Misplaced Pages

Abundance of elements in Earth's crust: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 11:41, 24 January 2017 edit128.40.9.164 (talk) Undid revision 761712550 by Materialscientist (talk)← Previous edit Latest revision as of 19:46, 27 December 2024 edit undoProcyon117 (talk | contribs)Extended confirmed users14,726 edits List of abundance by element: Fix 
(205 intermediate revisions by 95 users not shown)
Line 1: Line 1:
{{Short description|none}}
] of elements. These have been depleted by being relocated deeper into the Earth's core. Their abundance in ]s is higher. Additionally, tellurium and selenium have been depleted from the crust due to formation of volatile hydrides.]]
The '''abundance of elements in Earth's crust''' is shown in tabulated form with the estimated ] abundance for each ] shown as mg/kg, or ] (ppm) by ] (10,000 ppm = 1%).


== Reservoirs ==
This table shows the estimated abundances of ]s in ]. Numbers show ] or ] (ppm) in ]; 10,000 ppm = 1%.
The Earth's crust is one "reservoir" for measurements of abundance. A reservoir is any large body to be studied as unit, like the ocean, atmosphere, mantle or crust. Different reservoirs may have different relative amounts of each element due to different chemical or mechanical processes involved in the creation of the reservoir.<ref name=Albarede>{{Cite book |last=Albarède |first=Francis |url=https://www.cambridge.org/core/product/identifier/9780511807435/type/book |title=Geochemistry: An Introduction |date=2009-06-25 |publisher=Cambridge University Press |isbn=978-0-521-88079-4 |edition=2 |doi=10.1017/cbo9780511807435.005}}</ref>{{rp|18}}


== Difficulties in measurement ==
{| class="wikitable sortable"

|-
Estimates of elemental abundance are difficult because (a) the composition of the upper and lower crust are quite different, and (b) the composition of the continental crust can vary drastically by locality.<ref>Kring, David A. . 28th Annual Lunar and Planetary Science Conference, March 17–21, 1997, Houston, TX, p.&nbsp;763. Vol.&nbsp;28. 1997.</ref> The composition of the Earth changed after its formation due to loss of volatile compounds, melting and recrystalization, selective loss of some elements to the deep interior, and erosion by water.<ref>{{Cite journal |last1=Suess |first1=Hans E. |url=https://link.aps.org/doi/10.1103/RevModPhys.28.53 |title=Abundances of the Elements |last2=Urey |first2=Harold C. |journal=Reviews of Modern Physics |date=1956-01-01 |volume=28 |pages=53–74 |language=en |doi=10.1103/RevModPhys.28.53 |issn=0034-6861}}</ref>{{rp|55}}
! Rank
The ] are especially difficult to measure accurately.<ref>Surendra P. Verma, E. Santoyo & Fernando Velasco-Tapia (2002) "Statistical Evaluation of Analytical Methods for the Determination of Rare-Earth Elements in Geological Materials and Implications for Detection Limits", International Geology Review, 44:4, 287–335, {{doi|10.2747/0020-6814.44.4.287}} (note geochemists refer to lanthanides as rare earth per ref.).</ref>
! ]

== Graphs of abundance vs atomic number ==
]
Graphs of abundance against atomic number can reveal patterns relating abundance to ] and ].
The alternation of abundance between even and odd atomic number is known as the ]. The rarest elements in the crust are not the heaviest, but are rather the ] (iron-loving) in the ] of elements. These have been depleted by being relocated deeper into the Earth's core; their abundance in ]s is higher. Tellurium and selenium are concentrated as sulfides in the core and have also been depleted by preaccretional sorting in the nebula that caused them to form volatile ] and ].<ref>Anderson, Don L.; "Chemical Composition of the Mantle", ''Theory of the Earth'', pp. 147–175 {{ISBN|0865421234}}</ref>
{{clear}}

==List of abundance by element==
<!-- Please do not change the abundance values without consensus on the Talk page. -->
This table gives the estimated abundance in parts per million by mass of elements in the continental crust; values of the less abundant elements may vary with location by several orders of magnitude.<ref name="CRC">"Abundance of Elements in the Earth's Crust and in the Sea", ''CRC Handbook of Chemistry and Physics,'' 97th edition (2016–2017), sec. 14, pg. 17</ref>

