey bee); Apis dorsata (the giant honey bee); Apis florea (the red dwarf honey bee); Apis koschevnikovi (Koschevnikov's honey bee); Apis laboriosa (the Himalayan giant honey bee); Apis mellifera (the western honey bee); and Apis nigrocincta (the Philippine honey bee).
Honey bees are the only extant members of the tribe Apini. Today's honey bees constitute three clades: Micrapis (the dwarf honey bees), Megapis (the giant honey bee), and Apis (the western honey bee and its close relatives).
Most species have historically been cultured or at least exploited for honey and beeswax by humans indigenous to their native ranges. Only two species have been truly domesticated: Apis mellifera and Apis cerana. A. mellifera has been cultivated at least since the time of the building of the Egyptian pyramids, and only that species has been moved extensively beyond its native range.
Micrapis
Apis florea and Apis andreniformis are small honey bees of southern and southeastern Asia. They make very small, exposed nests in trees and shrubs. Their stings are often incapable of penetrating human skin, so the hive and swarms can be handled with minimal protection. They occur largely sympatrically, though they are very distinct evolutionarily and are probably the result of allopatric speciation, their distribution later converging.
Given that A. florea is more widely distributed and A. andreniformis is considerably more aggressive, honey is, if at all, usually harvested from the former only. They are the most ancient extant lineage of honey bees, maybe diverging in the Bartonian (some 40 million years ago or slightly later) from the other lineages, but do not seem to have diverged from each other a long time before the Neogene. Apis florea have smaller wing spans than its sister species. Apis florea are also completely yellow with the exception of the scutellum of workers, which is black.
Megapis
Two species are recognized in the subgenus Megapis. They usually build single or a few exposed combs on high tree limbs, on cliffs, and sometimes on buildings. They can be very fierce. Periodically robbed of their honey by human "honey hunters", colonies are easily capable of stinging a human being to death if provoked.
- Apis dorsata, the giant honey bee, is native and widespread across most of South and Southeast Asia.
- A. d. binghami, the Indonesian giant honey bee, is classified as the Indonesian subspecies of the giant honey bee or a distinct species; in the latter case, A. d. breviligula and/or other lineages would probably also have to be considered species.
- Apis laboriosa, the Himalayan giant honey bee, was initially described as a distinct species. Later, it was included in A. dorsata as a subspecies based on the biological species concept, though authors applying a genetic species concept have suggested it should be considered a separate species and more recent research has confirmed this classification. Essentially restricted to the Himalayas, it differs little from the giant honey bee in appearance, but has extensive behavioral adaptations that enable it to nest in the open at high altitudes despite low ambient temperatures. It is the largest living honey bee.
Apis
Eastern Apis species include three or four species, including A. koschevnikovi, A. nigrocincta, and A. cerana. The genetics of the western honey bee (A. mellifera) are unclear.
Koschevnikov's honey bee
Koschevnikov's honey bee (Apis koschevnikovi) is often referred to in the literature as the "red bee of Sabah"; however, A. koschevnikovi is pale reddish in Sabah State, Borneo, Malaysia, but a dark, coppery colour in the Malay Peninsula and Sumatra, Indonesia. Its habitat is limited to the tropical evergreen forests of the Malay Peninsula, Borneo and Sumatra and they do not live in tropical evergreen rain forests which extend into Thailand, Myanmar, Cambodia and Vietnam.
Philippine honey bee
Apis nigrocincta is a cavity-nesting species. The species has rust-coloured scapes, legs, and clypeuses, with reddish-tan hair colour that covers most of the body.
Eastern honey bee
Apis cerana, the eastern honey bee proper, is the traditional honey bee of southern and eastern Asia. One of its subspecies, the Indian honey bee (A. c. indica), was domesticated and kept in hives in a fashion similar to A. mellifera, though on a more limited, regional scale.
It has not been possible yet to resolve its relationship to the Bornean honey bee A. c. nuluensis and Apis nigrocincta from the Philippines to satisfaction; some researchers argue that these are indeed distinct species, but that A. cerana as defined is still paraphyletic, consisting of several separate species, though other researchers argue cerana is a single monophyletic species.
Western honey bee
Main article: Apis melliferaA. mellifera, the most common domesticated species, was first domesticated before 2600 BC and was the third insect to have its genome mapped. It seems to have originated in eastern tropical Africa and spread from there to Europe and eastwards into Asia to the Tian Shan range. It is variously called the European, western, or common honey bee in different parts of the world. Many subspecies have adapted to the local geographic and climatic environments; in addition, breeds such as the Buckfast bee have been bred. Behavior, colour, and anatomy can be quite different from one subspecies or even strain to another.
A. mellifera phylogeny is the most enigmatic of all honey bee species. It seems to have diverged from its eastern relatives only during the Late Miocene. This would fit the hypothesis that the ancestral stock of cave-nesting honey bees was separated into the western group of East Africa and the eastern group of tropical Asia by desertification in the Middle East and adjacent regions, which caused declines of food plants and trees that provided nest sites, eventually causing gene flow to cease.
The diversity of A. mellifera subspecies is probably the product of a largely Early Pleistocene radiation aided by climate and habitat changes during the last ice age. That the western honey bee has been intensively managed by humans for many millennia – including hybridization and introductions – has apparently increased the speed of its evolution and confounded the DNA sequence data to a point where little of substance can be said about the exact relationships of many A. mellifera subspecies.
Apis mellifera is not native to the Americas, so it was not present when the European explorers and colonists arrived. However, other native bee species were kept and traded by indigenous peoples. In 1622, European colonists brought the German honey bee (A. m. mellifera) to the Americas first, followed later by the Italian honey bee (A. m. ligustica) and others. Many of the crops that depend on western honey bees for pollination have also been imported since colonial times. Escaped swarms (known as "wild" honey bees, but actually feral) spread rapidly as far as the Great Plains, usually preceding the colonists. Honey bees did not naturally cross the Rocky Mountains; they were transported by the Mormon pioneers to Utah in the late 1840s, and by ship to California in the early 1850s.
Africanized honey bee
Main article: Africanized beeAfricanized honey bees (known colloquially as "killer bees") are hybrids between European stock and the East African lowland subspecies A. m. scutellata. They are often more aggressive than European honey bees and do not create as much of a honey surplus, but are more resistant to disease and are better foragers. Accidentally released from quarantine in Brazil, they have spread to North America and constitute a pest in some regions. However, these strains do not overwinter well, so they are not often found in the colder, more northern parts of North America. The original breeding experiment for which the East African lowland honey bees were brought to Brazil in the first place has continued (though not as originally intended). Novel hybrid strains of domestic and re-domesticated Africanized honey bees combine high resilience to tropical conditions and good yields. They are popular among beekeepers in Brazil.
Living and fossil honey bees (Apini: Apis)
Tribe Apini Latreille
Genus Apis Linnaeus (sensu lato)
- henshawi species group (†Priorapis Engel, †Synapis Cockerell)
- †A. vetusta Engel
- †A. henshawi Cockerell
- †A. petrefacta (Říha)
- †A. miocenica Hong
- †A. "longtibia" Zhang
- †A. "Miocene 1"
- armbrusteri species group (†Cascapis Engel)
- †A. armbrusteri Zeuner
- †A. nearctica, species novus
- florea species group (Micrapis Ashmead)
- A. florea Fabricius
- A. andreniformis Smith
- dorsata species group (Megapis Ashmead)
- †A. lithohermaea Engel
- A. dorsata Fabricius
- A. laboriosa Smith
- mellifera species group (Apis Linnaeus sensu stricto)
- mellifera subgroup
- A. mellifera Linnaeus (Apis Linnaeus sensu strictissimo)
- cerana subgroup (Sigmatapis Maa)
- A. cerana Fabricius
- A. nigrocincta Smith
- A. koschevnikovi Enderlein
- mellifera subgroup
Life cycle
As in a few other types of eusocial bees, a colony generally contains one queen bee, a female; seasonally up to a few thousand drone bees, or males; and tens of thousands of female worker bees. Details vary among the different species of honey bees, but common features include:
- Eggs are laid singly in a cell in a wax honeycomb, produced and shaped by the worker bees. Using her spermatheca, the queen can choose to fertilize the egg she is laying, usually depending on which cell she is laying it into. Drones develop from unfertilised eggs and are haploid, while females (queens and worker bees) develop from fertilised eggs and are diploid. Larvae are initially fed with royal jelly produced by worker bees, later switching to honey and pollen. The exception is a larva fed solely on royal jelly, which will develop into a queen bee. The larva undergoes several moultings before spinning a cocoon within the cell, and pupating.
