Revision as of 11:41, 24 January 2017 edit128.40.9.164 (talk) Undid revision 761712550 by Materialscientist (talk)← Previous edit | Latest revision as of 19:46, 27 December 2024 edit undoProcyon117 (talk | contribs)Extended confirmed users14,726 edits →List of abundance by element: Fix | ||
(205 intermediate revisions by 95 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|none}} | |||
] of elements. These have been depleted by being relocated deeper into the Earth's core. Their abundance in ]s is higher. Additionally, tellurium and selenium have been depleted from the crust due to formation of volatile hydrides.]] | |||
The '''abundance of elements in Earth's crust''' is shown in tabulated form with the estimated ] abundance for each ] shown as mg/kg, or ] (ppm) by ] (10,000 ppm = 1%). | |||
== Reservoirs == | |||
This table shows the estimated abundances of ]s in ]. Numbers show ] or ] (ppm) in ]; 10,000 ppm = 1%. | |||
The Earth's crust is one "reservoir" for measurements of abundance. A reservoir is any large body to be studied as unit, like the ocean, atmosphere, mantle or crust. Different reservoirs may have different relative amounts of each element due to different chemical or mechanical processes involved in the creation of the reservoir.<ref name=Albarede>{{Cite book |last=Albarède |first=Francis |url=https://www.cambridge.org/core/product/identifier/9780511807435/type/book |title=Geochemistry: An Introduction |date=2009-06-25 |publisher=Cambridge University Press |isbn=978-0-521-88079-4 |edition=2 |doi=10.1017/cbo9780511807435.005}}</ref>{{rp|18}} | |||
== Difficulties in measurement == | |||
{| class="wikitable sortable" | |||
|- | |||
Estimates of elemental abundance are difficult because (a) the composition of the upper and lower crust are quite different, and (b) the composition of the continental crust can vary drastically by locality.<ref>Kring, David A. . 28th Annual Lunar and Planetary Science Conference, March 17–21, 1997, Houston, TX, p. 763. Vol. 28. 1997.</ref> The composition of the Earth changed after its formation due to loss of volatile compounds, melting and recrystalization, selective loss of some elements to the deep interior, and erosion by water.<ref>{{Cite journal |last1=Suess |first1=Hans E. |url=https://link.aps.org/doi/10.1103/RevModPhys.28.53 |title=Abundances of the Elements |last2=Urey |first2=Harold C. |journal=Reviews of Modern Physics |date=1956-01-01 |volume=28 |pages=53–74 |language=en |doi=10.1103/RevModPhys.28.53 |issn=0034-6861}}</ref>{{rp|55}} | |||
! Rank | |||
The ] are especially difficult to measure accurately.<ref>Surendra P. Verma, E. Santoyo & Fernando Velasco-Tapia (2002) "Statistical Evaluation of Analytical Methods for the Determination of Rare-Earth Elements in Geological Materials and Implications for Detection Limits", International Geology Review, 44:4, 287–335, {{doi|10.2747/0020-6814.44.4.287}} (note geochemists refer to lanthanides as rare earth per ref.).</ref> | |||
! ] | |||
== Graphs of abundance vs atomic number == | |||
] | |||
Graphs of abundance against atomic number can reveal patterns relating abundance to ] and ]. | |||
The alternation of abundance between even and odd atomic number is known as the ]. The rarest elements in the crust are not the heaviest, but are rather the ] (iron-loving) in the ] of elements. These have been depleted by being relocated deeper into the Earth's core; their abundance in ]s is higher. Tellurium and selenium are concentrated as sulfides in the core and have also been depleted by preaccretional sorting in the nebula that caused them to form volatile ] and ].<ref>Anderson, Don L.; "Chemical Composition of the Mantle", ''Theory of the Earth'', pp. 147–175 {{ISBN|0865421234}}</ref> | |||
{{clear}} | |||
==List of abundance by element== | |||
<!-- Please do not change the abundance values without consensus on the Talk page. --> | |||
This table gives the estimated abundance in parts per million by mass of elements in the continental crust; values of the less abundant elements may vary with location by several orders of magnitude.<ref name="CRC">"Abundance of Elements in the Earth's Crust and in the Sea", ''CRC Handbook of Chemistry and Physics,'' 97th edition (2016–2017), sec. 14, pg. 17</ref> | |||
Colour indicates each element's ]:<!--Per ] do not remove the classification column - information must never be presented only by colour--> | |||
{{legend|ffbb77|Lithophile}} | |||
{{legend|ffe0f0|Siderophile}} | |||
{{legend|bbffff|Atmophile}} | |||
{{legend|fff888|Chalcophile}} | |||
{{legend||Trace}} | |||
{{sort under}} | |||
{| class="wikitable sortable sort-under mw-collapsible" style="text-align: right" | |||
|+ Abundance of chemical elements in Earth's (continental) crust | |||
|- class="static-row-header" | |||
! ] | |||
! Element | ! Element | ||
! style="border-right:2px solid #b8b8b8" | Symbol | |||
! Symbol | |||
! style="border-right:2px solid #b8b8b8" | Goldschmidt<br/> classification | |||
! ] abundance<ref>{{cite web|url = http://www.daviddarling.info/encyclopedia/E/elterr.html | |||
! data-sort-type=number style="border-right:2px solid #b8b8b8" | Abundance (ppm)<ref name=CRC/> | |||
|title = Elements, Terrestrial Abundance | |||
! data-sort-type=number | Production<br/>]/year<ref>2016 extraction per . USGS. All production numbers are for mines, except for Al, Cd, Fe, Ge, In, N, Se (plants, refineries), S (all forms) and As, Br, Mg, Si (unspecified). Data for B, K, Ti, Y are given not for the pure element but for the most common oxide, data for Na and Cl are for NaCl. For many elements like Si, Al, data are ambiguous (many forms produced) and are taken for the pure element. U data is pure element required for consumption by current reactor fleet {{Webarchive|url=https://web.archive.org/web/20171001013037/https://minerals.usgs.gov/minerals/pubs/commodity/|date=2017-10-01}}. WNA.</ref> | |||
|publisher = www.daviddarling.info | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
|accessdate = 2007-04-14| archiveurl= https://web.archive.org/web/20070410165310/http://daviddarling.info/encyclopedia/E/elterr.html| archivedate= 10 April 2007 <!--DASHBot-->| deadurl= no}}</ref> | |||