Colour indicates each element's ]:<!--Per ] do not remove the classification column - information must never be presented only by colour-->
{{legend|ffbb77|Lithophile}}
{{legend|ffe0f0|Siderophile}}
{{legend|bbffff|Atmophile}}
{{legend|fff888|Chalcophile}}
{{legend||Trace}}
{{sort under}}
{| class="wikitable sortable sort-under mw-collapsible" style="text-align: right"
|+ Abundance of chemical elements in Earth's (continental) crust
|- class="static-row-header"
! ]
! Element ! Element
! style="border-right:2px solid #b8b8b8" | Symbol
! Symbol
! style="border-right:2px solid #b8b8b8" | Goldschmidt<br/> classification
! ] abundance<ref>{{cite web|url = http://www.daviddarling.info/encyclopedia/E/elterr.html
! data-sort-type=number style="border-right:2px solid #b8b8b8" | Abundance (ppm)<ref name=CRC/>
|title = Elements, Terrestrial Abundance
! data-sort-type=number | Production<br/>]/year<ref>2016 extraction per . USGS. All production numbers are for mines, except for Al, Cd, Fe, Ge, In, N, Se (plants, refineries), S (all forms) and As, Br, Mg, Si (unspecified). Data for B, K, Ti, Y are given not for the pure element but for the most common oxide, data for Na and Cl are for NaCl. For many elements like Si, Al, data are ambiguous (many forms produced) and are taken for the pure element. U data is pure element required for consumption by current reactor fleet {{Webarchive|url=https://web.archive.org/web/20171001013037/https://minerals.usgs.gov/minerals/pubs/commodity/|date=2017-10-01}}. WNA.</ref>
|publisher = www.daviddarling.info
|- | style="background-color:#ffbb77" <!--Lithophile-->
|accessdate = 2007-04-14| archiveurl= https://web.archive.org/web/20070410165310/http://daviddarling.info/encyclopedia/E/elterr.html| archivedate= 10 April 2007 <!--DASHBot-->| deadurl= no}}</ref>
! Relative proportion (ppm)<ref>{{cite web|last = Barbalace
|first = Kenneth
|url = http://environmentalchemistry.com/yogi/periodic/
|title = Periodic Table of Elements
|publisher = Environmental Chemistry.com
|accessdate = 2007-04-14}}</ref>
!Abundance in&nbsp;crust (ppm)<ref>
{{cite web
|url = http://www.webelements.com/webelements/properties/text/image-flash/abund-crust.html
|title = Abundance in Earth's Crust
|publisher = WebElements.com
|accessdate = 2007-04-14| archiveurl= https://web.archive.org/web/20070309033534/http://www.webelements.com/webelements/properties/text/image-flash/abund-crust.html| archivedate= 9 March 2007 <!--DASHBot-->| deadurl= no}}</ref>
!Abundance in&nbsp;crust (ppm)<ref>
{{cite web
|url = http://www.science.co.il/elements/?s=Earth
|title = List of Periodic Table Elements Sorted by Abundance in Earth's crust
|publisher = Israel Science and Technology Homepage
|accessdate = 2007-04-15}}</ref>
!Abundance in&nbsp;crust (ppm)<ref>
{{cite web
|url = http://education.jlab.org/itselemental/index.html
|title = It's Elemental&nbsp;— The Periodic Table of Elements
|publisher = Jefferson Lab
|accessdate = 2007-04-14| archiveurl= https://web.archive.org/web/20070429032414/http://education.jlab.org/itselemental/index.html| archivedate= 29 April 2007| deadurl= no}}</ref>
!Production (2012, ])<ref>. USGS. All production numbers are for mines, except for Al, Cd, Fe, Ge, In, N, Se (plants, refineries), S (all forms) and As, Br, Mg, Si (unspecified). Data for B, K, Ti, Y are given not for the pure element but for the most common oxide, data for Na and Cl are for NaCl. For many elements like Si, Al, data are ambiguos (many forms produced) and are taken for the pure element. U data is pure element required for consumption by current reactor fleet . WNA. </ref>
|-
| 1
| 8 | 8
| ] | ]
| O | O
| Lithophile
| 466,000
| data-sort-value=461,000| 461,000 (46.1%)
| 474,000
| 10,335,000<ref>{{Cite web |title=Oxygen Supply Chain – Executive Summary |url=https://www.epa.gov/system/files/documents/2023-03/Oxygen%20Supply%20Chain%20Profile.pdf |access-date=2024-05-23}}</ref>
| 460,000
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 467,100
| 461,000
|
|-
| 2
| 14 | 14
| ]
| ] <ref group=upper-alpha>5,000 tonnes of annual production is electronic grade</ref>
| Si | Si
| Lithophile
| 277,200
| data-sort-value=282,000| 282,000 (28.2%)
| 277,100
| 270,000 |7,200,000
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 276,900
| 282,000
| 7,600,000
|-
| 3
| 13 | 13
| ] | ]
| Al | Al
| Lithophile
| 81,300
| data-sort-value=82,300| 82,300 (8.23%)
| 82,000
| 82,000 |57,600,000
|- | style="background-color:#ffe0f0" <!--Siderophile-->
| 80,700
| 82,300
| 44,900,000
|-
| 4
| 26 | 26
| ] | ]
| Fe | Fe
| Siderophile
| 50,000
| data-sort-value=56,300| 56,300 (5.63%)
| 41,000
| 63,000 |1,150,000,000
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 50,500
| 56,300
| 1,100,000,000
|-
| 5
| 20 | 20
| ] | ]
| Ca | Ca
| Lithophile
| 36,300
| data-sort-value=41,500| 41,500 (4.15%)
| 41,000
| 50,000 | 18,000
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 36,500
| 41,500
|
|-
| 6
| 11 | 11
| ] | ]
| Na | Na
| Lithophile
| 28,300
| data-sort-value=23,600| 23,600 (2.36%)
| 23,000
| 23,000 |255,000,000
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 27,500
| 23,600 | 12
| ]
| 280,000,000
|- | Mg
| Lithophile
| 7
| data-sort-value=23,300| 23,300 (2.33%)
|27,700,000
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 19 | 19
| ] | ]
| K | K
| Lithophile
| 25,900
| data-sort-value=20,900| 20,900 (2.09%)
| 21,000
|53,200,000<ref>{{Cite web |last=Canada |first=Natural Resources |date=2018-01-23 |title=Potash facts |url=https://natural-resources.canada.ca/our-natural-resources/minerals-mining/mining-data-statistics-and-analysis/minerals-metals-facts/potash-facts/20521 |access-date=2024-05-23 |website=natural-resources.canada.ca}}</ref>