- Young worker bees, sometimes called "nurse bees", clean the hive and feed the larvae. When their royal jelly-producing glands begin to atrophy, they begin building comb cells. They progress to other within-colony tasks as they become older, such as receiving nectar and pollen from foragers, and guarding the hive. Later still, a worker takes her first orientation flights and finally leaves the hive and typically spends the remainder of her life as a forager.
- Worker bees cooperate to find food and use a pattern of "dancing" (known as the bee dance or waggle dance) to communicate information regarding resources with each other; this dance varies from species to species, but all living species of Apis exhibit some form of the behavior. If the resources are very close to the hive, they may also exhibit a less specific dance commonly known as the "round dance".
- Honey bees also perform tremble dances, which recruit receiver bees to collect nectar from returning foragers.
- Virgin queens go on mating flights away from their home colony to a drone congregation area and mate with multiple drones before returning. The drones die in the act of mating. Queen honey bees do not mate with drones from their home colony.
- Colonies are established not by solitary queens, as in most bees, but by groups known as "swarms", which consist of a mated queen and a large contingent of worker bees. This group moves en masse to a nest site which was scouted by worker bees beforehand and whose location is communicated with a special type of dance. Once the swarm arrives, they immediately construct a new wax comb and begin to raise new worker brood. This type of nest founding is not seen in any other living bee genus, though several groups of vespid wasps also found new nests by swarming (sometimes including multiple queens). Also, stingless bees will start new nests with large numbers of worker bees, but the nest is constructed before a queen is escorted to the site, and this worker force is not a true "swarm".
Gallery
- Honey bee eggs shown in opened wax cells
- Eggs and larvae
- Drone pupae
- Emergence of a European dark honey bee (A. m. mellifera)
Winter survival
In cold climates, honey bees stop flying when the temperature drops below about 10 °C (50 °F) and crowd into the central area of the hive to form a "winter cluster". The worker bees huddle around the queen bee at the center of the cluster, shivering to keep the center between 27 °C (81 °F) at the start of winter (during the broodless period) and 34 °C (93 °F) once the queen resumes laying. The worker bees rotate through the cluster from the outside to the inside so that no bee gets too cold. The outside edges of the cluster stay at about 8–9 °C (46–48 °F). The colder the weather is outside, the more compact the cluster becomes. During winter, they consume their stored honey to produce body heat. The amount of honey consumed during the winter is a function of winter length and severity, but ranges in temperate climates from 15 to 50 kilograms (33 to 110 lb). In addition, certain bees, including the western honey bee as well as Apis cerana, are known to engage in effective methods of nest thermoregulation during periods of varying temperature in both summer and winter. During the summer, however, this is achieved through fanning and water evaporation from water collected in various fields.
Pollination
Main articles: Pollination management and List of crop plants pollinated by beesOf all the honey bee species, only A. mellifera has been used extensively for commercial pollination of fruit and vegetable crops. The scale of these pollination services is commonly measured in the billions of dollars, credited with adding about 9% to the value of crops across the world. However, despite contributing substantially to crop pollination, there is debate about the potential spillover to natural landscapes and competition between managed honey bees and many of the ~20,000 species of wild pollinators.
Species of Apis are generalist floral visitors, and pollinate many species of flowering plants, but because of their "generalized" nature, they often do so inefficiently. Without specialized adaptations for specific flowers, their ability to reach pollen and nectar is often limited. This combined with their behavioural flexibility may be why they are the most commonly documented pollen thieves. Indeed, for plant species with more specialized pollinators, experiments show that increased honeybee visitation can actually reduce pollination, both where honey bees are non-native and even where they are native. What's more, their tendency to visit all species in a given area means that the pollen they carry for any one species is often very diluted. As such, they can provide some pollination to many plants, but most plants have some native pollinator that is more effective at pollinating that species. When honey bees are present as an invasive species in an area, they compete for flowers with native pollinators, which can actually push out the native species.
Claims of human dependency
Western honey bees have been described as essential to human food production, leading to claims that without their pollination humanity would starve or die out. Apples, blueberries, and cherries, for example, are 90 percent dependent on honeybee pollination. Albert Einstein is sometimes misquoted as saying "If bees disappeared off the face of the earth, man would only have four years left to live". Einstein did not say this and there is no science to support this prediction.
Many important crops need no insect pollination at all. The ten most important crops, comprising 60% of all human food energy, fall into this category: plantains are sterile and propagated by cuttings, as are cassava; potatoes, yams, and sweet potatoes are root vegetables propagated by tubers; soybeans are self-pollinated; and rice, wheat, sorghum, and maize, are wind-pollinated, as are most other grasses.
No crops originating in the New World depend on the western honey bee (Apis mellifera) at all, as the bee is an invasive species brought over with colonists in the last few centuries. Tomatoes, peppers, squash, and all other New World crops evolved with native pollinators such as squash bees, bumble bees, and other native bees. The stingless bees mentioned by Jefferson are distant relatives of the honey bees, in the genus Melipona.
Still, honey bees are considered "crucial to the food supply, pollinating more than 100 of the crops we eat, including nuts, vegetables, berries, citrus and melons." The USDA reports "Three-fourths of the world’s flowering plants and about 35 percent of the world’s food crops depend on animal pollinators to reproduce" and honey bees "pollinate 80 percent of all flowering plants, including more than 130 types of fruits and vegetables."
Nutrition
Honey bees obtain all of their nutritional requirements from a diverse combination of pollen and nectar. Pollen is the only natural protein source for honey bees. Adult worker honey bees consume 3.4–4.3 mg of pollen per day to meet a dry matter requirement of 66–74% protein. The rearing of one larva requires 125-187.5 mg pollen or 25–37.5 mg protein for proper development. Dietary proteins are broken down into amino acids, ten of which are considered essential to honey bees: methionine, tryptophan, arginine, lysine, histidine, phenylalanine, isoleucine, threonine, leucine, and valine. Of these amino acids, honey bees require highest concentrations of leucine, isoleucine, and valine, however elevated concentrations of arginine and lysine are required for brood rearing. In addition to these amino acids, some B vitamins including biotin, folic acid, nicotinamide, riboflavin, thiamine, pantothenate, and most importantly, pyridoxine are required to rear larvae. Pyridoxine is the most prevalent B vitamin found in royal jelly and concentrations vary throughout the foraging season with lowest concentrations found in May and highest concentrations found in July and August. Honey bees lacking dietary pyridoxine were unable to rear brood.
Pollen is also a lipid source for honey bees ranging from 0.8% to 18.9%. Lipids are metabolized during the brood stage for precursors required for future biosynthesis. Fat-soluble vitamins A, D, E, and K are not considered essential but have shown to significantly improve the number of brood reared. Honey bees ingest phytosterols from pollen to produce 24-methylenecholesterol and other sterols as they cannot directly synthesize cholesterol from phytosterols. Nurse bees have the ability to selectively transfer sterols to larvae through brood food.
Nectar is collected by foraging worker bees as a source of water and carbohydrates in the form of sucrose. The dominant monosaccharides in honey bee diets are fructose and glucose but the most common circulating sugar in hemolymph is trehalose which is a disaccharide consisting of two glucose molecules. Adult worker honey bees require 4 mg of utilizable sugars per day and larvae require about 59.4 mg of carbohydrates for proper development.
Honey bees require water to maintain osmotic homeostasis, prepare liquid brood food, and to cool the hive through evaporation. A colony's water needs can generally be met by nectar foraging as it has high water content. Occasionally on hot days or when nectar is limited, foragers will collect water from streams or ponds to meet the needs of the hive.
Beekeeping
Main article: BeekeepingThe only domesticated species of honey bee are A. mellifera and A. cerana, and they are often maintained, fed, and transported by beekeepers. In Japan, where A. mellifera is vulnerable to local hornets and disease, the Japanese honey bee A. cerana japonica is used in its place. Modern hives also enable beekeepers to transport bees, moving from field to field as the crop needs pollinating and allowing the beekeeper to charge for the pollination services they provide, revising the historical role of the self-employed beekeeper, and favoring large-scale commercial operations. Bees of various types other than honey bees are also domesticated and used for pollination or other means around the world, including Tetragonula iridipennis in India, the blue orchard bee for tree nut and fruit pollination in the United States, and a number of species of Bombus (bumblebees) for pollination in various regions globally, such as tomatoes, which are not effectively pollinated by honey bees.
Colony collapse disorder
Main article: Colony collapse disorderPrimarily in places where western honey bees were imported by humans, periodic collapses in western honey bee populations have occurred at least since the late 19th century.