! Relative proportion (ppm)<ref>{{cite web|last = Barbalace | |||
|first = Kenneth | |||
|url = http://environmentalchemistry.com/yogi/periodic/ | |||
|title = Periodic Table of Elements | |||
|publisher = Environmental Chemistry.com | |||
|accessdate = 2007-04-14}}</ref> | |||
!Abundance in crust (ppm)<ref> | |||
{{cite web | |||
|url = http://www.webelements.com/webelements/properties/text/image-flash/abund-crust.html | |||
|title = Abundance in Earth's Crust | |||
|publisher = WebElements.com | |||
|accessdate = 2007-04-14| archiveurl= https://web.archive.org/web/20070309033534/http://www.webelements.com/webelements/properties/text/image-flash/abund-crust.html| archivedate= 9 March 2007 <!--DASHBot-->| deadurl= no}}</ref> | |||
!Abundance in crust (ppm)<ref> | |||
{{cite web | |||
|url = http://www.science.co.il/elements/?s=Earth | |||
|title = List of Periodic Table Elements Sorted by Abundance in Earth's crust | |||
|publisher = Israel Science and Technology Homepage | |||
|accessdate = 2007-04-15}}</ref> | |||
!Abundance in crust (ppm)<ref> | |||
{{cite web | |||
|url = http://education.jlab.org/itselemental/index.html | |||
|title = It's Elemental — The Periodic Table of Elements | |||
|publisher = Jefferson Lab | |||
|accessdate = 2007-04-14| archiveurl= https://web.archive.org/web/20070429032414/http://education.jlab.org/itselemental/index.html| archivedate= 29 April 2007| deadurl= no}}</ref> | |||
!Production (2012, ])<ref>. USGS. All production numbers are for mines, except for Al, Cd, Fe, Ge, In, N, Se (plants, refineries), S (all forms) and As, Br, Mg, Si (unspecified). Data for B, K, Ti, Y are given not for the pure element but for the most common oxide, data for Na and Cl are for NaCl. For many elements like Si, Al, data are ambiguos (many forms produced) and are taken for the pure element. U data is pure element required for consumption by current reactor fleet . WNA. </ref> | |||
|- | |||
| 1 | |||
| 8 | | 8 | ||
| ] | | ] | ||
| O | | O | ||
| Lithophile | |||
| 466,000 | |||
| data-sort-value=461,000| 461,000 (46.1%) | |||
| 474,000 | |||
| 10,335,000<ref>{{Cite web |title=Oxygen Supply Chain – Executive Summary |url=https://www.epa.gov/system/files/documents/2023-03/Oxygen%20Supply%20Chain%20Profile.pdf |access-date=2024-05-23}}</ref> | |||
| 460,000 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 467,100 | |||
| 461,000 | |||
| | |||
|- | |||
| 2 | |||
| 14 | | 14 | ||
| ] | |||
| ] <ref group=upper-alpha>5,000 tonnes of annual production is electronic grade</ref> | |||
| Si | | Si | ||
| Lithophile | |||
| 277,200 | |||
| data-sort-value=282,000| 282,000 (28.2%) | |||
| 277,100 | |||
| |
|7,200,000 | ||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 276,900 | |||
| 282,000 | |||
| 7,600,000 | |||
|- | |||
| 3 | |||
| 13 | | 13 | ||
| ] | | ] | ||
| Al | | Al | ||
| Lithophile | |||
| 81,300 | |||
| data-sort-value=82,300| 82,300 (8.23%) | |||
| 82,000 | |||
| |
|57,600,000 | ||
|- | style="background-color:#ffe0f0" <!--Siderophile--> | |||
| 80,700 | |||
| 82,300 | |||
| 44,900,000 | |||
|- | |||
| 4 | |||
| 26 | | 26 | ||
| ] | | ] | ||
| Fe | | Fe | ||
| Siderophile | |||
| 50,000 | |||
| data-sort-value=56,300| 56,300 (5.63%) | |||
| 41,000 | |||
| |
|1,150,000,000 | ||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 50,500 | |||
| 56,300 | |||
| 1,100,000,000 | |||
|- | |||
| 5 | |||
| 20 | | 20 | ||
| ] | | ] | ||
| Ca | | Ca | ||
| Lithophile | |||
| 36,300 | |||
| data-sort-value=41,500| 41,500 (4.15%) | |||
| 41,000 | |||
| |
| 18,000 | ||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 36,500 | |||
| 41,500 | |||
| | |||
|- | |||
| 6 | |||
| 11 | | 11 | ||
| ] | | ] | ||
| Na | | Na | ||
| Lithophile | |||
| 28,300 | |||
| data-sort-value=23,600| 23,600 (2.36%) | |||
| 23,000 | |||
| |
|255,000,000 | ||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 27,500 | |||
| |
| 12 | ||
| ] | |||
| 280,000,000 | |||
| |
| Mg | ||
| Lithophile | |||
| 7 | |||
| data-sort-value=23,300| 23,300 (2.33%) | |||
|27,700,000 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 19 | | 19 | ||
| ] | | ] | ||
| K | | K | ||
| Lithophile | |||
| 25,900 | |||
| data-sort-value=20,900| 20,900 (2.09%) | |||
| 21,000 | |||
|53,200,000<ref>{{Cite web |last=Canada |first=Natural Resources |date=2018-01-23 |title=Potash facts |url=https://natural-resources.canada.ca/our-natural-resources/minerals-mining/mining-data-statistics-and-analysis/minerals-metals-facts/potash-facts/20521 |access-date=2024-05-23 |website=natural-resources.canada.ca}}</ref> | |||
| 15,000 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 25,800 | |||
| 20,900 | |||
| 34,000 | |||
|- | |||
| 8 | |||
| 12 | |||
| ] | |||
| Mg | |||
| 20,900 | |||
| 23,000 | |||
| 29,000 | |||
| 20,800 | |||
| 23,300 | |||
| 750,000 | |||
|- | |||
| 9 | |||
| 22 | | 22 | ||
| ] | | ] | ||
| Ti | | Ti | ||
| Lithophile | |||
| 4,400 | |||
| data-sort-value=5,650| 5,650 (0.565%) | |||
| 5,600 | |||
| |
|6,600,000 | ||
|- | style="background-color:#bbffff" <!--Atmophile--> | |||
| 6,200 | |||
| 5,600 | |||
| 6,500,000 | |||
|- | |||
| 10 | |||
| 1 | | 1 | ||
| ] | | ] | ||
| H | | H | ||
| Atmophile | |||
| 1,400 | |||
| data-sort-value=1,400| 1,400 (0.14%) | |||
| | |||
| 75,000,000<ref>{{Cite web |date=2024-05-29 |title=Hydrogen |url=https://www.irena.org/Energy-Transition/Technology/Hydrogen |access-date=2024-05-23 |website=www.irena.org |language=en}}</ref><ref>{{Cite web |title=Hydrogen Production |url=https://www.energy.gov/eere/fuelcells/hydrogen-production |access-date=2024-05-23}}</ref> | |||
| 1,500 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 1,400 | |||
| 1,400 | |||
| | |||
|- | |||
| 11 | |||
| 15 | | 15 | ||
| ] | | ] | ||
| P | | P | ||
| Lithophile | |||
| 1,200 | |||
| data-sort-value=1,050| 1,050 (0.105%) | |||
| 1,000 | |||
| 226,000,000<ref>{{Cite web |title=Phosphate rock production capacity worldwide |url=https://www.statista.com/statistics/1288972/global-phosphate-rock-production-capacity/ |access-date=2024-05-23 |website=Statista |language=en}}</ref> | |||