| 15,000
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 25,800
| 20,900
| 34,000
|-
| 8
| 12
| ]
| Mg
| 20,900
| 23,000
| 29,000
| 20,800
| 23,300
| 750,000
|-
| 9
| 22 | 22
| ] | ]
| Ti | Ti
| Lithophile
| 4,400
| data-sort-value=5,650| 5,650 (0.565%)
| 5,600
| 6,600 |6,600,000
|- | style="background-color:#bbffff" <!--Atmophile-->
| 6,200
| 5,600
| 6,500,000
|-
| 10
| 1 | 1
| ] | ]
| H | H
| Atmophile
| 1,400
| data-sort-value=1,400| 1,400 (0.14%)
|
| 75,000,000<ref>{{Cite web |date=2024-05-29 |title=Hydrogen |url=https://www.irena.org/Energy-Transition/Technology/Hydrogen |access-date=2024-05-23 |website=www.irena.org |language=en}}</ref><ref>{{Cite web |title=Hydrogen Production |url=https://www.energy.gov/eere/fuelcells/hydrogen-production |access-date=2024-05-23}}</ref>
| 1,500
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 1,400
| 1,400
|
|-
| 11
| 15 | 15
| ] | ]
| P | P
| Lithophile
| 1,200
| data-sort-value=1,050| 1,050 (0.105%)
| 1,000
| 226,000,000<ref>{{Cite web |title=Phosphate rock production capacity worldwide |url=https://www.statista.com/statistics/1288972/global-phosphate-rock-production-capacity/ |access-date=2024-05-23 |website=Statista |language=en}}</ref>
| 1,000
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 1,300
| 1,050
|
|-
| 12
| 25 | 25
| ] | ]
| Mn | Mn
| Lithophile
| 1,000
| data-sort-value=950| 950 (0.095%)
| 950
| 1,100
| 900
| 950
| 16,000,000 | 16,000,000
|- | style="background-color:#ffbb77" <!--Lithophile-->
|-
|13
| 9 | 9
| ] | ]
| F | F
| Lithophile
| 800
| data-sort-value=585| 585 (0.0585%)
| 950
| 540 | 17,000
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 290
| 585
|
|-
| 14
| 56 | 56
| ] | ]
| Ba | Ba
| Lithophile
| 500
| data-sort-value=425| 425 (0.0425%)
| 340
| 6,000,000<ref>{{Cite web |title=Barium - Element information, properties and uses {{!}} Periodic Table |url=https://www.rsc.org/periodic-table/element/56/barium |access-date=2024-05-23 |website=www.rsc.org}}</ref>
| 340
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 500
| 425
|
|-
| 15
| 6
| ]
| C
| 300
| 480
| 1,800
| 940
| 200
|
|-
|16
| 38 | 38
| ] | ]
| Sr | Sr
| Lithophile
|
| data-sort-value=370| 370 (0.037%)
| 370
|350,000
| 360
|- | style="background-color:#fff888" <!--Chalcophile-->
|
| 370
| 380,000
|-
| 17
| 16 | 16
| ] | ]
| S | S
| Chalcophile
| 500
| data-sort-value=350| 350 (0.035%)
| 260
|69,300,000
| 420
|- | style="background-color:#bbffff" <!--Atmophile-->
| 520
| 350 | 6
| ]
| 70,000,000
|- | C
| Atmophile
| 18
| data-sort-value=200| 200 (0.02%)
| 9,700,000,000
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 40 | 40
| ] | ]
| Zr | Zr
| Lithophile
|
| data-sort-value=165| 165 (0.0165%)
| 190
|1,460,000
| 130
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 250
| 165 | 17
| ]
| 1,420,000
|- | Cl
| Lithophile
| 19
| data-sort-value=145| 145 (0.0145%)
| 74
|71,250,000<ref>{{Cite web |title=Chlorine global market volume 2030 |url=https://www.statista.com/statistics/1310477/chlorine-market-volume-worldwide/ |access-date=2024-05-23 |website=Statista |language=en}}</ref>
| ]
|- | style="background-color:#ffbb77" <!--Lithophile-->
| W
|
| 160.6
| 1.1
|
| 1.25
| 73,000
|-
| 20
| 23 | 23
| ] | ]
| V | V
| Lithophile
| 100
| data-sort-value=120| 120 (0.012%)
| 160
|76,000
| 190
|- | style="background-color:#ffbb77" <!--Lithophile-->
|
| 120 | 24
| 63,000
|-
| 21
| 17
| ]
| Cl
| 500
| 130
| 170
| 450
| 145
| 280,000,000
|-
| 22
| 24
| ] | ]
| Cr | Cr
| Lithophile
| 100
| data-sort-value=102| 102 (0.0102%)
| 100
|26,000,000
| 140
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 350
| 102
| 7,890,000
|-
| 23
| 37 | 37
| ] | ]
| Rb | Rb
| Lithophile
| 300
| data-sort-value=90| 90 (0.009%)
| 90
| 60 | 2
|- | style="background-color:#ffe0f0" <!--Siderophile-->
|
| 90
|
|-
| 24
| 28 | 28
| ] | ]
| Ni | Ni
| Siderophile
|
| data-sort-value=84| 84 (0.0084%)
| 80
|2,250,000
| 90
|- | style="background-color:#fff888" <!--Chalcophile-->
| 190
| 84
| 2,100,000
|-
| 25
| 30 | 30
| ] | ]
| Zn | Zn
| Chalcophile
|
| data-sort-value=70| 70 (0.007%)
| 75
|11,900,000
| 79
|- | style="background-color:#ffbb77" <!--Lithophile-->
|
| 70 | 58
| ]
| 13,000,000
|- | Ce
| Lithophile
| 26
| data-sort-value=66.5| 66.5 (0.00665%)
| 24,000<ref>{{Cite web |last=MMTA |title=Cerium |url=https://mmta.co.uk/metals/ce/ |access-date=2024-05-23 |website=MMTA |language=en-US}}</ref>
|- | style="background-color:#fff888" <!--Chalcophile-->
| 29 | 29
| ] | ]
| Cu | Cu
| Chalcophile
| 100
| data-sort-value=60| 60 (0.006%)
| 50
|19,400,000
| 68
|- | style="background-color:#ffbb77" <!--Lithophile-->
|
| 60
| 17,000,000
|-
| 27
| 58
| ]
| Ce
|
| 68
| 60
|
| 66.5
|
|-
| 28
| 60 | 60
| ] | ]
| Nd | Nd
| Lithophile
|
| data-sort-value=41.5| 41.5 (0.00415%)
| 38
| 7,000<ref>{{Cite web |title=Neodymium - Elements Database |url=http://www.elementsdatabase.com/Neodymium-Nd-60-element/ |access-date=2024-05-23 |website=www.elementsdatabase.com}}</ref>
| 33
|- | style="background-color:#ffbb77" <!--Lithophile-->
|
| 41.5
|
|-
| 29
| 57 | 57
| ] | ]
| La | La
| Lithophile
|
| data-sort-value=39| 39 (0.0039%)
| 32
| 12,500<ref>{{Cite web |last=MMTA |title=Lanthanum |url=https://mmta.co.uk/metals/la/ |access-date=2024-05-23 |website=MMTA |language=en-US}}</ref>
| 34
|- | style="background-color:#ffbb77" <!--Lithophile-->
|
| 39
|
|-
| 30
| 39 | 39
| ] | ]
| Y | Y
| Lithophile
|
| data-sort-value=33| 33 (0.0033%)
| 30
|6,000
| 29
|- | style="background-color:#ffe0f0" <!--Siderophile-->
|
| 33
| 8,900
|-
| 31
| 7
| ]
| N
| 50
| 25
| 20
|
| 19
| 137,000,000
|-
| 32
| 27 | 27
| ] | ]
| Co | Co
| Siderophile
|
| data-sort-value=25| 25 (0.0025%)
| 20
|123,000
| 30