However, as humans continued to manipulate the western honey bee and deliberately transferred them on a global scale, diseases simultaneously spread and harmed managed colonies. Colony losses have occurred periodically throughout history. Fungus, mites, and starvation have all been thought to be the cause of the deaths. Limited occurrences resembling CCD were documented as early as 1869. Colony collapses were called "May Disease" in Colorado in 1891 and 1896.
Starting in the first decade of the 21st century, abnormally high die-offs (30–70% of hives) of western honey bee colonies have occurred in North America. This has been dubbed "colony collapse disorder" (CCD) and was at first unexplained. It seems to be caused by a combination of factors rather than a single pathogen or poison, possibly including neonicotinoid pesticides or Israeli acute paralysis virus.
A survey by the University of Maryland and Auburn University published in 2023 found the number of United States honeybee colonies "remained relatively stable" although 48% of colonies were lost in the year that ended April 1, 2023, with a 12-year average annual mortality rate of 39.6%. The previous year (2021-2022) the loss was 39% and the 2020-2021 loss was 50.8%. Beekeepers told the surveying scientists that 21% loss over the winter is acceptable and more than three-fifths of beekeepers surveyed said their losses were higher than that in 2022-2023.
Parasites
For parasites affecting Apis cerana, see Apis cerana § Pathogens and parasites affecting Apis cerana.Acarapis woodi
Acarapis woodi (or "tracheal mites") are parasitic mites which live and reproduce in adult bees' tracheae, or respiratory tubes, piercing the tube walls with their mouthparts to feed on haemolymph. To infest new hosts, the mites must find newly emerged bees; after three days, the bristles (setae) guarding the spiracles are firm enough to prevent the mites' entry into the tracheae. Mite infestations are known as acarine, and have been called "Isle of Wight disease".
Galleria mellonella
Larval stages of the moth Galleria mellonella parasitize both wild and cultivated honey bees, in particular Apis mellifera and Apis cerana. Eggs are laid within the hive, and the larvae that hatch tunnel through and destroy the honeycombs that contain bee larva and their honey stores. The tunnels they create are lined with silk, which entangles and starves emerging bees. Destruction of honeycombs also result in honey leaking and being wasted. Both G. mellonella adults and larvae are possible vectors for pathogens that can infect bees, including the Israeli acute paralysis virus and the black queen cell virus.
To manage the mite, temperature treatments are possible, but also distorts wax of the honeycombs. Chemical fumigants, particularly CO2, are also used.
Varroa mites
Varroa mites are arguably the biggest threat to honey bees in the United States. These mites invade hives and reproduce by laying eggs on pupa. The hatching mites eat away at the pupa, causing deformities as well as spreading disease. If not detected and treated early on, the mite population may increase to such an extent that the hive will succumb to the diseases and deformities caused by the mites. It was widely believed that the mites drank the blood of bees. However, a 2018 study Article in PNAS: "Linking pesticides and gut health in bees" showed that they actually feed on the fat body tissue of live bees, not the blood.
Mite treatment is accomplished by several methods, including treatment strips and acid vaporization.
Bee products
Honey
Main article: HoneyHoney is the complex substance made when bees ingest nectar, process it, and store the substance into honey combs. All living species of Apis have had their honey gathered by indigenous peoples for consumption. A. mellifera and A. cerana are the only species that have had their honey harvested for commercial purposes.
Beeswax
Main article: BeeswaxWorker bees of a certain age secrete beeswax from a series of exocrine glands on their abdomens. They use the wax to form the walls and caps of the comb. As with honey, beeswax is gathered by humans for various purposes such as candle making, waterproofing, soap and cosmetics manufacturing, pharmaceuticals, art, furniture polish and more.
Bee bread
Main article: Bee pollenBees collect pollen in their pollen baskets and carry it back to the hive.
Worker bees combine pollen, honey and glandular secretions and allow it to ferment in the comb to make bee bread. The fermentation process releases additional nutrients from the pollen and can produce antibiotics and fatty acids which inhibit spoilage. Bee bread is eaten by nurse bees (younger workers) which produce the protein-rich royal jelly needed by the queen and developing larvae in their hypopharyngeal glands.
In the hive, pollen is used as a protein source necessary during brood-rearing. In certain environments, excess pollen can be collected from the hives of A. mellifera and A. cerana. The product is used as a health supplement. It has been used with moderate success as a source of pollen for hand pollination.
Bees as food
Main article: Bee brood § As foodBee brood – the eggs, larvae or pupae of honey bees – is nutritious and seen as a delicacy in countries such as Indonesia, Mexico, Thailand, and many African countries; it has been consumed since ancient times by the Chinese and Egyptians.
Adult wild honeybees are also consumed as a food in parts of China, including Yunnan. According to a worker at a Yunnan-based specialty restaurant, the bees are best served "deep-fried with salt and pepper", and they are "naturally sweet and tasty". Kellie Schmitt of CNN described the dish as one of "Shanghai's weirdest foods".
Propolis
Main article: PropolisPropolis is a resinous mixture collected by honey bees from tree buds, sap flows or other botanical sources, which is used as a sealant for unwanted open spaces in the hive. Propolis may cause severe allergic reactions and have adverse interactions with prescription drugs in some individuals. Propolis is also used in wood finishes on string instruments.
Royal jelly
Main article: Royal jellyRoyal jelly is a honey bee secretion used to nourish the larvae. It is marketed for its alleged but unsupported claims of health benefits. On the other hand, it may cause severe allergic reactions in some individuals.
Sexes and castes
Honey bees have three castes: drones, workers, and queens. Drones are male, while workers and queens are female.
Drones
Main article: Drone (bee)Drones are typically haploid, having only one set of chromosomes, and primarily exist for the purpose of reproduction. They are produced by the queen if she chooses not to fertilize an egg or by an unfertilized laying worker. There are rare instances of diploid drone larvae. This phenomenon usually arises when there are more than two generations of brother-sister mating. Sex determination in honey bees is initially due to a single locus, called the complementary sex determiner (csd) gene. In developing bees, if the conditions are that the individual is heterozygous for the csd gene, they will develop into females. If the conditions are so that the individual is hemizygous or homozygous for the csd gene, they will develop into males. The instances where the individual is homozygous at this gene are the instances of diploid males. Drones take 24 days to develop, and may be produced from summer through to autumn, numbering as many as 500 per hive. They are expelled from the hive during the winter months when the hive's primary focus is warmth and food conservation. Drones have large eyes used to locate queens during mating flights. They do not defend the hive or kill intruders, and do not have a stinger.
Workers
Main article: Worker beeWorkers have two sets of chromosomes. They are produced from an egg that the queen has selectively fertilized from stored sperm. Workers typically develop in 21 days. A typical colony may contain as many as 60,000 worker bees. Workers exhibit a wider range of behaviors than either queens or drones. Their duties change with age in the following order (beginning with cleaning out their own cell after eating through their capped brood cell): feed brood, receive nectar, clean hive, guard duty, and foraging. Some workers engage in other specialized behaviors, such as "undertaking" (removing corpses of their nestmates from inside the hive).
Workers have morphological specializations, including the pollen basket (corbicula), abdominal glands that produce beeswax, brood-feeding glands, and barbs on the sting. Under certain conditions (for example, if the colony becomes queenless), a worker may develop ovaries.
Worker honey bees perform different behavioural tasks that cause them to be exposed to different local environments. The gut microbial composition of workers varies according to the landscape and plant species they forage, such as differences in rapeseed crops, and with different hive tasks, such as nursing or food processing.
Queens
Main article: Queen beeQueen honey bees are created when worker bees feed a single female larva an exclusive diet of a food called "royal jelly". Queens are produced in oversized cells and develop in only 16 days; they differ in physiology, morphology, and behavior from worker bees. In addition to the greater size of the queen, she has a functional set of ovaries, and a spermatheca, which stores and maintains sperm after she has mated. Apis queens practice polyandry, with one female mating with multiple males. The highest documented mating frequency for an Apis queen is in Apis nigrocincta, where queens mate with an extremely high number of males with observed numbers of different matings ranging from 42 to 69 drones per queen. The sting of queens is not barbed like a worker's sting, and queens lack the glands that produce beeswax. Once mated, queens may lay up to 2,000 eggs per day. They produce a variety of pheromones that regulate the behavior of workers, and help swarms track the queen's location during the swarming.