| 1,000 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 1,300 | |||
| 1,050 | |||
| | |||
|- | |||
| 12 | |||
| 25 | | 25 | ||
| ] | | ] | ||
| Mn | | Mn | ||
| Lithophile | |||
| 1,000 | |||
| data-sort-value=950| 950 (0.095%) | |||
| 950 | |||
| 1,100 | |||
| 900 | |||
| 950 | |||
| 16,000,000 | | 16,000,000 | ||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
|- | |||
|13 | |||
| 9 | | 9 | ||
| ] | | ] | ||
| F | | F | ||
| Lithophile | |||
| 800 | |||
| data-sort-value=585| 585 (0.0585%) | |||
| 950 | |||
| |
| 17,000 | ||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 290 | |||
| 585 | |||
| | |||
|- | |||
| 14 | |||
| 56 | | 56 | ||
| ] | | ] | ||
| Ba | | Ba | ||
| Lithophile | |||
| 500 | |||
| data-sort-value=425| 425 (0.0425%) | |||
| 340 | |||
| 6,000,000<ref>{{Cite web |title=Barium - Element information, properties and uses {{!}} Periodic Table |url=https://www.rsc.org/periodic-table/element/56/barium |access-date=2024-05-23 |website=www.rsc.org}}</ref> | |||
| 340 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 500 | |||
| 425 | |||
| | |||
|- | |||
| 15 | |||
| 6 | |||
| ] | |||
| C | |||
| 300 | |||
| 480 | |||
| 1,800 | |||
| 940 | |||
| 200 | |||
| | |||
|- | |||
|16 | |||
| 38 | | 38 | ||
| ] | | ] | ||
| Sr | | Sr | ||
| Lithophile | |||
| | |||
| data-sort-value=370| 370 (0.037%) | |||
| 370 | |||
|350,000 | |||
| 360 | |||
|- | style="background-color:#fff888" <!--Chalcophile--> | |||
| | |||
| 370 | |||
| 380,000 | |||
|- | |||
| 17 | |||
| 16 | | 16 | ||
| ] | | ] | ||
| S | | S | ||
| Chalcophile | |||
| 500 | |||
| data-sort-value=350| 350 (0.035%) | |||
| 260 | |||
|69,300,000 | |||
| 420 | |||
|- | style="background-color:#bbffff" <!--Atmophile--> | |||
| 520 | |||
| |
| 6 | ||
| ] | |||
| 70,000,000 | |||
| |
| C | ||
| Atmophile | |||
| 18 | |||
| data-sort-value=200| 200 (0.02%) | |||
| 9,700,000,000 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 40 | | 40 | ||
| ] | | ] | ||
| Zr | | Zr | ||
| Lithophile | |||
| | |||
| data-sort-value=165| 165 (0.0165%) | |||
| 190 | |||
|1,460,000 | |||
| 130 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 250 | |||
| |
| 17 | ||
| ] | |||
| 1,420,000 | |||
| |
| Cl | ||
| Lithophile | |||
| 19 | |||
| data-sort-value=145| 145 (0.0145%) | |||
| 74 | |||
|71,250,000<ref>{{Cite web |title=Chlorine global market volume 2030 |url=https://www.statista.com/statistics/1310477/chlorine-market-volume-worldwide/ |access-date=2024-05-23 |website=Statista |language=en}}</ref> | |||
| ] | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| W | |||
| | |||
| 160.6 | |||
| 1.1 | |||
| | |||
| 1.25 | |||
| 73,000 | |||
|- | |||
| 20 | |||
| 23 | | 23 | ||
| ] | | ] | ||
| V | | V | ||
| Lithophile | |||
| 100 | |||
| data-sort-value=120| 120 (0.012%) | |||
| 160 | |||
|76,000 | |||
| 190 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| | |||
| |
| 24 | ||
| 63,000 | |||
|- | |||
| 21 | |||
| 17 | |||
| ] | |||
| Cl | |||
| 500 | |||
| 130 | |||
| 170 | |||
| 450 | |||
| 145 | |||
| 280,000,000 | |||
|- | |||
| 22 | |||
| 24 | |||
| ] | | ] | ||
| Cr | | Cr | ||
| Lithophile | |||
| 100 | |||
| data-sort-value=102| 102 (0.0102%) | |||
| 100 | |||
|26,000,000 | |||
| 140 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 350 | |||
| 102 | |||
| 7,890,000 | |||
|- | |||
| 23 | |||
| 37 | | 37 | ||
| ] | | ] | ||
| Rb | | Rb | ||
| Lithophile | |||
| 300 | |||
| data-sort-value=90| 90 (0.009%) | |||
| 90 | |||
| |
| 2 | ||
|- | style="background-color:#ffe0f0" <!--Siderophile--> | |||
| | |||
| 90 | |||
| | |||
|- | |||
| 24 | |||
| 28 | | 28 | ||
| ] | | ] | ||
| Ni | | Ni | ||
| Siderophile | |||
| | |||
| data-sort-value=84| 84 (0.0084%) | |||
| 80 | |||
|2,250,000 | |||
| 90 | |||
|- | style="background-color:#fff888" <!--Chalcophile--> | |||
| 190 | |||
| 84 | |||
| 2,100,000 | |||
|- | |||
| 25 | |||
| 30 | | 30 | ||
| ] | | ] | ||
| Zn | | Zn | ||
| Chalcophile | |||
| | |||
| data-sort-value=70| 70 (0.007%) | |||
| 75 | |||
|11,900,000 | |||
| 79 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| | |||
| |
| 58 | ||
| ] | |||
| 13,000,000 | |||
| |
| Ce | ||
| Lithophile | |||
| 26 | |||
| data-sort-value=66.5| 66.5 (0.00665%) | |||
| 24,000<ref>{{Cite web |last=MMTA |title=Cerium |url=https://mmta.co.uk/metals/ce/ |access-date=2024-05-23 |website=MMTA |language=en-US}}</ref> | |||
|- | style="background-color:#fff888" <!--Chalcophile--> | |||
| 29 | | 29 | ||
| ] | | ] | ||
| Cu | | Cu | ||
| Chalcophile | |||
| 100 | |||
| data-sort-value=60| 60 (0.006%) | |||
| 50 | |||
|19,400,000 | |||
| 68 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| | |||
| 60 | |||
| 17,000,000 | |||
|- | |||
| 27 | |||
| 58 | |||
| ] | |||
| Ce | |||
| | |||
| 68 | |||
| 60 | |||
| | |||
| 66.5 | |||
| | |||
|- | |||
| 28 | |||
| 60 | | 60 | ||
| ] | | ] | ||
| Nd | | Nd | ||
| Lithophile | |||
| | |||
| data-sort-value=41.5| 41.5 (0.00415%) | |||
| 38 | |||
| 7,000<ref>{{Cite web |title=Neodymium - Elements Database |url=http://www.elementsdatabase.com/Neodymium-Nd-60-element/ |access-date=2024-05-23 |website=www.elementsdatabase.com}}</ref> | |||
| 33 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| | |||
| 41.5 | |||
| | |||
|- | |||
| 29 | |||
| 57 | | 57 | ||
| ] | | ] | ||
| La | | La | ||
| Lithophile | |||
| | |||
| data-sort-value=39| 39 (0.0039%) | |||
| 32 | |||
| 12,500<ref>{{Cite web |last=MMTA |title=Lanthanum |url=https://mmta.co.uk/metals/la/ |access-date=2024-05-23 |website=MMTA |language=en-US}}</ref> | |||
| 34 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| | |||
| 39 | |||
| | |||
|- | |||
| 30 | |||
| 39 | | 39 | ||
| ] | | ] | ||
| Y | | Y | ||
| Lithophile | |||
| | |||
| data-sort-value=33| 33 (0.0033%) | |||
| 30 | |||
|6,000 | |||
| 29 | |||
|- | style="background-color:#ffe0f0" <!--Siderophile--> | |||
| | |||
| 33 | |||
| 8,900 | |||
|- | |||
| 31 | |||
| 7 | |||
| ] | |||
| N | |||
| 50 | |||
| 25 | |||
| 20 | |||
| | |||
| 19 | |||
| 137,000,000 | |||
|- | |||
| 32 | |||
| 27 | | 27 | ||
| ] | | ] | ||
| Co | | Co | ||