|- | style="background-color:#ffbb77" <!--Lithophile-->
|
| 25 | 21
| ]
| 110,000
|- | Sc
| Lithophile
| 33
| data-sort-value=22| 22 (0.0022%)
| 14<ref>{{Cite journal |title=Exploring global supply and demand of scandium oxide in 2030 |date=2023 |doi=10.1016/j.jclepro.2023.136673 |url=https://www.sciencedirect.com/science/article/abs/pii/S0959652623008314 |access-date=2024-05-23 |last1=Phoung |first1=Sinoun |last2=Williams |first2=Eric |last3=Gaustad |first3=Gabrielle |last4=Gupta |first4=Ajay |journal=Journal of Cleaner Production |volume=401 }}</ref>
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 3 | 3
| ] | ]
| Li | Li
| Lithophile
|
| data-sort-value=20| 20 (0.002%)
| 20
|35,000
| 17
|- | style="background-color:#ffbb77" <!--Lithophile-->
|
| 20
| 37,000
|-
| 34
| 41 | 41
| ] | ]
| Nb | Nb
| Lithophile
|
| data-sort-value=20| 20 (0.002%)
| 20
|64,000
| 17
|- | style="background-color:#bbffff" <!--Atmophile-->
|
| 20 | 7
| ]
| 69,000
|- | N
| Atmophile
| 35
| data-sort-value=19| 19 (0.0019%)
|140,000,000
|- | style="background-color:#fff888" <!--Chalcophile-->
| 31 | 31
| ] | ]
| Ga | Ga
| Chalcophile
|
| data-sort-value=19| 19 (0.0019%)
| 18
| 19 | 315
|- | style="background-color:#fff888" <!--Chalcophile-->
|
| 19
|
|-
| 36
| 21
| ]
| Sc
|
| 16
| 26
|
| 22
|
|-
| 37
| 82 | 82
| ] | ]
| Pb | Pb
| Chalcophile
|
| data-sort-value=14| 14 (0.0014%)
| 14
|4,820,000
| 10
|- | style="background-color:#ffbb77" <!--Lithophile-->
|
| 14 | 5
| ]
| 5,200,000
|- | B
| Lithophile
| 38
| data-sort-value=10| 10 (0.001%)
| 62
|9,400,000
| ]
|- | style="background-color:#ffbb77" <!--Lithophile-->
| Sm
|
| 7.9
| 6
|
| 7.05
|
|-
| 39
| 90 | 90
| ] | ]
| Th | Th
| Lithophile
|
| data-sort-value=9.6| 9.6 (0.00096%)
| 12
| 5,000<ref>{{Cite web |last=Emsley2010-09-01T00:00:00+01:00 |first=John |title=Thorium |url=https://edu.rsc.org/elements/thorium/2020027.article |access-date=2024-05-23 |website=RSC Education |language=en}}</ref>
| 6
|- | style="background-color:#ffbb77" <!--Lithophile-->
|
| 9.6
|
|-
| 40
| 59 | 59
| ] | ]
| Pr | Pr
| Lithophile
|
| data-sort-value=9.2| 9.2 (0.00092%)
| 9.5
| 2,500<ref>{{Cite web |title=Praseodymium (Pr) - Chemical properties, Health and Environmental effects |url=https://www.lenntech.com/periodic/elements/pr.htm |access-date=2024-05-23 |website=www.lenntech.com}}</ref>
| 8.7
|- | style="background-color:#ffbb77" <!--Lithophile-->
|
| 9.2 | 62
| ]
|
|- | Sm
| Lithophile
| 41
| data-sort-value=7.05| 7.05 (0.000705%)
| 5
| 700<ref>{{Cite web |last=MMTA |title=Samarium |url=https://mmta.co.uk/metals/sm/ |access-date=2024-05-23 |website=MMTA |language=en-US}}</ref>
| ]
|- | style="background-color:#ffbb77" <!--Lithophile-->
| B
|
| 950
| 8.7
|
| 10
| 4,600,000
|-
| 42
| 64 | 64
| ] | ]
| Gd | Gd
| Lithophile
|
| data-sort-value=6.2| 6.2 (0.00062%)
| 7.7
| 400<ref>{{Cite web |title=Gadolinium (Gd) |url=https://www.rwmmint.com/products/gadolinium |access-date=2024-05-23 |website=RWMM |language=en}}</ref>
| 5.2
|- | style="background-color:#ffbb77" <!--Lithophile-->
|
| 6.2
|
|-
| 43
| 66 | 66
| ] | ]
| Dy | Dy
| Lithophile
|
| data-sort-value=5.2| 5.2 (0.00052%)
| 6
| 6.2
|
| 5.2
| |
|- | style="background-color:#ffbb77" <!--Lithophile-->
|-
| 44
| 72
| ]
| Hf
|
| 5.3
| 3.3
|
| 3.0
|
|-
| 45
| 68 | 68
| ] | ]
| Er | Er
| Lithophile
| data-sort-value=3.5| 3.5 (0.00035%)
| 500<ref>{{Cite web |title=Erbium (Er) - Chemical properties, Health and Environmental effects |url=https://www.lenntech.com/periodic/elements/er.htm |access-date=2024-05-23 |website=www.lenntech.com}}</ref>
|- | style="background-color:#bbffff" <!--Atmophile-->
|18
|]
|Ar
| Atmophile
| data-sort-value=3.5|3.5 (0.00035%)
| |
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 3.8
| 3.0
|
| 3.5
|
|-
| 46
| 70 | 70
| ] | ]
| Yb | Yb
| Lithophile
| data-sort-value=3.2| 3.2 (0.00032%)
| |
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 3.3
| 2.8 | 72
| ]
| Hf
| Lithophile
| data-sort-value=3.0| 3.0 (0.0003%)
| |
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 3.2
|
|-
| 47
| 55 | 55
| ] | ]
| Cs | Cs
| Lithophile
| data-sort-value=3.0| 3.0 (0.0003%)
| |
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 3
| 1.9
|
| 3
|
|-
| 48
| 4 | 4
| ] | ]
| Be | Be
| Lithophile
|
| data-sort-value=2.8| 2.8 (0.00028%)
| 2.6
|220
| 1.9
|- | style="background-color:#ffbb77" <!--Lithophile-->
|
| 2.8 | 92
| ]
| 230
|- | U
| Lithophile
| 49
| data-sort-value=2.7| 2.7 (0.00027%)
|74,119
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 35
| ]
| Br
| Lithophile
| data-sort-value=2.4| 2.4 (0.00024%)
|391,000
|- | style="background-color:#fff888" <!--Chalcophile-->
| 50 | 50
| ] | ]
| Sn | Sn
| Chalcophile
| 0
| data-sort-value=2.3| 2.3 (0.00023%)
| 2.2
|280,000
| 2.2
|- | style="background-color:#ffbb77" <!--Lithophile-->
|
| 2.3 | 73
| ]
| 230,000
|- | Ta
| Lithophile
| 50
| data-sort-value=2.0| 2.0 (0.0002%)
|1,100
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 63 | 63
| ] | ]
| Eu | Eu
| Lithophile
| data-sort-value=2.0| 2.0 (0.0002%)
| |
|- | style="background-color:#fff888" <!--Chalcophile-->
| 2.1
| 1.8 | 33
| ]
|
| 2.0 | As
| Chalcophile
|
| data-sort-value=1.8| 1.8 (0.00018%)
|-
|36,500
| 51
|- | style="background-color:#fff888" <!--Chalcophile-->
| 92
| ]
| U
|
| 0
| 1.8
|
| 2.7
| 66,512
|-
| 52
| 73
| ]
| Ta
|
| 2
| 1.7
|
| 2.0
| 765
|-
| 53
| 32 | 32
| ] | ]
| Ge | Ge
| Chalcophile
| data-sort-value=1.5| 1.5 (0.00015%)
|155
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 67
| ]
| Ho
| Lithophile
| data-sort-value=1.3| 1.3 (0.00013%)
| |
|- | style="background-color:#ffe0f0" <!--Siderophile-->
| 1.8
| 1.4 | 74
| ]
|
| 1.5 | W
| Siderophile
| 128
| data-sort-value=1.25| 1.25 (0.000125%)
|-
|86,400
| 54