Queen-worker conflict
Main article: Worker policingWhen a fertile female worker produces drones, a conflict arises between her interests and those of the queen. The worker shares half her genes with the drone and one-quarter with her brothers, favouring her offspring over those of the queen. The queen shares half her genes with her sons and one-quarter with the sons of fertile female workers. This pits the worker against the queen and other workers, who try to maximize their reproductive fitness by rearing the offspring most related to them. This relationship leads to a phenomenon known as "worker policing". In these rare situations, other worker bees in the hive who are genetically more related to the queen's sons than those of the fertile workers will patrol the hive and remove worker-laid eggs. Another form of worker-based policing is aggression toward fertile females. Some studies have suggested a queen pheromone which may help workers distinguish worker- and queen-laid eggs, but others indicate egg viability as the key factor in eliciting the behavior. Worker policing is an example of forced altruism, where the benefits of worker reproduction are minimized and that of rearing the queen's offspring maximized.
In very rare instances workers subvert the policing mechanisms of the hive, laying eggs which are removed at a lower rate by other workers; this is known as anarchic syndrome. Anarchic workers can activate their ovaries at a higher rate and contribute a greater proportion of males to the hive. Although an increase in the number of drones would decrease the overall productivity of the hive, the reproductive fitness of the drones' mother would increase. Anarchic syndrome is an example of selection working in opposite directions at the individual and group levels for the stability of the hive.
Under ordinary circumstances the death (or removal) of a queen increases reproduction in workers, and a significant proportion of workers will have active ovaries in the absence of a queen. The workers of the hive produce a last batch of drones before the hive eventually collapses. Although during this period worker policing is usually absent, in certain groups of bees it continues.
According to the strategy of kin selection, worker policing is not favored if a queen does not mate multiple times. Workers would be related by three-quarters of their genes, and the difference in relationship between sons of the queen and those of the other workers would decrease. The benefit of policing is negated, and policing is less favored. Experiments confirming this hypothesis have shown a correlation between higher mating rates and increased rates of worker policing in many species of social hymenoptera.
Timeline of reproduction
For Apis mellifera, queens are the central reproducers among their colonies. Although reproduction may occur around the calendar, it may stop in the late fall due to falling temperatures. If a colony does not have a queen or she is unable to reproduce, workers are able to lay unfertilized eggs that may develop into males. The queens, however, do not reach this point immediately. Typically, it takes a queen 16 days to reach adulthood, with an additional week to begin developing and laying eggs. To begin the process of reproduction in a honeybee colony, workers begin to produce queen larvae while simultaneously finding a place to create a new hive. The queen larvae will then hatch at the old hive, and the queens will fight one another until there is only a single queen left to begin reproducing.
Reproductive strategies
Once a queen matures and is ready to begin reproducing, she will begin making flights to orient to mating in free flight and finding mates before actually beginning to mate. Queens that are ready to mate take between 1 and 6 flights across multiple consecutive days, called nuptial flights. Over the course of their nuptial flights, queens engage with multiple mates and have little control over the number of times they do so.
The process of queens engaging with their mates is not widely understood because the process takes place in free flight, so it is difficult to observe despite various advances in technology and observation techniques. It begins with drones flying in the same area where they know the queen will soon arrive, waiting for her to join them. When the queen arrives, she is crowded immediately by the drones who are eager to mate with her. The drones receive a signal from the queen that her "sting chamber" is open, which induces the drones to mate with her and bring forward their physical contact which warrants reproduction. A successful drone clasps onto the queen and releases seminal fluid and spermatozoa into the queen. After this process is complete, the drone typically remains inside of the queen, which is indicative of the drone's desire to deter other drones from engaging with the queen and reproducing. This behavior also indicates that if the drone blocks other drones from mating with the queen, it will allow the mating drone to fertilize a greater number of the queen's eggs. If the drone does not remain within the queen and removes itself from her, the drone is able to reproduce again with slim chances. Finally, the drone will die after mating with the queen within minutes or hours after reproduction is complete.
Defense
Main article: Bee stingAll honey bees live in colonies where the workers sting intruders as a form of defense, and alarmed bees release a pheromone that stimulates the attack response in other bees. The different species of honey bees are distinguished from all other bee species by the possession of small barbs on the sting, but these barbs are found only in the worker bees.
The sting apparatus, including the barbs, may have evolved specifically in response to predation by vertebrates, as the barbs do not usually function (and the sting apparatus does not detach) unless the sting is embedded in fleshy tissue. While the sting can also penetrate the membranes between joints in the exoskeleton of other insects (and is used in fights between queens), in the case of Apis cerana japonica, defense against larger insects such as predatory wasps (e.g. Asian giant hornet) is usually performed by surrounding the intruder with a mass of defending worker bees, which vibrate their muscles vigorously to raise the temperature of the intruder to a lethal level ("balling"). Previously, heat alone was thought to be responsible for killing intruding wasps, but recent experiments have demonstrated the increased temperature in combination with increased carbon dioxide levels within the ball produce the lethal effect. This phenomenon is also used to kill a queen perceived as intruding or defective, an action known to beekeepers as 'balling the queen', named for the ball of bees formed.
Defense can vary based on the habitat of the bee. In the case of those honey bee species with open combs (e.g., A. dorsata), would-be predators are given a warning signal that takes the form of a "wave" that spreads as a ripple across a layer of bees densely packed on the surface of the comb when a threat is perceived, and consists of bees momentarily arching their bodies and flicking their wings. In cavity dwelling species such as Apis cerana, Apis mellifera, and Apis nigrocincta, entrances to these cavities are guarded and checked for intruders in incoming traffic. Another act of defense against nest invaders, particularly wasps, is "body shaking", a violent and pendulum like swaying of the abdomen, performed by worker bees.
A 2020 study of Apis cerana in Vietnam found that they use feces and even human urine to defend their hives against raids by hornets (Vespa soror), a strategy not replicated by their European and North American counterparts, though collection and use of feces in nest construction is well-known in stingless bees.
Venom
The stings of honey bees are barbed and therefore embed themselves into the sting site, and the sting apparatus has its own musculature and ganglion which keep delivering venom even after detachment. The gland which produces the alarm pheromone is also associated with the sting apparatus. The embedded stinger continues to emit additional alarm pheromone after it has torn loose; other defensive workers are thereby attracted to the sting site. The worker dies after the sting becomes lodged and is subsequently torn loose from the bee's abdomen. The honey bee's venom, known as apitoxin, carries several active components, the most abundant of which is melittin, and the most biologically active are enzymes, particularly phospholipase A2.
Honey bee venom is under laboratory and clinical research for its potential properties and uses in reducing risks for adverse events from bee venom therapy, rheumatoid arthritis, and use as an immunotherapy for protection against allergies from insect stings. Bee venom products are marketed in many countries, but, as of 2018, there are no approved clinical uses for these products which carry various warnings for potential allergic reactions.
Competition
Further information: Western honey bee § As an environmental threatWith an increased number of honey bees in a specific area due to beekeeping, Western honey bees (as an invasive species) and native wild bees often have to compete for the limited habitat and food sources available, and Western honey bees may become defensive in response to the seasonal arrival of competition from other colonies, particularly Africanized bees which may be on the offence and defence year round due to their tropical origin.
Communication
Main article: Bee learning and communicationHoney bees are known to communicate through many different chemicals and odors, as is common in insects. They also rely on a sophisticated dance language that conveys information about the distance and direction to a specific location (typically a nutritional source, e.g., flowers or water). The dance language is also used during the process of colony fission, or swarming, when scouts communicate the location and quality of nesting sites.
The details of the signalling being used vary from species to species; for example, the two smallest species, Apis andreniformis and A. florea, dance on the upper surface of the comb, which is horizontal (not vertical, as in other species), and worker bees orient the dance in the actual compass direction of the resource to which they are recruiting.
Carniolan honey bees (Apis mellifera carnica) use their antennae asymmetrically for social interactions, with a strong lateral preference to use their right antennae.
There has been speculation as to honey bee consciousness. While honey bees lack the parts of the brain that a human being uses for consciousness like the cerebral cortex or even the cerebrum itself, when those parts of a human brain are damaged, the midbrain seems able to provide a small amount of consciousness. Honey bees have a tiny structure that appears similar to a human midbrain, so if it functions the same way they may possibly be able to achieve a small amount of simple awareness of their bodies.
Symbolism
Main article: Bee (mythology)The bee was used as a symbol of government by Emperor Napoleon I of France. Both the Hindu Atharva Veda and the ancient Greeks associated lips anointed with honey with the gift of eloquence and even of prescience. The priestess at Delphi was the "Delphic Bee".
The Quran has a Sura (chapter) titled "The Bee". It is named after honey bees, and contains a comparison of the industry and adaptability of honey bees to the industry of man.
