Revision as of 01:03, 19 September 2013 editThucydides411 (talk | contribs)Extended confirmed users6,778 edits Putting math in own section, and adding inverse transformation← Previous edit | Latest revision as of 16:45, 8 December 2024 edit undoStrebe (talk | contribs)Extended confirmed users8,419 edits It’s not about equivalence; it’s that it appears in records both ways. Undid revision 1261825089 by Haush2909 (talk)Tag: Undo | ||
(88 intermediate revisions by 54 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Pseudocylindrical equal-area map projection}} | |||
⚫ | ] | ||
⚫ | ] of deformation]] | ||
⚫ | The '''Mollweide projection''' is |
||
⚫ | ] | ||
⚫ | The projection was first published by mathematician and astronomer ] ( |
||
⚫ | ] of deformation]] | ||
⚫ | The '''Mollweide projection''' is an ], ] generally used for maps of the world or ]. It is also known as the '''Babinet projection''', '''homalographic projection''', '''homolographic projection''', and '''elliptical projection'''. The projection trades accuracy of angle and shape for accuracy of proportions in area, and as such is used where that property is needed, such as maps depicting global distributions. | ||
⚫ | ] image (2012) of the ].<ref name="Space-20121221">{{cite web |last=Gannon |first=Megan |title=New 'Baby Picture' of Universe Unveiled |url=http://www.space.com/19027-universe-baby-picture-wmap.html|date=December 21, 2012 |publisher=] | |
||
⚫ | The projection was first published by mathematician and astronomer ] (1774–1825) of ] in 1805. It was reinvented and popularized in 1857 by ], who gave it the name '''homalographic projection'''. The variation '''homolographic''' arose from frequent nineteenth-century usage in star atlases.<ref>''Flattening the Earth: Two Thousand Years of Map Projections'', John P. Snyder, 1993, pp. 112–113, {{ISBN|0-226-76747-7}}.</ref> | ||
⚫ | ] image (2012) of the ].<ref name="Space-20121221">{{cite web |last=Gannon |first=Megan |title=New 'Baby Picture' of Universe Unveiled |url=http://www.space.com/19027-universe-baby-picture-wmap.html|date=December 21, 2012 |publisher=] |access-date=December 21, 2012 }}</ref><ref name="arXiv-20121220">{{cite journal |last1=Bennett |first1=C.L. |last2=Larson |first2=L.|last3=Weiland |first3=J.L. |last4=Jarosk |first4= N. |last5=Hinshaw |first5=N. |last6=Odegard|first6=N. |last7=Smith |first7=K.M. |last8=Hill |first8=R.S. |last9=Gold |first9=B.|last10=Halpern |first10=M. |last11=Komatsu |first11=E. |last12=Nolta |first12=M.R.|last13=Page |first13=L. |last14=Spergel |first14=D.N. |last15=Wollack |first15=E.|last16=Dunkley |first16=J. |last17=Kogut |first17=A. |last18=Limon |first18=M. |last19=Meyer|first19=S.S. |last20=Tucker |first20=G.S. |last21=Wright |first21=E.L. |title=Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results|journal=]|volume=208|issue=2|page=20|year=2013|arxiv=1212.5225|bibcode=2013ApJS..208...20B|doi=10.1088/0067-0049/208/2/20|s2cid=119271232 }}</ref> Projected using the Mollweide projection.]] | ||
] levels measured by the ]. Projected using the Mollweide projection.]] | ] levels measured by the ]. Projected using the Mollweide projection.]] | ||
==Properties== | ==Properties== | ||
The Mollweide is a ] projection in which the ] is represented as a straight horizontal line perpendicular to a central ] one-half |
The Mollweide is a ] projection in which the ] is represented as a straight horizontal line perpendicular to a central ] that is one-half the equator's length. The other ]s compress near the poles, while the other meridians are equally spaced at the equator. The meridians at 90 degrees east and west form a perfect circle, and the whole earth is depicted in a proportional 2:1 ellipse. The proportion of the area of the ellipse between any given parallel and the equator is the same as the proportion of the area on the globe between that parallel and the equator, but at the expense of shape distortion, which is significant at the perimeter of the ellipse, although not as severe as in the ]. | ||
Shape distortion may be diminished by using an ''interrupted'' version. A ''sinusoidal interrupted'' Mollweide projection discards the central meridian in favor of alternating half-meridians which terminate at right angles to the equator. This has the effect of dividing the globe into lobes |
Shape distortion may be diminished by using an ''interrupted'' version. A ''sinusoidal interrupted'' Mollweide projection discards the central meridian in favor of alternating half-meridians which terminate at right angles to the equator. This has the effect of dividing the globe into lobes. In contrast, a ''parallel interrupted'' Mollweide projection uses multiple disjoint central meridians, giving the effect of multiple ellipses joined at the equator. More rarely, the projection can be drawn obliquely to shift the areas of distortion to the oceans, allowing the continents to remain truer to form. | ||