| Siderophile | |||
| | |||
| data-sort-value=25| 25 (0.0025%) | |||
| 20 | |||
|123,000 | |||
| 30 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| | |||
| |
| 21 | ||
| ] | |||
| 110,000 | |||
| |
| Sc | ||
| Lithophile | |||
| 33 | |||
| data-sort-value=22| 22 (0.0022%) | |||
| 14<ref>{{Cite journal |title=Exploring global supply and demand of scandium oxide in 2030 |date=2023 |doi=10.1016/j.jclepro.2023.136673 |url=https://www.sciencedirect.com/science/article/abs/pii/S0959652623008314 |access-date=2024-05-23 |last1=Phoung |first1=Sinoun |last2=Williams |first2=Eric |last3=Gaustad |first3=Gabrielle |last4=Gupta |first4=Ajay |journal=Journal of Cleaner Production |volume=401 }}</ref> | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 3 | | 3 | ||
| ] | | ] | ||
| Li | | Li | ||
| Lithophile | |||
| | |||
| data-sort-value=20| 20 (0.002%) | |||
| 20 | |||
|35,000 | |||
| 17 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| | |||
| 20 | |||
| 37,000 | |||
|- | |||
| 34 | |||
| 41 | | 41 | ||
| ] | | ] | ||
| Nb | | Nb | ||
| Lithophile | |||
| | |||
| data-sort-value=20| 20 (0.002%) | |||
| 20 | |||
|64,000 | |||
| 17 | |||
|- | style="background-color:#bbffff" <!--Atmophile--> | |||
| | |||
| |
| 7 | ||
| ] | |||
| 69,000 | |||
| |
| N | ||
| Atmophile | |||
| 35 | |||
| data-sort-value=19| 19 (0.0019%) | |||
|140,000,000 | |||
|- | style="background-color:#fff888" <!--Chalcophile--> | |||
| 31 | | 31 | ||
| ] | | ] | ||
| Ga | | Ga | ||
| Chalcophile | |||
| | |||
| data-sort-value=19| 19 (0.0019%) | |||
| 18 | |||
| |
| 315 | ||
|- | style="background-color:#fff888" <!--Chalcophile--> | |||
| | |||
| 19 | |||
| | |||
|- | |||
| 36 | |||
| 21 | |||
| ] | |||
| Sc | |||
| | |||
| 16 | |||
| 26 | |||
| | |||
| 22 | |||
| | |||
|- | |||
| 37 | |||
| 82 | | 82 | ||
| ] | | ] | ||
| Pb | | Pb | ||
| Chalcophile | |||
| | |||
| data-sort-value=14| 14 (0.0014%) | |||
| 14 | |||
|4,820,000 | |||
| 10 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| | |||
| |
| 5 | ||
| ] | |||
| 5,200,000 | |||
| |
| B | ||
| Lithophile | |||
| 38 | |||
| data-sort-value=10| 10 (0.001%) | |||
| 62 | |||
|9,400,000 | |||
| ] | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| Sm | |||
| | |||
| 7.9 | |||
| 6 | |||
| | |||
| 7.05 | |||
| | |||
|- | |||
| 39 | |||
| 90 | | 90 | ||
| ] | | ] | ||
| Th | | Th | ||
| Lithophile | |||
| | |||
| data-sort-value=9.6| 9.6 (0.00096%) | |||
| 12 | |||
| 5,000<ref>{{Cite web |last=Emsley2010-09-01T00:00:00+01:00 |first=John |title=Thorium |url=https://edu.rsc.org/elements/thorium/2020027.article |access-date=2024-05-23 |website=RSC Education |language=en}}</ref> | |||
| 6 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| | |||
| 9.6 | |||
| | |||
|- | |||
| 40 | |||
| 59 | | 59 | ||
| ] | | ] | ||
| Pr | | Pr | ||
| Lithophile | |||
| | |||
| data-sort-value=9.2| 9.2 (0.00092%) | |||
| 9.5 | |||
| 2,500<ref>{{Cite web |title=Praseodymium (Pr) - Chemical properties, Health and Environmental effects |url=https://www.lenntech.com/periodic/elements/pr.htm |access-date=2024-05-23 |website=www.lenntech.com}}</ref> | |||
| 8.7 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| | |||
| |
| 62 | ||
| ] | |||
| | |||
| |
| Sm | ||
| Lithophile | |||
| 41 | |||
| data-sort-value=7.05| 7.05 (0.000705%) | |||
| 5 | |||
| 700<ref>{{Cite web |last=MMTA |title=Samarium |url=https://mmta.co.uk/metals/sm/ |access-date=2024-05-23 |website=MMTA |language=en-US}}</ref> | |||
| ] | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| B | |||
| | |||
| 950 | |||
| 8.7 | |||
| | |||
| 10 | |||
| 4,600,000 | |||
|- | |||
| 42 | |||
| 64 | | 64 | ||
| ] | | ] | ||
| Gd | | Gd | ||
| Lithophile | |||
| | |||
| data-sort-value=6.2| 6.2 (0.00062%) | |||
| 7.7 | |||
| 400<ref>{{Cite web |title=Gadolinium (Gd) |url=https://www.rwmmint.com/products/gadolinium |access-date=2024-05-23 |website=RWMM |language=en}}</ref> | |||
| 5.2 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| | |||
| 6.2 | |||
| | |||
|- | |||
| 43 | |||
| 66 | | 66 | ||
| ] | | ] | ||
| Dy | | Dy | ||
| Lithophile | |||
| | |||
| data-sort-value=5.2| 5.2 (0.00052%) | |||
| 6 | |||
| 6.2 | |||
| | |||
| 5.2 | |||
| | | | ||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
|- | |||
| 44 | |||
| 72 | |||
| ] | |||
| Hf | |||
| | |||
| 5.3 | |||
| 3.3 | |||
| | |||
| 3.0 | |||
| | |||
|- | |||
| 45 | |||
| 68 | | 68 | ||
| ] | | ] | ||
| Er | | Er | ||
| Lithophile | |||
| data-sort-value=3.5| 3.5 (0.00035%) | |||
| 500<ref>{{Cite web |title=Erbium (Er) - Chemical properties, Health and Environmental effects |url=https://www.lenntech.com/periodic/elements/er.htm |access-date=2024-05-23 |website=www.lenntech.com}}</ref> | |||
|- | style="background-color:#bbffff" <!--Atmophile--> | |||
|18 | |||
|] | |||
|Ar | |||
| Atmophile | |||
| data-sort-value=3.5|3.5 (0.00035%) | |||
| | | | ||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 3.8 | |||
| 3.0 | |||
| | |||
| 3.5 | |||
| | |||
|- | |||
| 46 | |||
| 70 | | 70 | ||
| ] | | ] | ||
| Yb | | Yb | ||
| Lithophile | |||
| data-sort-value=3.2| 3.2 (0.00032%) | |||
| | | | ||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 3.3 | |||
| |
| 72 | ||
| ] | |||
| Hf | |||
| Lithophile | |||
| data-sort-value=3.0| 3.0 (0.0003%) | |||
| | | | ||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 3.2 | |||
| | |||
|- | |||
| 47 | |||
| 55 | | 55 | ||
| ] | | ] | ||
| Cs | | Cs | ||
| Lithophile | |||
| data-sort-value=3.0| 3.0 (0.0003%) | |||
| | | | ||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 3 | |||
| 1.9 | |||
| | |||
| 3 | |||
| | |||
|- | |||
| 48 | |||
| 4 | | 4 | ||
| ] | | ] | ||
| Be | | Be | ||
| Lithophile | |||
| | |||
| data-sort-value=2.8| 2.8 (0.00028%) | |||
| 2.6 | |||
|220 | |||
| 1.9 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| | |||
| |
| 92 | ||
| ] | |||
| 230 | |||
| |
| U | ||
| Lithophile | |||
| 49 | |||
| data-sort-value=2.7| 2.7 (0.00027%) | |||
|74,119 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 35 | |||
| ] | |||
| Br | |||
| Lithophile | |||
| data-sort-value=2.4| 2.4 (0.00024%) | |||
|391,000 | |||