And your Lord inspired the bees: “Make ˹your˺ homes in the mountains, the trees, and in what people construct, and feed from ˹the flower of˺ any fruit ˹you please˺ and follow the ways your Lord has made easy for you.” From their bellies comes forth liquid of varying colours, in which there is healing for people. Surely in this is a sign for those who reflect.
— Surah An-Nahl 16:68–69
In ancient Egyptian mythology, honey bees were believed to be born from the tears of the Sun God, Ra. Because of their divine origin, they were used to represent the Pharaoh. They were also used as a symbol of Lower Egypt in conjuction with the sedge, which represented Upper Egypt.
In Joseph and Asenath, a work composed by ancient Egyptian Jews who may have been affiliated with the Leontopolis temple, bee and honey imagery appears when Asenath converts and is visited by an angel. If the work was indeed connected to the Leontopolis temple, the bees likely represent Levite priests, and the imagery intends to signify the legitimacy of a Jewish temple in Egypt.
A community of honey bees has often been employed by political theorists as a model of human society, from Aristotle and Plato to Virgil. Honey bees, signifying immortality and resurrection, were royal emblems of the Merovingians. The state of Utah is called the "Beehive State", the state emblem is the beehive, the state insect is the honey bee, and a beehive and the word "industry" appear on both the state flag and seal.
Gallery
- A coloured dot applied by a beekeeper identifies a queen Western honey bee.
- Western honey bee foragers loaded with pollen on the hive landing board
- Eastern honey bee (A. cerana) in Hong Kong
- Giant honey bee (A. dorsata)
- Western honey bee visiting flowers
- A colony of giant honey bees (A. dorsata) on their comb
- Western honey bee
- Western honey bee on rock rose (Cistus) in Oakland, California
- Western honey bee collecting pollen from turnip blossoms in Eastern Oklahoma
- A predator, the green bee-eater
- A wild colony in Chandigarh
- Western honey bee on lavender (Lavandula) in Lompoc, California
See also
- Bees and toxic chemicals
- Honey bee life cycle
- Honeybee starvation
- More than Honey – a 2012 Swiss documentary film about honey bees
- Melittology (also known as apiology) – the study of bees
- Brachygastra – Genus of wasps (honey wasps) known to collect and store nectar as honey
- Pollen wasp – Subfamily of wasps unique among wasps in feeding their larvae exclusively with pollen and nectar, in a fashion quite similar to many solitary bees
- Honeypot ant
Notes
- The Mayans kept and collected honey and brood, but from stingless social bees such as Melipona beecheii, not from Apis honeybees.
References
- ^ Whitfield, Charles W.; Behura, Susanta K.; Berlocher, Stewart H.; et al. (27 October 2006). "Thrice Out of Africa: Ancient and Recent Expansions of the Honey Bee, Apis mellifera". Science. 314 (5799): 642–645. Bibcode:2006Sci...314..642W. doi:10.1126/science.1132772. PMID 17068261. S2CID 15967796.
- ^ Han, Fan; Wallberg, Andreas; Webster, Matthew T. (August 2012). "From where did the Western honeybee (Apis mellifera) originate?". Ecology and Evolution. 2 (8): 1949–1957. Bibcode:2012EcoEv...2.1949H. doi:10.1002/ece3.312. PMC 3433997. PMID 22957195.
- Buchmann, Stephen L. (8 June 2010). Honey Bees: Letters from the Hive (1st ed.). New York: Random House Children's Books. p. 157. ISBN 9780375895579.
- "Apis". The Latin Dictionary. Retrieved 23 November 2021.
- "Honeybee". Online Etymology Dictionary, Douglas Harper. 2019. Retrieved 27 February 2016.
- Robert E. Snodgrass (1984). Anatomy of the Honey Bee. Cornell University Press. p. vii. ISBN 978-0-8014-9302-7.
- "Integrated Taxonomic Information System – Search, Apinae". 2008. Retrieved 26 February 2016.
- "Common Names of Insects Database". Entomological Society of America. Retrieved 21 February 2016.
- "Apinae". Tree of Life Web Project. 2004. Retrieved 25 February 2016.
- Michael S. Engel; I. A. Hinojosa-Diaz; A. P. Rasnitsyn (2009). "A honey bee from the Miocene of Nevada and the biogeography of Apis (Hymenoptera: Apidae: Apini)". Proceedings of the California Academy of Sciences. 60 (3): 23–38.
- Nicholls, Henry (15 June 2015). "The truth about bees". BBC. Retrieved 9 July 2020.
- ^ Michael S. Engel (1999). "The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae: Apis)". Journal of Hymenoptera Research. 8: 165–196.
- "Honey Bees". Encyclopedia of Life. Retrieved 9 July 2020.
- ^ Maria C. Arias; Walter S. Sheppard (2005). "Phylogenetic relationships of honey bees (Hymenoptera:Apinae:Apini) inferred from nuclear and mitochondrial DNA sequence data". Molecular Phylogenetics and Evolution. 37 (1): 25–35. Bibcode:2005MolPE..37...25A. doi:10.1016/j.ympev.2005.02.017. PMID 16182149.
Maria C. Arias; Walter S. Sheppard (2005). "Corrigendum to "Phylogenetic relationships of honey bees (Hymenoptera:Apinae:Apini) inferred from nuclear and mitochondrial DNA sequence data"". Molecular Phylogenetics and Evolution. 40 (1): 315. doi:10.1016/j.ympev.2006.02.002. - Clark, Michael C. (2018-04-03). Coexisting on Earth Homo sapiens Quagmire. Michael C. Clark.
- ^ Wongsiri, S.; et al. (1997). "Comparative biology of Apis andreniformis and Apis florea in Thailand". Bee World. 78 (1): 23–35. doi:10.1080/0005772X.1997.11099328.
- Nathan Lo; Rosalyn S. Gloag; Denis L. Anderson; Benjamin P. Oldroyd (2009). "A molecular phylogeny of the genus Apis suggests that the Giant Honey Bee of the Philippines, A. breviligula Maa, and the Plains Honey Bee of southern India, A. indica Fabricius, are valid species". Systematic Entomology. 35 (2): 226–233. doi:10.1111/j.1365-3113.2009.00504.x. S2CID 84531938.
- Kitnya N, Prabhudev MV, Bhatta CP, Pham TH, Nidup T, Megu K, Chakravorty J, Brockmann A, Otis GW (2020) Geographical distribution of the giant honey bee Apis laboriosa Smith, 1871 (Hymenoptera, Apidae). ZooKeys 951: 67–81. https://doi.org/10.3897/zookeys.951.49855
- ^ Hadisoesilo, S.; Raffiudin, Rika; Susanti, Wirian; Atmowidi, Tri; Hepburn, Colleen; Radloff, Sarah E.; Fuchs, Stefan; Hepburn, H. Randall (1 September 2008). "Morphometric analysis and biogeography of Apis koschevnikovi Enderlein (1906)". Apidologie. 39 (5): 495–503. doi:10.1051/apido:2008029. ISSN 0044-8435. S2CID 6605920.
- Hadisoesilo, S.; Otis, G. W.; Meixner, M. (1995). "Two distinct populations of cavity-nesting honey bees (Hymenoptera: Apidae) in South Sulawesi, Indonesia". Journal of the Kansas Entomological Society. 68 (4): 399–407. JSTOR 25085613.
- Radloff, Sarah E.; Hepburn, Colleen; Randall Hepburn, H.; Fuchs, Stefan; Hadisoesilo, Soesilawati; Tan, Ken; Engel, Michael S.; Kuznetsov, Viktor (15 March 2010). "Population structure and classification of Apis cerana" (PDF). Apidologie. 41 (6): 589–601. doi:10.1051/apido/2010008. S2CID 32751472.
- "What's Happening To The Bees? – Part 5: Is There A Difference Between Domesticated And Feral Bees?". 26 June 2014.
- "Egyptian honeybee - Arca del Gusto". Slow Food Foundation.
- ^ Reuber, Brant (21 February 2015). 21st Century Homestead: Beekeeping (First ed.). lulu.com. p. 116. ISBN 978-1-312-93733-8.
- Villanueva, Rogel; et al. (2005). "Extinction of Melipona beecheii and traditional beekeeping in the Yucatán peninsula". Bee World. 86 (2): 35–41. doi:10.1080/0005772X.2005.11099651. S2CID 31943555.
- Head RJ (2008). "A Brief Survey of Ancient Near Eastern Beekeeping; A Final Note". The FARMS Review. Archived from the original on 30 July 2013. Retrieved 16 January 2012.