|- | style="background-color:#ffe0f0" <!--Siderophile-->
| 42 | 42
| ] | ]
| Mo | Mo
| Siderophile
|
| data-sort-value=1.2| 1.2 (0.00012%)
| 1.5
|227,000
| 1.1
|- | style="background-color:#ffbb77" <!--Lithophile-->
|
| 1.2
| 250,000
|-
| 55
| 33
| ]
| As
|
| 1.5
| 2.1
|
| 1.8
| 44,000
|-
| 56
| 67
| ]
| Ho
|
| 1.4
| 1.2
|
| 1.3
|
|-
| 57
| 65 | 65
| ] | ]
| Tb | Tb
| Lithophile
| data-sort-value=1.2| 1.2 (0.00012%)
| |
|- | style="background-color:#fff888" <!--Chalcophile-->
| 1.1
| 0.94
|
| 1.2
|
|-
| 58
| 69
| ]
| Tm
|
| 0.48
| 0.45
|
| 0.52
|
|-
| 59
| 35
| ]
| Br
|
| 0.37
| 3
|
| 2.4
| 580,000
|-
| 60
| 81 | 81
| ] | ]
| Tl | Tl
| Chalcophile
|
| data-sort-value=0.85| 0.85 (8.5{{e|-5}}%)
| 0.6
| 0.530
|
| 0.850
| 10 | 10
|- | style="background-color:#ffbb77" <!--Lithophile-->
|-
|61
|71 |71
|]
|]<ref name="Emsley240">{{cite book| pages=240–242| url =https://books.google.com/books?id=Yhi5X7OwuGkC&pg=PA241| title =Nature's building blocks: an A-Z guide to the elements| first =John |last=Emsley| publisher=Oxford University Press| isbn = 0-19-850341-5| year=2001}}</ref>
|Lu |Lu
| Lithophile
| data-sort-value=0.8| 0.8 (8{{e|-5}}%)
| |
|- | style="background-color:#ffbb77" <!--Lithophile-->
| 69
| ]
| Tm
| Lithophile
| data-sort-value=0.52| 0.52 (5.2{{e|-5}}%)
| |
|- | style="background-color:#ffbb77" <!--Lithophile-->
|
| | 53
| ]
|0.5
| | I
| Lithophile
|-
| data-sort-value=0.45| 0.45 (4.5{{e|-5}}%)
| 62
|31,600
|- | style="background-color:#fff888" <!--Chalcophile-->
| 49
| ]
| In
| Chalcophile
| data-sort-value=0.25| 0.25 (2.5{{e|-5}}%)
|655
|- | style="background-color:#fff888" <!--Chalcophile-->
| 51 | 51
| ] | ]
| Sb | Sb
| Chalcophile
|
| data-sort-value=0.2| 0.2 (2{{e|-5}}%)
| 0.2
|130,000
| 0.2
|- | style="background-color:#fff888" <!--Chalcophile-->
|
| 0.2
| 180,000
|-
| 63
| 53
| ]
| I
|
| 0.14
| 0.490
|
| 0.450
| 28,000
|-
| 64
| 48 | 48
| ] | ]
| Cd | Cd
| Chalcophile
|
| data-sort-value=0.15| 0.15 (1.5{{e|-5}}%)
| 0.11
| 0.15
|
| 0.15
| 23,000 | 23,000
|- | style="background-color:#fff888" <!--Chalcophile-->
|-
| 65 | 80
| ]
| Hg
| Chalcophile
| data-sort-value=0.085| 0.085 (8.5{{e|-6}}%)
|4,500
|- | style="background-color:#fff888" <!--Chalcophile-->
| 47 | 47
| ] | ]
| Ag | Ag
| Chalcophile
|
| data-sort-value=0.075| 0.075 (7.5{{e|-6}}%)
| 0.070
|27,000
| 0.080
|- | style="background-color:#fff888" <!--Chalcophile-->
|
| 0.075
| 24,000
|-
| 66
| 80
| ]
| Hg
|
| 0.05
| 0.067
|
| 0.085
| 1,600
|-
| 67
| 34 | 34
| ] | ]
| Se | Se
| Chalcophile
|
| data-sort-value=0.05| 0.05 (5{{e|-6}}%)
| 0.05
|2,200
| 0.05
|- | style="background-color:#ffe0f0" <!--Siderophile-->
|
| 0.05 | 46
| ]
| 2,000
|- | Pd
| Siderophile
| 68
| data-sort-value=0.015| 0.015 (1.5{{e|-6}}%)
| 49
| 208
| ]
|- | style="background-color:#fff888" <!--Chalcophile-->
| In
|
| 0.049
| 0.160
|
| 0.250
| 670
|-
| 69
| 83 | 83
| ] | ]
| Bi | Bi
| Chalcophile
| data-sort-value=0.0085| 0.0085 (8.5{{e|-7}}%)
|10,200
|- | style="background-color:#bbffff" <!--Atmophile-->
|2
|]
|He
| Atmophile
| data-sort-value=0.008|0.008 (8{{e|-7}}%)
| |
|- | style="background-color:#bbffff" <!--Atmophile-->
| 0.048
|10
| 0.025
|]
|Ne
| Atmophile
| data-sort-value=0.005|0.005 (5{{e|-7}}%)
| |
|- | style="background-color:#ffe0f0" <!--Siderophile-->
| 0.0085
| 7,400
|-
| 70
| 52
| ]
| Te
|
| 0.005
| 0.001
|
| 0.001
|
|-
| 71
| 78 | 78
| ] | ]
| Pt | Pt
| Siderophile
|
| data-sort-value=0.005| 0.005 (5{{e|-7}}%)
| 0.003
|172
| 0.0037
|- | style="background-color:#ffe0f0" <!--Siderophile-->
|
| 0.005
| 179
|-
| 72
| 79 | 79
| ] | ]
| Au | Au
| Siderophile
| data-sort-value=0.004| 0.004 (4{{e|-7}}%)
|3,100
|- | style="background-color:#ffe0f0" <!--Siderophile-->
| 76
| ]
| Os
| Siderophile
| data-sort-value=0.0015| 0.0015 (1.5{{e|-7}}%)
| |
|- | style="background-color:#fff888" <!--Chalcophile-->
| 0.0011
| 0.0031 | 52
| ]
|
| 0.004 | Te
| Chalcophile
| 2,700
| data-sort-value=0.001| 0.001 (1{{e|-7}}%)
|-
|2,200
| 73
|- | style="background-color:#ffe0f0" <!--Siderophile-->
| 44 | 44
| ] | ]
| Ru | Ru
| Siderophile
| data-sort-value=0.001| 0.001 (1{{e|-7}}%)
| |
|- | style="background-color:#ffe0f0" <!--Siderophile-->
| 0.001
| 0.001 | 77
| ]
| Ir
| Siderophile
| data-sort-value=0.001| 0.001 (1{{e|-7}}%)
| |
|- | style="background-color:#ffe0f0" <!--Siderophile-->
| 0.001
| | 45
| ]
|-
| 74 | Rh
| Siderophile
| 46
| data-sort-value=0.001| 0.001 (1{{e|-7}}%)
| ]
| Pd
| |
|- | style="background-color:#ffe0f0" <!--Siderophile-->
| 0.0006
| 0.0063
|
| 0.015
| 200
|-
| 75
| 75 | 75
| ] | ]
| Re | Re
| Siderophile
| data-sort-value=0.0007| 0.0007 (7{{e|-8}}%)
| 47.2
|- | style="background-color:#bbffff" <!--Atmophile-->
|36
|]
|Kr
| Atmophile
| data-sort-value=0.0001|0.0001 (1{{e|-8}}%)
| |
|- | style="background-color:#bbffff" <!--Atmophile-->
| 0.0004
|54
| 0.0026
|]
|Xe
| Atmophile
| data-sort-value=3e-5|3{{e|-5}} (3{{e|-9}}%)
| |
| 0.0007
| 52
|- |-
| 76 |91
|]
| 77
|Pa
| ]
| Ir | trace
| data-sort-value=1.4e-6|1.4{{e|-6}} (1.4{{e|-10}}%)
| |
|-
| 0.0003
|88
| 0.0004
|]
|Ra
| trace
| data-sort-value=9e-7|9{{e|-7}} (9{{e|-11}}%)
| |
| 0.001
|
|- |-
| 77 |89
|]
| 45
|Ac
| ]
| Rh | trace
| data-sort-value=5.5e-10|5.5{{e|-10}} (6{{e|-14}}%)
| |
|-
| 0.0002
|84
| 0.0007
|]
|Po
| trace
| data-sort-value=2e-10|2{{e|-10}} (2{{e|-14}}%)
| |
| 0.001
|
|- |-
| 78 |86
|]
| 76
|Rn
| ]
| Os | trace
| data-sort-value=4e-13|4{{e|-13}} (4{{e|-17}}%)
| |
|-
| 0.0001
|43
| 0.0018
|]
|Tc
| trace
| data-sort-value=0|
|
|-
|61
|]
|Pm
| trace
| data-sort-value=0|
|
|-
|85
|]
|At
| trace
| data-sort-value=0|
|
|-
|87
|]
|Fr
| trace
| data-sort-value=0|
|
|-
|93
|]
|Np
| trace
| data-sort-value=0|
|
|-
|94
|]
|Pu
| trace
| data-sort-value=0|
| |
| 0.0015
|
|} |}