|- | style="background-color:#fff888" <!--Chalcophile--> | |||
| 50 | | 50 | ||
| ] | | ] | ||
| Sn | | Sn | ||
| Chalcophile | |||
| 0 | |||
| data-sort-value=2.3| 2.3 (0.00023%) | |||
| 2.2 | |||
|280,000 | |||
| 2.2 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| | |||
| |
| 73 | ||
| ] | |||
| 230,000 | |||
| |
| Ta | ||
| Lithophile | |||
| 50 | |||
| data-sort-value=2.0| 2.0 (0.0002%) | |||
|1,100 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 63 | | 63 | ||
| ] | | ] | ||
| Eu | | Eu | ||
| Lithophile | |||
| data-sort-value=2.0| 2.0 (0.0002%) | |||
| | | | ||
|- | style="background-color:#fff888" <!--Chalcophile--> | |||
| 2.1 | |||
| |
| 33 | ||
| ] | |||
| | |||
| |
| As | ||
| Chalcophile | |||
| | |||
| data-sort-value=1.8| 1.8 (0.00018%) | |||
|- | |||
|36,500 | |||
| 51 | |||
|- | style="background-color:#fff888" <!--Chalcophile--> | |||
| 92 | |||
| ] | |||
| U | |||
| | |||
| 0 | |||
| 1.8 | |||
| | |||
| 2.7 | |||
| 66,512 | |||
|- | |||
| 52 | |||
| 73 | |||
| ] | |||
| Ta | |||
| | |||
| 2 | |||
| 1.7 | |||
| | |||
| 2.0 | |||
| 765 | |||
|- | |||
| 53 | |||
| 32 | | 32 | ||
| ] | | ] | ||
| Ge | | Ge | ||
| Chalcophile | |||
| data-sort-value=1.5| 1.5 (0.00015%) | |||
|155 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 67 | |||
| ] | |||
| Ho | |||
| Lithophile | |||
| data-sort-value=1.3| 1.3 (0.00013%) | |||
| | | | ||
|- | style="background-color:#ffe0f0" <!--Siderophile--> | |||
| 1.8 | |||
| |
| 74 | ||
| ] | |||
| | |||
| |
| W | ||
| Siderophile | |||
| 128 | |||
| data-sort-value=1.25| 1.25 (0.000125%) | |||
|- | |||
|86,400 | |||
| 54 | |||
|- | style="background-color:#ffe0f0" <!--Siderophile--> | |||
| 42 | | 42 | ||
| ] | | ] | ||
| Mo | | Mo | ||
| Siderophile | |||
| | |||
| data-sort-value=1.2| 1.2 (0.00012%) | |||
| 1.5 | |||
|227,000 | |||
| 1.1 | |||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| | |||
| 1.2 | |||
| 250,000 | |||
|- | |||
| 55 | |||
| 33 | |||
| ] | |||
| As | |||
| | |||
| 1.5 | |||
| 2.1 | |||
| | |||
| 1.8 | |||
| 44,000 | |||
|- | |||
| 56 | |||
| 67 | |||
| ] | |||
| Ho | |||
| | |||
| 1.4 | |||
| 1.2 | |||
| | |||
| 1.3 | |||
| | |||
|- | |||
| 57 | |||
| 65 | | 65 | ||
| ] | | ] | ||
| Tb | | Tb | ||
| Lithophile | |||
| data-sort-value=1.2| 1.2 (0.00012%) | |||
| | | | ||
|- | style="background-color:#fff888" <!--Chalcophile--> | |||
| 1.1 | |||
| 0.94 | |||
| | |||
| 1.2 | |||
| | |||
|- | |||
| 58 | |||
| 69 | |||
| ] | |||
| Tm | |||
| | |||
| 0.48 | |||
| 0.45 | |||
| | |||
| 0.52 | |||
| | |||
|- | |||
| 59 | |||
| 35 | |||
| ] | |||
| Br | |||
| | |||
| 0.37 | |||
| 3 | |||
| | |||
| 2.4 | |||
| 580,000 | |||
|- | |||
| 60 | |||
| 81 | | 81 | ||
| ] | | ] | ||
| Tl | | Tl | ||
| Chalcophile | |||
| | |||
| data-sort-value=0.85| 0.85 (8.5{{e|-5}}%) | |||
| 0.6 | |||
| 0.530 | |||
| | |||
| 0.850 | |||
| 10 | | 10 | ||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
|- | |||
|61 | |||
|71 | |71 | ||
|] | |||
|]<ref name="Emsley240">{{cite book| pages=240–242| url =https://books.google.com/books?id=Yhi5X7OwuGkC&pg=PA241| title =Nature's building blocks: an A-Z guide to the elements| first =John |last=Emsley| publisher=Oxford University Press| isbn = 0-19-850341-5| year=2001}}</ref> | |||
|Lu | |Lu | ||
| Lithophile | |||
| data-sort-value=0.8| 0.8 (8{{e|-5}}%) | |||
| | | | ||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| 69 | |||
| ] | |||
| Tm | |||
| Lithophile | |||
| data-sort-value=0.52| 0.52 (5.2{{e|-5}}%) | |||
| | | | ||
|- | style="background-color:#ffbb77" <!--Lithophile--> | |||
| | |||
| | | 53 | ||
| ] | |||
|0.5 | |||
| | | I | ||
| Lithophile | |||
|- | |||
| data-sort-value=0.45| 0.45 (4.5{{e|-5}}%) | |||
| 62 | |||
|31,600 | |||
|- | style="background-color:#fff888" <!--Chalcophile--> | |||
| 49 | |||
| ] | |||
| In | |||
| Chalcophile | |||
| data-sort-value=0.25| 0.25 (2.5{{e|-5}}%) | |||
|655 | |||
|- | style="background-color:#fff888" <!--Chalcophile--> | |||
| 51 | | 51 | ||
| ] | | ] | ||
| Sb | | Sb | ||
| Chalcophile | |||
| | |||
| data-sort-value=0.2| 0.2 (2{{e|-5}}%) | |||
| 0.2 | |||
|130,000 | |||
| 0.2 | |||
|- | style="background-color:#fff888" <!--Chalcophile--> | |||
| | |||
| 0.2 | |||
| 180,000 | |||
|- | |||
| 63 | |||
| 53 | |||
| ] | |||
| I | |||
| | |||
| 0.14 | |||
| 0.490 | |||
| | |||
| 0.450 | |||
| 28,000 | |||
|- | |||
| 64 | |||
| 48 | | 48 | ||
| ] | | ] | ||
| Cd | | Cd | ||
| Chalcophile | |||
| | |||
| data-sort-value=0.15| 0.15 (1.5{{e|-5}}%) | |||
| 0.11 | |||
| 0.15 | |||
| | |||
| 0.15 | |||
| 23,000 | | 23,000 | ||
|- | style="background-color:#fff888" <!--Chalcophile--> | |||
|- | |||
| |
| 80 | ||
| ] | |||
| Hg | |||
| Chalcophile | |||
| data-sort-value=0.085| 0.085 (8.5{{e|-6}}%) | |||
|4,500 | |||
|- | style="background-color:#fff888" <!--Chalcophile--> | |||
| 47 | | 47 | ||
| ] | | ] | ||
| Ag | | Ag | ||
| Chalcophile | |||
| | |||
| data-sort-value=0.075| 0.075 (7.5{{e|-6}}%) | |||
| 0.070 | |||
|27,000 | |||
| 0.080 | |||
|- | style="background-color:#fff888" <!--Chalcophile--> | |||
| | |||
| 0.075 | |||
| 24,000 | |||
|- | |||
| 66 | |||
| 80 | |||
| ] | |||
| Hg | |||
| | |||
| 0.05 | |||
| 0.067 | |||
| | |||
| 0.085 | |||
| 1,600 | |||
|- | |||
| 67 | |||
| 34 | | 34 | ||
| ] | | ] | ||
| Se | | Se | ||
| Chalcophile | |||
| | |||
| data-sort-value=0.05| 0.05 (5{{e|-6}}%) | |||
| 0.05 | |||
|2,200 | |||
| 0.05 | |||
|- | style="background-color:#ffe0f0" <!--Siderophile--> | |||
| | |||
| |
| 46 | ||
| ] | |||
| 2,000 | |||
| |
| Pd | ||
| Siderophile | |||
| 68 | |||
| data-sort-value=0.015| 0.015 (1.5{{e|-6}}%) | |||
| 49 | |||
| 208 | |||
| ] | |||
|- | style="background-color:#fff888" <!--Chalcophile--> | |||
| In | |||
| | |||
| 0.049 | |||
| 0.160 | |||
| | |||
| 0.250 | |||
| 670 | |||
|- | |||
| 69 | |||
| 83 | | 83 | ||
| ] | | ] | ||
| Bi | | Bi | ||
| Chalcophile | |||
| data-sort-value=0.0085| 0.0085 (8.5{{e|-7}}%) | |||
|10,200 | |||
|- | style="background-color:#bbffff" <!--Atmophile--> | |||
|2 | |||
|] | |||
|He | |||
| Atmophile | |||
| data-sort-value=0.008|0.008 (8{{e|-7}}%) | |||
| | | | ||