- "Africanized honey bee – Apis mellifera scutellata Lepeletier". entnemdept.ufl.edu. Retrieved 1 May 2019.
- "Africanized Bees". Smithsonian Institution. Department of Systematic Biology. Retrieved 2024-10-28.
{{cite web}}
: CS1 maint: others (link) - Michael S. Engel, Ismael A. Hinojosa-Díaz & Alexandr P. Rasnitsyn (2009). "A honey bee from the Miocene of Nevada and the biogeography of Apis (Hymenoptera: Apidae: Apini)" (PDF). Proceedings of the California Academy of Sciences. 4. 60 (3): 23–38.
- James L. Gould; Carol Grant Gould (1995). The Honey Bee. Scientific American Library. p. 19. ISBN 978-0-7167-6010-8.
- "What do bees do in the winter?". Archived from the original on 4 March 2016. Retrieved 12 March 2016.
- Oldroyd, Benjamin P.; Wongsiri, Siriwat (2006). Asian Honey Bees (Biology, Conservation, and Human Interactions). Cambridge, Massachusetts and London, England: Harvard University Press.ISBN 0674021940.
- "Conservation Work for Honey Bees". USDA. Retrieved 24 November 2021.
- Geldmann, Jonas; González-Varo, Juan P. (2018). "Conserving honey bees does not help wildlife". Science. 359 (6374): 392–393. Bibcode:2018Sci...359..392G. doi:10.1126/science.aar2269. PMID 29371456. S2CID 206665383.
- Hargreaves, Anna L.; Harder, Lawrence D.; Johnson, Steven D. (2009). "Consumptive emasculation: the ecological and evolutionary consequences of pollen theft". Biological Reviews. 84 (2): 259–276. doi:10.1111/j.1469-185X.2008.00074.x. PMID 19382932. S2CID 205599079.
- do Carmo, Roselaini Mendes; Franceschinelli, Edivani Villaron; da Silveira, Fernando Amaral (2004). "Introduced Honeybees (Apis mellifera) Reduce Pollination Success without Affecting the Floral Resource Taken by Native Pollinators". Biotropica. 36 (3): 371–376. Bibcode:2004Biotr..36..371D. doi:10.1111/j.1744-7429.2004.tb00329.x. ISSN 0006-3606. JSTOR 30043128. S2CID 86316179.
- Hargreaves, Anna L.; Harder, Lawrence D.; Johnson, Steven D. (2010). "Native pollen thieves reduce the reproductive success of a hermaphroditic plant, Aloe maculata". Ecology. 91 (6): 1693–1703. Bibcode:2010Ecol...91.1693H. doi:10.1890/09-0792.1. ISSN 0012-9658. PMID 20583711.
- Plants, Pollinators, and the Price of Almonds Archived 2018-09-19 at the Wayback Machine
"Flowers set more seeds when visited by wild insects, and the more plants that were visited by wild insects, the more likely they were to set fruit. In some places the researchers considered, wild insects were pollinating most of the plants despite rented honey bees being present." - Saving pollinators is about more than just honeybees
The problem is that there are only so many flowers and places to nest. And once the numbers of honeybees have been artificially inflated (commercial-scale beekeeping would not exist without humans) the increased competition for these resources can push native non-Apis pollinators out of their natural habitats. Honeybees also spread exotic plants and transmit pathogens, both of which have been shown to harm other pollinators. - "If All The Bees In The World Die, Humans Will Not Survive". Elite Daily. 15 September 2014.
- A Devastating Look At Our World If Honeybees Disappeared
"A world without honeybees would also mean a world without fruits, vegetables, nuts, and seeds." - "Supporting pollination in agriculture". AgBioResearch, Michigan State University College of Agriculture & Natural Resources. 2018-10-01. Retrieved 2022-07-09.
- What Would Happen if All the Bees Went Extinct?
"First, the easy part: "I've never seen anything definitively link the quote to Einstein," says Mark Dykes, the chief inspector for Texas Apiary Inspection Service. Quote checkers like this one, and this one agree. But debunking its message? That's more complicated." - Would a World Without Bees Be a World Without Us?
"Albert Einstein is sometimes quoted as saying, "If the bee disappears from the surface of the earth, man would have no more than four years to live." It's highly unlikely that Einstein said that. For one thing, there's no evidence of him saying it. For another, the statement is hyperbolic and wrong (and Einstein was rarely wrong)." - Goldschein, Eric. "The 10 Most Important Crops In The World". Business Insider.
- "What Are the World's Most Important Staple Foods?". WorldAtlas. 7 June 2019.
- Gibson, D.J. (2009). Grasses and grassland ecology. Oxford: Oxford University Press. p. 82. ISBN 9780198529187.
- "Are honey bees native to North America?". USGS. 7 May 2024.
- ^ "Struggling beekeepers stabilize U.S. honeybee population after nearly half of colonies died last year". PBS News. June 22, 2023.
- "The Importance of Pollinators | USDA". www.usda.gov.
- "The Value of Birds and Bees". Farmers.gov. June 22, 2020.
- ^ Brodschneider, Robert; Crailsheim, Karl (1 May 2010). "Nutrition and health in honey bees" (PDF). Apidologie. 41 (3): 278–294. doi:10.1051/apido/2010012. ISSN 0044-8435. S2CID 40046635.
- ^ Anderson, Leroy M; Dietz, A. (1976). "Pyridoxine Requirement of the Honey Bee (Apis mellifera) For Brood Rearing". Apidologie. 7: 67–84. doi:10.1051/apido:19760105.
- Karasov, William H.; Martinez del Rio, Carlos (2008). Physiological Ecology: How Animals Process Energy, Nutrients, and Toxins. Princeton. pp. 63–66.
- Kuhnholz, Susanne (1997). "The Control of Water Collection in Honey Bee Colonies". Behavioral Ecology and Sociobiology. 41 (6): 407–422. Bibcode:1997BEcoS..41..407K. doi:10.1007/s002650050402. S2CID 41311766.
- "Bumblebee species | Biobest". www.biobestgroup.com.
- "Colony Collapse Disorder: The Vanishing Honeybee (Apis Mellifera)" (PDF). CU Scholar. 12 March 2011. Retrieved 26 March 2024.
- Robyn M. Underwood; Dennis van Engelsdorp. "Colony Collapse Disorder: Have We Seen This Before?". The Pennsylvania State University, Department of Entomology. Retrieved 2010-05-02.
- Benjamin Lester (7 March 2007). "Mystery of the dying bees". Cosmos. Archived from the original on 24 March 2008.
- Dennis vanEngelsdorp; Jay D. Evans; Claude Saegerman; Chris Mullin; Eric Haubruge; Bach Kim Nguyen; Maryann Frazier; Jim Frazier; Diana Cox-Foster; Yanping Chen; Robyn Underwood; David R. Tarpy; Jeffery S. Pettis (August 2009). "Colony Collapse Disorder: A Descriptive Study" (PDF). PLOS ONE. 4 (8): e6481. Bibcode:2009PLoSO...4.6481V. doi:10.1371/journal.pone.0006481. PMC 2715894. PMID 19649264.
- Bryony, Bonning (11 November 2009). "Honey Bee Disease Overview". Journal of Invertebrate Pathology. 103: S2-4. doi:10.1016/j.jip.2009.07.015. PMID 19909974.
- McDonald-Gibson, Charlotte. "'Victory for bees' as European Union bans neonicotinoid pesticides blamed for destroying bee population". The Independent. Retrieved 2 July 2014.
- "Colony Collapse Disorder". Beeologics. Archived from the original on 6 February 2013. Retrieved 23 October 2014.
- ""Tracheal mites" Tarsonemidae". Agricultural Research Service, United States Department of Agriculture. February 18, 2005. Archived from the original on May 17, 2011. Retrieved March 10, 2011.
- ^ Kwadha, Charles A.; Ong'amo, George O.; Ndegwa, Paul N.; Raina, Suresh K.; Fombong, Ayuka T. (9 June 2017). "The Biology and Control of the Greater Wax Moth, Galleria mellonella". Insects. 8 (2): 61. doi:10.3390/insects8020061. PMC 5492075. PMID 28598383.
- Crane E (1990). "Honey from honeybees and other insects". Ethology Ecology & Evolution. 3 (sup1): 100–105. doi:10.1080/03949370.1991.10721919.
- Sanford, M.T.; Dietz, A. (1976). "The fine structure of the wax gland of the honey bee (Apis mellifera L.)". Apidologie. 7 (3): 197–207. doi:10.1051/apido:19760301.