{{Reflist|group=upper-alpha}}


==See also== ==See also==
* ] * {{annotated link| Abundances of the elements (data page)}}
* {{annotated link| Atmospheric chemistry}}
* {{annotated link| Clarke number}}
* {{annotated link| List of chemical elements}}
* {{annotated link| Oklo phenomenon}}
* {{annotated link| Primordial nuclide}}


==References== ==References==
{{Reflist}} {{Reflist}}

==Further reading==
* {{Cite journal |last=Fleischer |first=Michael |date=September 1954 |title=The abundance and distribution of the chemical elements in the earth's crust |url=https://pubs.acs.org/doi/abs/10.1021/ed031p446 |journal=Journal of Chemical Education |language=en |volume=31 |issue=9 |pages=446 |doi=10.1021/ed031p446 |issn=0021-9584|quote=Examines the abundance and distribution of the chemical elements in the earth's crust, as well as the figures and methods that have contributed to this knowledge.}}

==External links==
* BookRags, . * BookRags, .
* World Book Encyclopedia, . * ''World Book Encyclopedia'', .
* HyperPhysics, Georgia State University, . * HyperPhysics, Georgia State University, .
* Eric Scerri, ''The Periodic Table, Its Story and Its Significance'', Oxford University Press, 2007
* Data Series 140, Historical Statistics for Mineral and Material Commodities in the United States, Version 2011, USGS .
* {{Cite web |title=EarthRef.org Digital Archive (ERDA) -- Major Element Composition of the Core vs the Bulk Earth |url=https://earthref.org/ERDA/526/ |access-date=2024-03-22 |website=earthref.org}}
* Eric Scerri, The Periodic Table, Its Story and Its Significance, Oxford University Press, 2007
* {{Cite web |title=GERM Reservoir Database -- Reservoir Data Model |url=https://earthref.org/GERMRD/reservoirs/ |access-date=2024-03-22 |website=earthref.org}}


] ]
] ]
] ]
]

Latest revision as of 19:46, 27 December 2024

The abundance of elements in Earth's crust is shown in tabulated form with the estimated crustal abundance for each chemical element shown as mg/kg, or parts per million (ppm) by mass (10,000 ppm = 1%).