The Mollweide, or its properties, has inspired the creation of several other projections, including the ], ] and the ].<ref>, ] Professional Paper 1395, John P. Snyder, 1987, pp. 249–252</ref> | The Mollweide, or its properties, has inspired the creation of several other projections, including the ], ] and the ].<ref>, ] Professional Paper 1395, John P. Snyder, 1987, pp. 249–252</ref> | ||
==Mathematical |
==Mathematical formulation== | ||
The projection transforms from latitude and longitude to map coordinates |
The projection transforms from latitude and longitude to map coordinates ''x'' and ''y'' via the following equations:<ref name="MathWorldMollweide">{{MathWorld|title=Mollweide Projection|urlname=MollweideProjection|author=Weisstein, Eric W.}}</ref> | ||
:<math>x = \frac{2 \sqrt 2}{\pi} \left( \lambda - \lambda_{0} \right) \cos \ |
:<math>\begin{align} x &= R \frac{2 \sqrt 2}{\pi} \left( \lambda - \lambda_{0} \right) \cos \theta, \\ y &= R \sqrt 2 \sin \theta ,\end{align}</math> | ||
where ''θ'' is an auxiliary angle defined by | |||
:<math>y = \sqrt 2 \sin \left( \theta \right),\,</math> | |||
:<math>2\theta + \sin 2\theta = \pi \sin \varphi \qquad (1)</math> | |||
and ''λ'' is the longitude, ''λ''{{sub|0}} is the central meridian, ''φ'' is the latitude, and ''R'' is the radius of the globe to be projected. The map has area 4{{pi}}''R''{{sup|2}}, conforming to the surface area of the generating globe. The ''x''-coordinate has a range of , and the ''y''-coordinate has a range of . | |||
:<math>2 \theta + \sin \left( 2 \theta \right) = \pi \sin \left( \varphi \right) \qquad (1)</math> | |||
⚫ | Equation (1) may be solved with rapid convergence (but slow near the poles) using ] iteration:<ref name="MathWorldMollweide"/> | ||
and ''λ'' is the longitude, ''λ<sub>0</sub>'' is the central meridian, and ''φ'' is the latitude. | |||
:<math>\begin{align} \theta_0 &= \varphi, \\ \theta_{n+1} &= \theta_n - \frac{2 \theta_n + \sin 2\theta_n - \pi \sin \varphi}{2 + 2 \cos 2\theta_n}.\end{align}</math><ref group=note>The formula in the text helps the reader confirm that the formula is correct. For ] the denominator should be changed, starting with the double angle identity. | |||
⚫ | Equation (1) may be solved with rapid convergence (but slow near the poles) using ] iteration<ref name="MathWorldMollweide"/> |
||
:<math>\begin{align} \cos 2\theta_n &= 2 \cos^2 \theta_n - 1, \\ 1 + \cos 2\theta_n &= 2 \cos^2 \theta_n, \\ 2 + 2 \cos 2\theta_n &= 4 \cos^2 \theta_n, \\ \theta_{n+1} &= \theta_n - \frac{2 \theta_n + \sin 2\theta_n - \pi \sin \varphi}{4 \cos^2 \theta_n}.\end{align}</math> | |||
:<math> \theta_0 = \varphi,\,</math> | |||
In numerical computation, the original denominator could result in zero for ''θ'' near ±{{sfrac|{{pi}}|2}} (catastrophic cancellation). This substitution is true for all angles and avoids the problem near ''θ'' = ±{{sfrac|{{pi}}|2}} without making it a special case.</ref> | |||
:<math> \theta_{n+1} = \theta_n - \frac{2 \theta_n + \sin \left( 2 \theta_n \right) - \pi \sin \left( \varphi \right)}{2 + 2 \cos \left( 2 \theta_n \right)}.\,</math> | |||
⚫ | If ''φ'' = ± |
||
⚫ | If ''φ'' = ±{{sfrac|{{pi}}|2}}, then also ''θ'' = ±{{sfrac|{{pi}}|2}}. In that case the iteration should be bypassed; otherwise, ] may result. | ||
⚫ | There exists a ] inverse transformation<ref name="MathWorldMollweide"/> |
||
⚫ | There exists a ] inverse transformation:<ref name="MathWorldMollweide"/> | ||
:<math> \varphi = \sin^{-1} \left, \,</math> | |||
:<math> \lambda_{0} + \frac{\pi x}{2 \sqrt{2} \cos \theta}, \ |
:<math>\begin{align} \varphi &= \arcsin \frac{2 \theta + \sin 2\theta}{\pi}, \\ \lambda &= \lambda_{0} + \frac{\pi x}{2 R \sqrt{2} \cos \theta}, \end{align}</math> | ||
where ''θ'' can be found by the relation | where ''θ'' can be found by the relation | ||
:<math>\theta = \ |
:<math>\theta = \arcsin \frac{y}{R \sqrt{2}}. \,</math> | ||
The inverse transformations allow one to find the latitude and longitude corresponding to the map coordinates ''x'' and ''y''. | The inverse transformations allow one to find the latitude and longitude corresponding to the map coordinates ''x'' and ''y''. | ||
==Alterations== | |||
]]] | |||
==See also== | ==See also== | ||
⚫ | * ] | ||
* ] | * ] | ||
* ] | * ] | ||
* ] family | |||
==Notes== | |||
{{reflist|group=note}} | |||
==References== | ==References== | ||
Line 56: | Line 68: | ||
==External links== | ==External links== | ||
{{ |
{{Commons category|Mollweide projection}} | ||
* | * | ||
* | * | ||
{{Map |
{{Map projections}} | ||
⚫ | ] | ||
] | ] |
Latest revision as of 16:45, 8 December 2024
Pseudocylindrical equal-area map projectionThe Mollweide projection is an equal-area, pseudocylindrical map projection generally used for maps of the world or celestial sphere. It is also known as the Babinet projection, homalographic projection, homolographic projection, and elliptical projection. The projection trades accuracy of angle and shape for accuracy of proportions in area, and as such is used where that property is needed, such as maps depicting global distributions.
The projection was first published by mathematician and astronomer Karl (or Carl) Brandan Mollweide (1774–1825) of Leipzig in 1805. It was reinvented and popularized in 1857 by Jacques Babinet, who gave it the name homalographic projection. The variation homolographic arose from frequent nineteenth-century usage in star atlases.
Properties
The Mollweide is a pseudocylindrical projection in which the equator is represented as a straight horizontal line perpendicular to a central meridian that is one-half the equator's length. The other parallels compress near the poles, while the other meridians are equally spaced at the equator. The meridians at 90 degrees east and west form a perfect circle, and the whole earth is depicted in a proportional 2:1 ellipse. The proportion of the area of the ellipse between any given parallel and the equator is the same as the proportion of the area on the globe between that parallel and the equator, but at the expense of shape distortion, which is significant at the perimeter of the ellipse, although not as severe as in the sinusoidal projection.
Shape distortion may be diminished by using an interrupted version. A sinusoidal interrupted Mollweide projection discards the central meridian in favor of alternating half-meridians which terminate at right angles to the equator. This has the effect of dividing the globe into lobes. In contrast, a parallel interrupted Mollweide projection uses multiple disjoint central meridians, giving the effect of multiple ellipses joined at the equator. More rarely, the projection can be drawn obliquely to shift the areas of distortion to the oceans, allowing the continents to remain truer to form.
The Mollweide, or its properties, has inspired the creation of several other projections, including the Goode's homolosine, van der Grinten and the Boggs eumorphic.
Mathematical formulation
The projection transforms from latitude and longitude to map coordinates x and y via the following equations:
where θ is an auxiliary angle defined by
and λ is the longitude, λ0 is the central meridian, φ is the latitude, and R is the radius of the globe to be projected. The map has area 4πR, conforming to the surface area of the generating globe. The x-coordinate has a range of , and the y-coordinate has a range of .
Equation (1) may be solved with rapid convergence (but slow near the poles) using Newton–Raphson iteration:
If φ = ±π/2, then also θ = ±π/2. In that case the iteration should be bypassed; otherwise, division by zero may result.
There exists a closed-form inverse transformation:
where θ can be found by the relation
The inverse transformations allow one to find the latitude and longitude corresponding to the map coordinates x and y.
Alterations
See also
- List of map projections
- Aitoff projection
- Hammer projection
- Tobler hyperelliptical projection family
Notes
- The formula in the text helps the reader confirm that the formula is correct. For numerical computation the denominator should be changed, starting with the double angle identity.
References
- Flattening the Earth: Two Thousand Years of Map Projections, John P. Snyder, 1993, pp. 112–113, ISBN 0-226-76747-7.
- Gannon, Megan (December 21, 2012). "New 'Baby Picture' of Universe Unveiled". Space.com. Retrieved December 21, 2012.
- Bennett, C.L.; Larson, L.; Weiland, J.L.; Jarosk, N.; Hinshaw, N.; Odegard, N.; Smith, K.M.; Hill, R.S.; Gold, B.; Halpern, M.; Komatsu, E.; Nolta, M.R.; Page, L.; Spergel, D.N.; Wollack, E.; Dunkley, J.; Kogut, A.; Limon, M.; Meyer, S.S.; Tucker, G.S.; Wright, E.L. (2013). "Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results". The Astrophysical Journal Supplement Series. 208 (2): 20. arXiv:1212.5225. Bibcode:2013ApJS..208...20B. doi:10.1088/0067-0049/208/2/20. S2CID 119271232.
- Map Projections – A Working Manual, USGS Professional Paper 1395, John P. Snyder, 1987, pp. 249–252
- ^ Weisstein, Eric W. "Mollweide Projection". MathWorld.
External links
- An interactive Java applet to study deformations (area, distance and angle) of the Mollweide Map Projection
- Mollweide Projection at Mathworld