- "Wax Rendering | Bee Culture". Bee Culture. 23 March 2016. Retrieved 26 October 2018.
- Gillott, Cedric (1995). Entomology. Springer. p. 79.
- Anderson, Kirk E.; Carroll, Mark J.; Sheehan, Tim; Lanan, Michele C.; Mott, Brendon M.; Maes, Patrick; Corby-Harris, Vanessa (5 November 2014). "Hive-stored pollen of honey bees: many lines of evidence are consistent with pollen preservation, not nutrient conversion". Molecular Ecology. 23 (23): 5904–5917. Bibcode:2014MolEc..23.5904A. doi:10.1111/mec.12966. PMC 4285803. PMID 25319366.
- Haris, Emmaria (6 December 2013). "Sensasi Rasa Unik Botok Lebah yang Menyengat (Unique taste sensation botok with stinging bees)" (in Indonesian). Sayangi.com. Archived from the original on 22 June 2015. Retrieved 14 February 2018.
- Pearson, Gwen (3 May 2014). "Women Work to Save Native Bees of Mexico". Wired. Retrieved 15 May 2018.
- "How to collect drone larvae from the beehive". Home technologies and practices for small agricultural producers, UN Food and Agriculture Organization. 29 August 2016. Archived from the original on 13 February 2018. Retrieved 13 February 2018.
- Holland, Jennifer (14 May 2013). "U.N. Urges Eating Insects: 8 Popular Bugs to Try". National Geographic. Archived from the original on June 6, 2013.
- Schmitt, Kellie (26 December 2011). "Shanghai's weirdest foods". CNN. Archived from the original on 28 March 2013.
- Simone-Finstrom, Michael; Spivak, Marla (May–June 2010). "Propolis and bee health: The natural history and significance of resin use by honey bees". Apidologie. 41 (3): 295–311. doi:10.1051/apido/2010016. hdl:11299/182451.
- "Propolis". U.S. National Library of Medicine. 28 July 2022. Retrieved 5 February 2023.
- Gambichler T; Boms S; Freitag M (April 2004). "Contact dermatitis and other skin conditions in instrumental musicians". BMC Dermatol. 4: 3. doi:10.1186/1471-5945-4-3. PMC 416484. PMID 15090069.
- Jung-Hoffmann, L (1966). "Die Determination von Königin und Arbeiterin der Honigbiene". Z Bienenforsch. 8: 296–322.
- EFSA Panel on Dietetic Products, Nutrition and Allergies, European Food Safety Authority (2011). "Scientific Opinion on the substantiation of health claims related to: anthocyanidins and proanthocyanidins (ID 1787, 1788, 1789, 1790, 1791); sodium alginate and ulva (ID 1873); vitamins, minerals, trace elements and standardised ginseng G115 extract (ID 8, 1673, 1674); vitamins, minerals, lysine and/or arginine and/or taurine (ID 6, 1676, 1677); plant-based preparation for use in beverages (ID 4210, 4211); Carica papaya L. (ID 2007); "fish protein" (ID 651); acidic water-based, non-alcoholic flavoured beverages containing calcium in the range of 0.3 to 0.8 mol per mol of acid with a pH not lower than 3.7 (ID 1170); royal jelly (ID 1225, 1226, 1227, 1228, 1230, 1231, 1326, 1328, 1329, 1982, 4696, 4697); foods low in cholesterol (ID 624); and foods low in trans-fatty acids (ID 672, 4333) pursuant to Article 13(1) of Regulation (EC) No 1924/2006". EFSA Journal. 9 (4): 2083. doi:10.2903/j.efsa.2011.2083.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - "Federal Government Seizes Dozens of Misbranded Drug Products: FDA warned company about making medical claims for bee-derived products". Food and Drug Administration. 5 April 2010.
- Leung, R; Ho, A; Chan, J; Choy, D; Lai, CK (March 1997). "Royal jelly consumption and hypersensitivity in the community". Clin. Exp. Allergy. 27 (3): 333–6. doi:10.1111/j.1365-2222.1997.tb00712.x. PMID 9088660. S2CID 19626487.
- Cervoni, Mário Sérgio; Hartfelder, Klaus (2021). "Caste Differentiation: Honey Bees". Encyclopedia of Social Insects. pp. 177–184. doi:10.1007/978-3-030-28102-1_151. ISBN 978-3-030-28101-4.
- "Bee castes". Visual Dictionary, QA International. 2017. Retrieved 18 May 2017.
- ^ "Getting Started: Honey Bee Biology". University of Georgia College of Agricultural and Environmental Sciences. 2017. Archived from the original on 24 January 2018. Retrieved 18 May 2017.
- Woyka, J.; Pszczelnictwa, Zaklad; Drone Larvae from Fertilized Eggs of the Honey Bee Archived 2014-10-22 at the Wayback Machine Journal of Apiculture Research, (1963), pages 19–24
- Weinstock, George M.; Robinson, Gene E., & the Honeybee Genome Sequencing Consortium Insights into social insects from the genome of the honeybee Apis mellifera Nature, volume "'443'" (2006), pages 931–949
- ^ "Worker, drone and queen bees". PerfectBee LLC. 2017. Retrieved 18 May 2017.
- Harbo JR, Rinderer TE (1980). "Breeding and Genetics of Honey Bees". Beesource Beekeeping. Retrieved 18 May 2017.
- "Morphology of a honeybee: worker". Visual Dictionary, QA International. 2017. Retrieved 18 May 2017.
- ^ Jones, Julia C; Fruciano, Carmelo; Hildebrand, Falk; Al Toufalilia, Hasan; Balfour, Nicholas J; Bork, Peer; Engel, Philipp; Ratnieks, Francis LW; Hughes, William OH (2018). "Gut microbiota composition is associated with environmental landscape in honey bees". Ecology and Evolution. 8 (1): 441–451. Bibcode:2018EcoEv...8..441J. doi:10.1002/ece3.3597. PMC 5756847. PMID 29321884.
- ^ Jones, J. C; Fruciano, C; Marchant, J; Hildebrand, F; Forslund, S; Bork, P; Engel, P; Hughes, W. O. H (2018). "The gut microbiome is associated with behavioural task in honey bees". Insectes Sociaux. 65 (3): 419–429. doi:10.1007/s00040-018-0624-9. PMC 6061168. PMID 30100619.
- Hadisoesilo, Soesilawati. "The Comparative Study of Two Species of Cavity-Nesting Honey Bees of Sulawesi, Indonesia" (PDF).
- Wenseleers, T.; Helanterä, H.; Hart, A.; Ratnieks, F. L. W. (2004). "Worker reproduction and policing in insect societies: an ESS analysis". Journal of Evolutionary Biology. 17 (5): 1035–1047. doi:10.1111/j.1420-9101.2004.00751.x. PMID 15312076. S2CID 7239058.
- Ratnieks, F.; Visscher, P. Kirk (1989). "Worker policing in the honeybee". Nature. 342 (6251): 796–797. Bibcode:1989Natur.342..796R. doi:10.1038/342796a0. S2CID 4366903.
- Pirk, C.; Neumann, P.; Hepburn, R.; Moritz, R.; Tautz, J. (2003). "Egg viability and worker policing in honey bees". PNAS. 101 (23): 8649–8651. Bibcode:2004PNAS..101.8649P. doi:10.1073/pnas.0402506101. PMC 423249. PMID 15169961.
- Oldroyd, B.; Ratnieks, Francis (2002). "Egg-marking pheromones in honey-bees Apis mellifera". Behavioral Ecology and Sociobiology. 51 (6): 590–591. Bibcode:2002BEcoS..51..590O. doi:10.1007/s00265-002-0480-4. S2CID 30446742.
- Barron, A.; Oldroyd, B; Ratnieks, F.L.W. (2001). "Worker reproduction in honey-bees (Apis) and the anarchic syndrome: a review". Behavioral Ecology and Sociobiology. 50 (3): 199–208. Bibcode:2001BEcoS..50..199B. doi:10.1007/s002650100362. S2CID 17246102.
- Châline, N.; Martin, S.J.; Ratnieks, F.L.W. (2004). "Worker policing persists in a hopelessly queenless honey bee colony (Apis mellifera)". Insectes Soc. 51 (2): 1–4. doi:10.1007/s00040-003-0708-y. S2CID 11988371.
- Davies, N.R., Krebs, J.R., and West, S.A. An Introduction to Behavioral Ecology. 4th ed. West Sussex: Wiley-Blackwell, 2012. Print. pp. 387–388
- ^ Hammond, George; Blankenship, Madison. "Apis mellifera (honey bee)". Animal Diversity Web. Retrieved 2023-04-17.