Reservoirs

The Earth's crust is one "reservoir" for measurements of abundance. A reservoir is any large body to be studied as unit, like the ocean, atmosphere, mantle or crust. Different reservoirs may have different relative amounts of each element due to different chemical or mechanical processes involved in the creation of the reservoir.

Difficulties in measurement

Estimates of elemental abundance are difficult because (a) the composition of the upper and lower crust are quite different, and (b) the composition of the continental crust can vary drastically by locality. The composition of the Earth changed after its formation due to loss of volatile compounds, melting and recrystalization, selective loss of some elements to the deep interior, and erosion by water. The lanthanides are especially difficult to measure accurately.

Graphs of abundance vs atomic number

Abundance (atom fraction) of the chemical elements in Earth's upper continental crust as a function of atomic number; siderophiles shown in yellow

Graphs of abundance against atomic number can reveal patterns relating abundance to stellar nucleosynthesis and geochemistry. The alternation of abundance between even and odd atomic number is known as the Oddo–Harkins rule. The rarest elements in the crust are not the heaviest, but are rather the siderophile elements (iron-loving) in the Goldschmidt classification of elements. These have been depleted by being relocated deeper into the Earth's core; their abundance in meteoroids is higher. Tellurium and selenium are concentrated as sulfides in the core and have also been depleted by preaccretional sorting in the nebula that caused them to form volatile hydrogen selenide and hydrogen telluride.

List of abundance by element

This table gives the estimated abundance in parts per million by mass of elements in the continental crust; values of the less abundant elements may vary with location by several orders of magnitude.

Colour indicates each element's Goldschmidt classification:

  Lithophile   Siderophile   Atmophile   Chalcophile   Trace
Abundance of chemical elements in Earth's (continental) crust
Z Element Symbol Goldschmidt
classification
Abundance (ppm) Production
tonnes/year
8 oxygen O Lithophile 461,000 (46.1%) 10,335,000
14 silicon Si Lithophile 282,000 (28.2%) 7,200,000
13 aluminium Al Lithophile 82,300 (8.23%) 57,600,000
26 iron Fe Siderophile 56,300 (5.63%) 1,150,000,000
20 calcium Ca Lithophile 41,500 (4.15%) 18,000
11 sodium Na Lithophile 23,600 (2.36%) 255,000,000
12 magnesium Mg Lithophile 23,300 (2.33%) 27,700,000
19 potassium K Lithophile 20,900 (2.09%) 53,200,000
22 titanium Ti Lithophile 5,650 (0.565%) 6,600,000
1 hydrogen H Atmophile 1,400 (0.14%) 75,000,000
15 phosphorus P Lithophile 1,050 (0.105%) 226,000,000
25 manganese Mn Lithophile 950 (0.095%) 16,000,000
9 fluorine F Lithophile 585 (0.0585%) 17,000
56 barium Ba Lithophile 425 (0.0425%) 6,000,000
38 strontium Sr Lithophile 370 (0.037%) 350,000
16 sulfur S Chalcophile 350 (0.035%) 69,300,000
6 carbon C Atmophile 200 (0.02%) 9,700,000,000
40 zirconium Zr Lithophile 165 (0.0165%) 1,460,000
17 chlorine Cl Lithophile 145 (0.0145%) 71,250,000
23 vanadium V Lithophile 120 (0.012%) 76,000
24 chromium Cr Lithophile 102 (0.0102%) 26,000,000
37 rubidium Rb Lithophile 90 (0.009%) 2
28 nickel Ni Siderophile 84 (0.0084%) 2,250,000
30 zinc Zn Chalcophile 70 (0.007%) 11,900,000
58 cerium Ce Lithophile 66.5 (0.00665%) 24,000
29 copper Cu Chalcophile 60 (0.006%) 19,400,000
60 neodymium Nd Lithophile 41.5 (0.00415%) 7,000
57 lanthanum La Lithophile 39 (0.0039%) 12,500
39 yttrium Y Lithophile 33 (0.0033%) 6,000
27 cobalt Co Siderophile 25 (0.0025%) 123,000
21 scandium Sc Lithophile 22 (0.0022%) 14
3 lithium Li Lithophile 20 (0.002%) 35,000
41 niobium Nb Lithophile 20 (0.002%) 64,000
7 nitrogen N Atmophile 19 (0.0019%) 140,000,000
31 gallium Ga Chalcophile 19 (0.0019%) 315
82 lead Pb Chalcophile 14 (0.0014%) 4,820,000
5 boron B Lithophile 10 (0.001%) 9,400,000
90 thorium Th Lithophile 9.6 (0.00096%) 5,000
59 praseodymium Pr Lithophile 9.2 (0.00092%) 2,500
62 samarium Sm Lithophile 7.05 (0.000705%) 700
64 gadolinium Gd Lithophile 6.2 (0.00062%) 400
66 dysprosium Dy Lithophile 5.2 (0.00052%)
68 erbium Er Lithophile 3.5 (0.00035%) 500
18 argon Ar Atmophile 3.5 (0.00035%)
70 ytterbium Yb Lithophile 3.2 (0.00032%)
72 hafnium Hf Lithophile 3.0 (0.0003%)
55 caesium Cs Lithophile 3.0 (0.0003%)
4 beryllium Be Lithophile 2.8 (0.00028%) 220
92 uranium U Lithophile 2.7 (0.00027%) 74,119
35 bromine Br Lithophile 2.4 (0.00024%) 391,000
50 tin Sn Chalcophile 2.3 (0.00023%) 280,000
73 tantalum Ta Lithophile 2.0 (0.0002%) 1,100
63 europium Eu Lithophile 2.0 (0.0002%)
33 arsenic As Chalcophile 1.8 (0.00018%) 36,500
32 germanium Ge Chalcophile 1.5 (0.00015%) 155
67 holmium Ho Lithophile 1.3 (0.00013%)
74 tungsten W Siderophile 1.25 (0.000125%) 86,400
42 molybdenum Mo Siderophile 1.2 (0.00012%) 227,000
65 terbium Tb Lithophile 1.2 (0.00012%)
81 thallium Tl Chalcophile 0.85 (8.5×10%) 10
71 lutetium Lu Lithophile 0.8 (8×10%)
69 thulium Tm Lithophile 0.52 (5.2×10%)
53 iodine I Lithophile 0.45 (4.5×10%) 31,600
49 indium In Chalcophile 0.25 (2.5×10%) 655
51 antimony Sb Chalcophile 0.2 (2×10%) 130,000
48 cadmium Cd Chalcophile 0.15 (1.5×10%) 23,000
80 mercury Hg Chalcophile 0.085 (8.5×10%) 4,500
47 silver Ag Chalcophile 0.075 (7.5×10%) 27,000
34 selenium Se Chalcophile 0.05 (5×10%) 2,200
46 palladium Pd Siderophile 0.015 (1.5×10%) 208
83 bismuth Bi Chalcophile 0.0085 (8.5×10%) 10,200
2 helium He Atmophile 0.008 (8×10%)
10 neon Ne Atmophile 0.005 (5×10%)
78 platinum Pt Siderophile 0.005 (5×10%) 172
79 gold Au Siderophile 0.004 (4×10%) 3,100
76 osmium Os Siderophile 0.0015 (1.5×10%)
52 tellurium Te Chalcophile 0.001 (1×10%) 2,200
44 ruthenium Ru Siderophile 0.001 (1×10%)
77 iridium Ir Siderophile 0.001 (1×10%)
45 rhodium Rh Siderophile 0.001 (1×10%)
75 rhenium Re Siderophile 0.0007 (7×10%) 47.2
36 krypton Kr Atmophile 0.0001 (1×10%)
54 xenon Xe Atmophile 3×10 (3×10%)
91 protactinium Pa trace 1.4×10 (1.4×10%)
88 radium Ra trace 9×10 (9×10%)
89 actinium Ac trace 5.5×10 (6×10%)
84 polonium Po trace 2×10 (2×10%)
86 radon Rn trace 4×10 (4×10%)
43 technetium Tc trace
61 promethium Pm trace
85 astatine At trace
87 francium Fr trace
93 neptunium Np trace
94 plutonium Pu trace