|- | style="background-color:#bbffff" <!--Atmophile--> | |||
| 0.048 | |||
|10 | |||
| 0.025 | |||
|] | |||
|Ne | |||
| Atmophile | |||
| data-sort-value=0.005|0.005 (5{{e|-7}}%) | |||
| | | | ||
|- | style="background-color:#ffe0f0" <!--Siderophile--> | |||
| 0.0085 | |||
| 7,400 | |||
|- | |||
| 70 | |||
| 52 | |||
| ] | |||
| Te | |||
| | |||
| 0.005 | |||
| 0.001 | |||
| | |||
| 0.001 | |||
| | |||
|- | |||
| 71 | |||
| 78 | | 78 | ||
| ] | | ] | ||
| Pt | | Pt | ||
| Siderophile | |||
| | |||
| data-sort-value=0.005| 0.005 (5{{e|-7}}%) | |||
| 0.003 | |||
|172 | |||
| 0.0037 | |||
|- | style="background-color:#ffe0f0" <!--Siderophile--> | |||
| | |||
| 0.005 | |||
| 179 | |||
|- | |||
| 72 | |||
| 79 | | 79 | ||
| ] | | ] | ||
| Au | | Au | ||
| Siderophile | |||
| data-sort-value=0.004| 0.004 (4{{e|-7}}%) | |||
|3,100 | |||
|- | style="background-color:#ffe0f0" <!--Siderophile--> | |||
| 76 | |||
| ] | |||
| Os | |||
| Siderophile | |||
| data-sort-value=0.0015| 0.0015 (1.5{{e|-7}}%) | |||
| | | | ||
|- | style="background-color:#fff888" <!--Chalcophile--> | |||
| 0.0011 | |||
| |
| 52 | ||
| ] | |||
| | |||
| |
| Te | ||
| Chalcophile | |||
| 2,700 | |||
| data-sort-value=0.001| 0.001 (1{{e|-7}}%) | |||
|- | |||
|2,200 | |||
| 73 | |||
|- | style="background-color:#ffe0f0" <!--Siderophile--> | |||
| 44 | | 44 | ||
| ] | | ] | ||
| Ru | | Ru | ||
| Siderophile | |||
| data-sort-value=0.001| 0.001 (1{{e|-7}}%) | |||
| | | | ||
|- | style="background-color:#ffe0f0" <!--Siderophile--> | |||
| 0.001 | |||
| |
| 77 | ||
| ] | |||
| Ir | |||
| Siderophile | |||
| data-sort-value=0.001| 0.001 (1{{e|-7}}%) | |||
| | | | ||
|- | style="background-color:#ffe0f0" <!--Siderophile--> | |||
| 0.001 | |||
| | | 45 | ||
| ] | |||
|- | |||
| |
| Rh | ||
| Siderophile | |||
| 46 | |||
| data-sort-value=0.001| 0.001 (1{{e|-7}}%) | |||
| ] | |||
| Pd | |||
| | | | ||
|- | style="background-color:#ffe0f0" <!--Siderophile--> | |||
| 0.0006 | |||
| 0.0063 | |||
| | |||
| 0.015 | |||
| 200 | |||
|- | |||
| 75 | |||
| 75 | | 75 | ||
| ] | | ] | ||
| Re | | Re | ||
| Siderophile | |||
| data-sort-value=0.0007| 0.0007 (7{{e|-8}}%) | |||
| 47.2 | |||
|- | style="background-color:#bbffff" <!--Atmophile--> | |||
|36 | |||
|] | |||
|Kr | |||
| Atmophile | |||
| data-sort-value=0.0001|0.0001 (1{{e|-8}}%) | |||
| | | | ||
|- | style="background-color:#bbffff" <!--Atmophile--> | |||
| 0.0004 | |||
|54 | |||
| 0.0026 | |||
|] | |||
|Xe | |||
| Atmophile | |||
| data-sort-value=3e-5|3{{e|-5}} (3{{e|-9}}%) | |||
| | | | ||
| 0.0007 | |||
| 52 | |||
|- | |- | ||
| |
|91 | ||
|] | |||
| 77 | |||
|Pa | |||
| ] | |||
| |
| trace | ||
| data-sort-value=1.4e-6|1.4{{e|-6}} (1.4{{e|-10}}%) | |||
| | | | ||
|- | |||
| 0.0003 | |||
|88 | |||
| 0.0004 | |||
|] | |||
|Ra | |||
| trace | |||
| data-sort-value=9e-7|9{{e|-7}} (9{{e|-11}}%) | |||
| | | | ||
| 0.001 | |||
| | |||
|- | |- | ||
| |
|89 | ||
|] | |||
| 45 | |||
|Ac | |||
| ] | |||
| |
| trace | ||
| data-sort-value=5.5e-10|5.5{{e|-10}} (6{{e|-14}}%) | |||
| | | | ||
|- | |||
| 0.0002 | |||
|84 | |||
| 0.0007 | |||
|] | |||
|Po | |||
| trace | |||
| data-sort-value=2e-10|2{{e|-10}} (2{{e|-14}}%) | |||
| | | | ||
| 0.001 | |||
| | |||
|- | |- | ||
| |
|86 | ||
|] | |||
| 76 | |||
|Rn | |||
| ] | |||
| |
| trace | ||
| data-sort-value=4e-13|4{{e|-13}} (4{{e|-17}}%) | |||
| | | | ||
|- | |||
| 0.0001 | |||
|43 | |||
| 0.0018 | |||
|] | |||
|Tc | |||
| trace | |||
| data-sort-value=0| | |||
| | |||
|- | |||
|61 | |||
|] | |||
|Pm | |||
| trace | |||
| data-sort-value=0| | |||
| | |||
|- | |||
|85 | |||
|] | |||
|At | |||
| trace | |||
| data-sort-value=0| | |||
| | |||
|- | |||
|87 | |||
|] | |||
|Fr | |||
| trace | |||
| data-sort-value=0| | |||
| | |||
|- | |||
|93 | |||
|] | |||
|Np | |||
| trace | |||
| data-sort-value=0| | |||
| | |||
|- | |||
|94 | |||
|] | |||
|Pu | |||
| trace | |||
| data-sort-value=0| | |||
| | | | ||
| 0.0015 | |||
| | |||
|} | |} | ||
{{Reflist|group=upper-alpha}} | |||
==See also== | ==See also== | ||
* |
* {{annotated link| Abundances of the elements (data page)}} | ||
* {{annotated link| Atmospheric chemistry}} | |||
* {{annotated link| Clarke number}} | |||
* {{annotated link| List of chemical elements}} | |||
* {{annotated link| Oklo phenomenon}} | |||
* {{annotated link| Primordial nuclide}} | |||
==References== | ==References== | ||
{{Reflist}} | {{Reflist}} | ||
==Further reading== | |||
* {{Cite journal |last=Fleischer |first=Michael |date=September 1954 |title=The abundance and distribution of the chemical elements in the earth's crust |url=https://pubs.acs.org/doi/abs/10.1021/ed031p446 |journal=Journal of Chemical Education |language=en |volume=31 |issue=9 |pages=446 |doi=10.1021/ed031p446 |issn=0021-9584|quote=Examines the abundance and distribution of the chemical elements in the earth's crust, as well as the figures and methods that have contributed to this knowledge.}} | |||
==External links== | |||
* BookRags, . | * BookRags, . | ||
* World Book Encyclopedia, . | * ''World Book Encyclopedia'', . | ||
* HyperPhysics, Georgia State University, . | * HyperPhysics, Georgia State University, . | ||
* Eric Scerri, ''The Periodic Table, Its Story and Its Significance'', Oxford University Press, 2007 | |||
* Data Series 140, Historical Statistics for Mineral and Material Commodities in the United States, Version 2011, USGS . | |||
* {{Cite web |title=EarthRef.org Digital Archive (ERDA) -- Major Element Composition of the Core vs the Bulk Earth |url=https://earthref.org/ERDA/526/ |access-date=2024-03-22 |website=earthref.org}} | |||
* Eric Scerri, The Periodic Table, Its Story and Its Significance, Oxford University Press, 2007 | |||
* {{Cite web |title=GERM Reservoir Database -- Reservoir Data Model |url=https://earthref.org/GERMRD/reservoirs/ |access-date=2024-03-22 |website=earthref.org}} | |||
] | ] | ||
] | ] | ||
] | ] | ||
] |
Latest revision as of 19:46, 27 December 2024
The abundance of elements in Earth's crust is shown in tabulated form with the estimated crustal abundance for each chemical element shown as mg/kg, or parts per million (ppm) by mass (10,000 ppm = 1%).
Reservoirs
The Earth's crust is one "reservoir" for measurements of abundance. A reservoir is any large body to be studied as unit, like the ocean, atmosphere, mantle or crust. Different reservoirs may have different relative amounts of each element due to different chemical or mechanical processes involved in the creation of the reservoir.
Difficulties in measurement
Estimates of elemental abundance are difficult because (a) the composition of the upper and lower crust are quite different, and (b) the composition of the continental crust can vary drastically by locality. The composition of the Earth changed after its formation due to loss of volatile compounds, melting and recrystalization, selective loss of some elements to the deep interior, and erosion by water. The lanthanides are especially difficult to measure accurately.
Graphs of abundance vs atomic number
Graphs of abundance against atomic number can reveal patterns relating abundance to stellar nucleosynthesis and geochemistry. The alternation of abundance between even and odd atomic number is known as the Oddo–Harkins rule. The rarest elements in the crust are not the heaviest, but are rather the siderophile elements (iron-loving) in the Goldschmidt classification of elements. These have been depleted by being relocated deeper into the Earth's core; their abundance in meteoroids is higher. Tellurium and selenium are concentrated as sulfides in the core and have also been depleted by preaccretional sorting in the nebula that caused them to form volatile hydrogen selenide and hydrogen telluride.
List of abundance by element
This table gives the estimated abundance in parts per million by mass of elements in the continental crust; values of the less abundant elements may vary with location by several orders of magnitude.
Colour indicates each element's Goldschmidt classification:
Lithophile Siderophile Atmophile Chalcophile TraceZ | Element | Symbol | Goldschmidt classification |
Abundance (ppm) | Production tonnes/year |
---|---|---|---|---|---|
8 | oxygen | O | Lithophile | 461,000 (46.1%) | 10,335,000 |
14 | silicon | Si | Lithophile | 282,000 (28.2%) | 7,200,000 |
13 | aluminium | Al | Lithophile | 82,300 (8.23%) | 57,600,000 |
26 | iron | Fe | Siderophile | 56,300 (5.63%) | 1,150,000,000 |
20 | calcium | Ca | Lithophile | 41,500 (4.15%) | 18,000 |
11 | sodium | Na | Lithophile | 23,600 (2.36%) | 255,000,000 |
12 | magnesium | Mg | Lithophile | 23,300 (2.33%) | 27,700,000 |
19 | potassium | K | Lithophile | 20,900 (2.09%) | 53,200,000 |
22 | titanium | Ti | Lithophile | 5,650 (0.565%) | 6,600,000 |
1 | hydrogen | H | Atmophile | 1,400 (0.14%) | 75,000,000 |
15 | phosphorus | P | Lithophile | 1,050 (0.105%) | 226,000,000 |
25 | manganese | Mn | Lithophile | 950 (0.095%) | 16,000,000 |
9 | fluorine | F | Lithophile | 585 (0.0585%) | 17,000 |
56 | barium | Ba | Lithophile | 425 (0.0425%) | 6,000,000 |
38 | strontium | Sr | Lithophile | 370 (0.037%) | 350,000 |
16 | sulfur | S | Chalcophile | 350 (0.035%) | 69,300,000 |
6 | carbon | C | Atmophile | 200 (0.02%) | 9,700,000,000 |
40 | zirconium | Zr | Lithophile | 165 (0.0165%) | 1,460,000 |
17 | chlorine | Cl | Lithophile | 145 (0.0145%) | 71,250,000 |
23 | vanadium | V | Lithophile | 120 (0.012%) | 76,000 |
24 | chromium | Cr | Lithophile | 102 (0.0102%) | 26,000,000 |
37 | rubidium | Rb | Lithophile | 90 (0.009%) | 2 |
28 | nickel | Ni | Siderophile | 84 (0.0084%) | 2,250,000 |
30 | zinc | Zn | Chalcophile | 70 (0.007%) | 11,900,000 |
58 | cerium | Ce | Lithophile | 66.5 (0.00665%) | 24,000 |
29 | copper | Cu | Chalcophile | 60 (0.006%) | 19,400,000 |
60 | neodymium | Nd | Lithophile | 41.5 (0.00415%) | 7,000 |
57 | lanthanum | La | Lithophile | 39 (0.0039%) | 12,500 |
39 | yttrium | Y | Lithophile | 33 (0.0033%) | 6,000 |
27 | cobalt | Co | Siderophile | 25 (0.0025%) | 123,000 |
21 | scandium | Sc | Lithophile | 22 (0.0022%) | 14 |
3 | lithium | Li | Lithophile | 20 (0.002%) | 35,000 |
41 | niobium | Nb | Lithophile | 20 (0.002%) | 64,000 |
7 | nitrogen | N | Atmophile | 19 (0.0019%) | 140,000,000 |
31 | gallium | Ga | Chalcophile | 19 (0.0019%) | 315 |
82 | lead | Pb | Chalcophile | 14 (0.0014%) | 4,820,000 |
5 | boron | B | Lithophile | 10 (0.001%) | 9,400,000 |
90 | thorium | Th | Lithophile | 9.6 (0.00096%) | 5,000 |
59 | praseodymium | Pr | Lithophile | 9.2 (0.00092%) | 2,500 |
62 | samarium | Sm | Lithophile | 7.05 (0.000705%) | 700 |
64 | gadolinium | Gd | Lithophile | 6.2 (0.00062%) | 400 |
66 | dysprosium | Dy | Lithophile | 5.2 (0.00052%) | |
68 | erbium | Er | Lithophile | 3.5 (0.00035%) | 500 |
18 | argon | Ar | Atmophile | 3.5 (0.00035%) | |
70 | ytterbium | Yb | Lithophile | 3.2 (0.00032%) | |
72 | hafnium | Hf | Lithophile | 3.0 (0.0003%) | |
55 | caesium | Cs | Lithophile | 3.0 (0.0003%) | |
4 | beryllium | Be | Lithophile | 2.8 (0.00028%) | 220 |
92 | uranium | U | Lithophile | 2.7 (0.00027%) | 74,119 |
35 | bromine | Br | Lithophile | 2.4 (0.00024%) | 391,000 |
50 | tin | Sn | Chalcophile | 2.3 (0.00023%) | 280,000 |
73 | tantalum | Ta | Lithophile | 2.0 (0.0002%) | 1,100 |
63 | europium | Eu | Lithophile | 2.0 (0.0002%) | |
33 | arsenic | As | Chalcophile | 1.8 (0.00018%) | 36,500 |
32 | germanium | Ge | Chalcophile | 1.5 (0.00015%) | 155 |
67 | holmium | Ho | Lithophile | 1.3 (0.00013%) | |
74 | tungsten | W | Siderophile | 1.25 (0.000125%) | 86,400 |
42 | molybdenum | Mo | Siderophile | 1.2 (0.00012%) | 227,000 |
65 | terbium | Tb | Lithophile | 1.2 (0.00012%) | |
81 | thallium | Tl | Chalcophile | 0.85 (8.5×10%) | 10 |
71 | lutetium | Lu | Lithophile | 0.8 (8×10%) | |
69 | thulium | Tm | Lithophile | 0.52 (5.2×10%) | |
53 | iodine | I | Lithophile | 0.45 (4.5×10%) | 31,600 |
49 | indium | In | Chalcophile | 0.25 (2.5×10%) | 655 |
51 | antimony | Sb | Chalcophile | 0.2 (2×10%) | 130,000 |
48 | cadmium | Cd | Chalcophile | 0.15 (1.5×10%) | 23,000 |
80 | mercury | Hg | Chalcophile | 0.085 (8.5×10%) | 4,500 |
47 | silver | Ag | Chalcophile | 0.075 (7.5×10%) | 27,000 |
34 | selenium | Se | Chalcophile | 0.05 (5×10%) | 2,200 |
46 | palladium | Pd | Siderophile | 0.015 (1.5×10%) | 208 |
83 | bismuth | Bi | Chalcophile | 0.0085 (8.5×10%) | 10,200 |
2 | helium | He | Atmophile | 0.008 (8×10%) | |
10 | neon | Ne | Atmophile | 0.005 (5×10%) | |
78 | platinum | Pt | Siderophile | 0.005 (5×10%) | 172 |
79 | gold | Au | Siderophile | 0.004 (4×10%) | 3,100 |
76 | osmium | Os | Siderophile | 0.0015 (1.5×10%) | |
52 | tellurium | Te | Chalcophile | 0.001 (1×10%) | 2,200 |
44 | ruthenium | Ru | Siderophile | 0.001 (1×10%) | |
77 | iridium | Ir | Siderophile | 0.001 (1×10%) | |
45 | rhodium | Rh | Siderophile | 0.001 (1×10%) | |
75 | rhenium | Re | Siderophile | 0.0007 (7×10%) | 47.2 |
36 | krypton | Kr | Atmophile | 0.0001 (1×10%) | |
54 | xenon | Xe | Atmophile | 3×10 (3×10%) | |
91 | protactinium | Pa | trace | 1.4×10 (1.4×10%) | |
88 | radium | Ra | trace | 9×10 (9×10%) | |
89 | actinium | Ac | trace | 5.5×10 (6×10%) | |
84 | polonium | Po | trace | 2×10 (2×10%) | |
86 | radon | Rn | trace | 4×10 (4×10%) | |
43 | technetium | Tc | trace | ||
61 | promethium | Pm | trace | ||
85 | astatine | At | trace | ||
87 | francium | Fr | trace | ||
93 | neptunium | Np | trace | ||
94 | plutonium | Pu | trace |
See also
- Abundances of the elements (data page)
- Atmospheric chemistry – Branch of atmospheric science in which the chemistry of the atmosphere is studied
- Clarke number – Relative abundance of elements
- List of chemical elements
- Oklo phenomenon – Naturally occurring uranium self-sustaining nuclear chain reactionsPages displaying short descriptions of redirect targets
- Primordial nuclide – Nuclides predating the Earth's formation (found on Earth)
References
- Albarède, Francis (2009-06-25). Geochemistry: An Introduction (2 ed.). Cambridge University Press. doi:10.1017/cbo9780511807435.005. ISBN 978-0-521-88079-4.
- Kring, David A. "Composition of Earth's continental crust as inferred from the compositions of impact melt sheets". 28th Annual Lunar and Planetary Science Conference, March 17–21, 1997, Houston, TX, p. 763. Vol. 28. 1997.
- Suess, Hans E.; Urey, Harold C. (1956-01-01). "Abundances of the Elements". Reviews of Modern Physics. 28: 53–74. doi:10.1103/RevModPhys.28.53. ISSN 0034-6861.
- Surendra P. Verma, E. Santoyo & Fernando Velasco-Tapia (2002) "Statistical Evaluation of Analytical Methods for the Determination of Rare-Earth Elements in Geological Materials and Implications for Detection Limits", International Geology Review, 44:4, 287–335, doi:10.2747/0020-6814.44.4.287 (note geochemists refer to lanthanides as rare earth per ref.).
- "Rare Earth Elements—Critical Resources for High Technology: USGS Fact Sheet 087-02". pubs.usgs.gov. Retrieved 2024-03-23.
- Anderson, Don L.; "Chemical Composition of the Mantle", Theory of the Earth, pp. 147–175 ISBN 0865421234
- ^ "Abundance of Elements in the Earth's Crust and in the Sea", CRC Handbook of Chemistry and Physics, 97th edition (2016–2017), sec. 14, pg. 17
- 2016 extraction per Commodity Statistics and Information. USGS. All production numbers are for mines, except for Al, Cd, Fe, Ge, In, N, Se (plants, refineries), S (all forms) and As, Br, Mg, Si (unspecified). Data for B, K, Ti, Y are given not for the pure element but for the most common oxide, data for Na and Cl are for NaCl. For many elements like Si, Al, data are ambiguous (many forms produced) and are taken for the pure element. U data is pure element required for consumption by current reactor fleet Archived 2017-10-01 at the Wayback Machine. WNA.
- "Oxygen Supply Chain – Executive Summary" (PDF). Retrieved 2024-05-23.
- Canada, Natural Resources (2018-01-23). "Potash facts". natural-resources.canada.ca. Retrieved 2024-05-23.
- "Hydrogen". www.irena.org. 2024-05-29. Retrieved 2024-05-23.
- "Hydrogen Production". Retrieved 2024-05-23.
- "Phosphate rock production capacity worldwide". Statista. Retrieved 2024-05-23.
- "Barium - Element information, properties and uses | Periodic Table". www.rsc.org. Retrieved 2024-05-23.
- "Chlorine global market volume 2030". Statista. Retrieved 2024-05-23.
- MMTA. "Cerium". MMTA. Retrieved 2024-05-23.
- "Neodymium - Elements Database". www.elementsdatabase.com. Retrieved 2024-05-23.
- MMTA. "Lanthanum". MMTA. Retrieved 2024-05-23.
- Phoung, Sinoun; Williams, Eric; Gaustad, Gabrielle; Gupta, Ajay (2023). "Exploring global supply and demand of scandium oxide in 2030". Journal of Cleaner Production. 401. doi:10.1016/j.jclepro.2023.136673. Retrieved 2024-05-23.
- Emsley2010-09-01T00:00:00+01:00, John. "Thorium". RSC Education. Retrieved 2024-05-23.
{{cite web}}
: CS1 maint: numeric names: authors list (link) - "Praseodymium (Pr) - Chemical properties, Health and Environmental effects". www.lenntech.com. Retrieved 2024-05-23.
- MMTA. "Samarium". MMTA. Retrieved 2024-05-23.
- "Gadolinium (Gd)". RWMM. Retrieved 2024-05-23.
- "Erbium (Er) - Chemical properties, Health and Environmental effects". www.lenntech.com. Retrieved 2024-05-23.
Further reading
- Fleischer, Michael (September 1954). "The abundance and distribution of the chemical elements in the earth's crust". Journal of Chemical Education. 31 (9): 446. doi:10.1021/ed031p446. ISSN 0021-9584.
Examines the abundance and distribution of the chemical elements in the earth's crust, as well as the figures and methods that have contributed to this knowledge.
External links
- BookRags, Periodic Table.
- World Book Encyclopedia, Exploring Earth.
- HyperPhysics, Georgia State University, Abundance of Elements in Earth's Crust.
- Eric Scerri, The Periodic Table, Its Story and Its Significance, Oxford University Press, 2007
- "EarthRef.org Digital Archive (ERDA) -- Major Element Composition of the Core vs the Bulk Earth". earthref.org. Retrieved 2024-03-22.
- "GERM Reservoir Database -- Reservoir Data Model". earthref.org. Retrieved 2024-03-22.