- Heidinger, Ina Monika Margret; Meixner, Marina Doris; Berg, Stefan; Büchler, Ralph (2014-07-01). "Observation of the Mating Behavior of Honey Bee (Apis mellifera L.) Queens Using Radio-Frequency Identification (RFID): Factors Influencing the Duration and Frequency of Nuptial Flights". Insects. 5 (3): 513–527. doi:10.3390/insects5030513. ISSN 2075-4450. PMC 4592583. PMID 26462822.
- Barron, Andrew B.; Oldroyd, Benjamin P.; Ratnieks, Francis L. (2001-08-01). "Worker reproduction in honey-bees (Apis) and the anarchic syndrome: a review". Behavioral Ecology and Sociobiology. 50 (3): 199–208. Bibcode:2001BEcoS..50..199B. doi:10.1007/s002650100362. ISSN 1432-0762. S2CID 17246102.
- "Chapter 8: Most Spectacular Mating | The University of Florida Book of Insect Records | Department of Entomology & Nematology | UF/IFAS". entnemdept.ufl.edu. Retrieved 2023-04-17.
- "Bee Bonanza. The story of Honey Bees". askabiologist.asu.edu. Arizona State University. 13 June 2017. Retrieved 15 March 2022.
- C. H. Thawley. "Heat tolerance as a weapon". Davidson College. Archived from the original on 18 July 2010. Retrieved 1 June 2010.
- Michio Sugahara; Fumio Sakamoto (2009). "Heat and carbon dioxide generated by honeybees jointly act to kill hornets". Naturwissenschaften. 96 (9): 1133–6. Bibcode:2009NW.....96.1133S. doi:10.1007/s00114-009-0575-0. PMID 19551367. S2CID 22080257.
- Victoria Gill (3 July 2009). "Honeybee mobs overpower hornets". BBC News. Retrieved 5 July 2009.
- "Giant Honeybees Use Shimmering 'Mexican Waves' To Repel Predatory Wasps". ScienceDaily.
- Radloff, Sara E.; Hepburn, H. Randall; Engel, Michael S. (2011). Honeybees of Asia. Berlin: Springer Science & Business Media. ISBN 978-3642164217.
- Mattila, Heather R.; Otis, Gard W.; Nguyen, Lien T. P.; Pham, Hanh D.; Knight, Olivia M.; Phan, Ngoc T. (9 December 2020). Blenau, Wolfgang (ed.). "Honey bees (Apis cerana) use animal feces as a tool to defend colonies against group attack by giant hornets (Vespa soror)". PLOS ONE. 15 (12): e0242668. Bibcode:2020PLoSO..1542668M. doi:10.1371/journal.pone.0242668. ISSN 1932-6203. PMC 7725375. PMID 33296376. S2CID 228087051.
- Basari N, Ramli SN, Mohd Khairi NS. (2018) Food reward and distance influence the foraging pattern of stingless bee, Heterotrigona itama. Insects 9(4):138. doi:10.3390/insects9040138
- Jalil, A.H. (2014) Beescape for Meliponines: Conservation of Indo-Malayan Stingless Bees
- Biller, Jose; Ferro, Jose M (7 February 2014). Neurologic Aspects of Systemic Disease, Part II (1st ed.). Elsevier. p. 995. ISBN 9780702040870.
- Chen J, Guan SM, Sun W, Fu H (2016). "Melittin, the Major Pain-Producing Substance of Bee Venom". Neuroscience Bulletin. 32 (3): 265–72. doi:10.1007/s12264-016-0024-y. PMC 5563768. PMID 26983715.
- Ramanadham, S; Ali, T; Ashley, J. W; Bone, R. N; Hancock, W. D; Lei, X (2015). "Calcium-independent phospholipases A2 and their roles in biological processes and diseases". Journal of Lipid Research. 56 (9): 1643–1668. doi:10.1194/jlr.R058701. PMC 4548770. PMID 26023050.
- Park, J. H; Yim, B. K; Lee, J. H; Lee, S; Kim, T. H (2015). "Risk Associated with Bee Venom Therapy: A Systematic Review and Meta-Analysis". PLOS ONE. 10 (5): e0126971. Bibcode:2015PLoSO..1026971P. doi:10.1371/journal.pone.0126971. PMC 4440710. PMID 25996493.
- Lee, J. A; Son, M. J; Choi, J; Jun, J. H; Kim, J. I; Lee, M. S (2014). "Bee venom acupuncture for rheumatoid arthritis: A systematic review of randomised clinical trials". BMJ Open. 4 (11): e006140. doi:10.1136/bmjopen-2014-006140. PMC 4225238. PMID 25380812.
- Boyle, R. J; Elremeli, M; Hockenhull, J; Cherry, M. G; Bulsara, M. K; Daniels, M; Oude Elberink, J. N (2012). "Venom immunotherapy for preventing allergic reactions to insect stings" (PDF). Cochrane Database of Systematic Reviews. 10 (2): CD008838. doi:10.1002/14651858.CD008838.pub2. PMC 8734599. PMID 23076950.
- "Wasp and Bee venom". Drugs.com. 2018. Retrieved 29 June 2018.
- Hudewenz, Anika; Klein, Alexandra-Maria (1 December 2013). "Competition between honey bees and wild bees and the role of nesting resources in a nature reserve". Journal of Insect Conservation. 17 (6): 1275–1283. Bibcode:2013JICon..17.1275H. doi:10.1007/s10841-013-9609-1. ISSN 1366-638X. S2CID 16268870.
- Johnson, Brian R.; Nieh, James C. (1 November 2010). "Modeling the Adaptive Role of Negative Signaling in Honey Bee Intraspecific Competition". Journal of Insect Behavior. 23 (6): 459–471. Bibcode:2010JIBeh..23..459J. doi:10.1007/s10905-010-9229-5. ISSN 0892-7553. PMC 2955239. PMID 21037953.
- Tarpy, David (2016). "The Honey Bee Dance Language". NC State Extension.
- Rogers, Lesley J.; Elisa Rigosi; Elisa Frasnelli; Giorgio Vallortigara (27 June 2013). "A right antenna for social behaviour in honeybees". Scientific Reports. 3: 2045. Bibcode:2013NatSR...3.2045R. doi:10.1038/srep02045. PMC 3694496. PMID 23807465.
- Jessica Shugart. "Honeybees use right antennae to tell friend from foe". Science News. Retrieved 12 March 2016.
- Gorman, James (18 April 2016). "Do Honeybees Feel? Scientists Are Entertaining the Idea". The New York Times.
- "The symbols of empire". Napoleon.org. Retrieved 1 June 2010.
- "O Asvins, lords of brightness, anoint me with the honey of the bee, that I may speak forceful speech among men! Atharva Veda 91–258, quoted in Maguelonne Toussaint-Samat (Anthea Bell, tr.) The History of Food, 2nd ed. 2009:14.
- "THE HONEY BEE". www.islamicity.com.
- "Honey Bees in Quran". www.miracles-of-quran.com.
- Holly Norton (24 May 2017). "Honey, I love you: our 40,000-year relationship with the humble bee". The Guardian. Retrieved 29 June 2018.
- Haynes, Dawn. The Symbolism and Significance of the Butterfly in Ancient Egypt (PDF).
- Piotrkowski, Meron M. (2019). Priests in exile: the history of the temple of Onias and its community in the Hellenistic Period. Studia Judaica. Berlin: De Gruyter. ISBN 978-3-11-059107-1. OCLC 1076801783.
- Virgil, Georgics, book IV.
- Bee Wilson (2004). The Hive: The Story of the Honeybee. London: John Murray. p. 14. ISBN 978-0-7195-6598-4.
- "Utah State Motto and Emblem". Utah State Library. Archived from the original on 21 October 2017. Retrieved 13 October 2017.
External links
- Could a Mushroom Save a Honeybee? Documentary produced by Oregon Field Guide, 14 October 2015
Honey bee types and characteristics | |
---|---|
Bee castes | |
Life cycle | |
Subspecies, Breeds and Phenotypes |
|
Cultivation | |
Equipment | |
Parasites and diseases | |
Lists | |
Beekeeping by countries | |
Museums and insectariums |
Human interactions with insects | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aspects of insects in culture |
| ||||||||||||||
Pioneers |
| ||||||||||||||
Concerns | |||||||||||||||
Categories, templates | |||||||||||||||
Insects portal |
Eusociality | ||
---|---|---|
Topics | ||
Groups | ||
In culture | ||
Pioneers, works |
|