See also

References

  1. Albarède, Francis (2009-06-25). Geochemistry: An Introduction (2 ed.). Cambridge University Press. doi:10.1017/cbo9780511807435.005. ISBN 978-0-521-88079-4.
  2. Kring, David A. "Composition of Earth's continental crust as inferred from the compositions of impact melt sheets". 28th Annual Lunar and Planetary Science Conference, March 17–21, 1997, Houston, TX, p. 763. Vol. 28. 1997.
  3. Suess, Hans E.; Urey, Harold C. (1956-01-01). "Abundances of the Elements". Reviews of Modern Physics. 28: 53–74. doi:10.1103/RevModPhys.28.53. ISSN 0034-6861.
  4. Surendra P. Verma, E. Santoyo & Fernando Velasco-Tapia (2002) "Statistical Evaluation of Analytical Methods for the Determination of Rare-Earth Elements in Geological Materials and Implications for Detection Limits", International Geology Review, 44:4, 287–335, doi:10.2747/0020-6814.44.4.287 (note geochemists refer to lanthanides as rare earth per ref.).
  5. "Rare Earth Elements—Critical Resources for High Technology: USGS Fact Sheet 087-02". pubs.usgs.gov. Retrieved 2024-03-23.
  6. Anderson, Don L.; "Chemical Composition of the Mantle", Theory of the Earth, pp. 147–175 ISBN 0865421234
  7. ^ "Abundance of Elements in the Earth's Crust and in the Sea", CRC Handbook of Chemistry and Physics, 97th edition (2016–2017), sec. 14, pg. 17
  8. 2016 extraction per Commodity Statistics and Information. USGS. All production numbers are for mines, except for Al, Cd, Fe, Ge, In, N, Se (plants, refineries), S (all forms) and As, Br, Mg, Si (unspecified). Data for B, K, Ti, Y are given not for the pure element but for the most common oxide, data for Na and Cl are for NaCl. For many elements like Si, Al, data are ambiguous (many forms produced) and are taken for the pure element. U data is pure element required for consumption by current reactor fleet Archived 2017-10-01 at the Wayback Machine. WNA.
  9. "Oxygen Supply Chain – Executive Summary" (PDF). Retrieved 2024-05-23.
  10. Canada, Natural Resources (2018-01-23). "Potash facts". natural-resources.canada.ca. Retrieved 2024-05-23.
  11. "Hydrogen". www.irena.org. 2024-05-29. Retrieved 2024-05-23.
  12. "Hydrogen Production". Retrieved 2024-05-23.
  13. "Phosphate rock production capacity worldwide". Statista. Retrieved 2024-05-23.
  14. "Barium - Element information, properties and uses | Periodic Table". www.rsc.org. Retrieved 2024-05-23.
  15. "Chlorine global market volume 2030". Statista. Retrieved 2024-05-23.
  16. MMTA. "Cerium". MMTA. Retrieved 2024-05-23.
  17. "Neodymium - Elements Database". www.elementsdatabase.com. Retrieved 2024-05-23.
  18. MMTA. "Lanthanum". MMTA. Retrieved 2024-05-23.
  19. Phoung, Sinoun; Williams, Eric; Gaustad, Gabrielle; Gupta, Ajay (2023). "Exploring global supply and demand of scandium oxide in 2030". Journal of Cleaner Production. 401. doi:10.1016/j.jclepro.2023.136673. Retrieved 2024-05-23.
  20. Emsley2010-09-01T00:00:00+01:00, John. "Thorium". RSC Education. Retrieved 2024-05-23.{{cite web}}: CS1 maint: numeric names: authors list (link)
  21. "Praseodymium (Pr) - Chemical properties, Health and Environmental effects". www.lenntech.com. Retrieved 2024-05-23.
  22. MMTA. "Samarium". MMTA. Retrieved 2024-05-23.
  23. "Gadolinium (Gd)". RWMM. Retrieved 2024-05-23.
  24. "Erbium (Er) - Chemical properties, Health and Environmental effects". www.lenntech.com. Retrieved 2024-05-23.

Further reading

External links

Categories: