Misplaced Pages

National Electrical Code: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 13:06, 7 November 2006 edit170.158.174.3 (talk) General← Previous edit Latest revision as of 01:03, 3 October 2024 edit undoDiscreetParrot (talk | contribs)406 edits Remove weird link redirection to 'construction' (where is that redirect even setup?) 
(536 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Short description|Electrical wiring standard}}
]
{{Electrical Wiring Sidebar}}
]
The '''National Electrical Code''' ('''NEC'''), or '''NFPA 70''', is a regionally adoptable standard for the safe installation of ] and equipment in the ]. It is part of the National Fire Code series published by the ] (NFPA), a private ].<ref>"National Electrical Code" and "NEC" are registered trademarks of the NFPA.</ref> Despite the use of the term "national," it is not a ]. It is typically adopted by ] and municipalities in an effort to standardize their enforcement of safe electrical practices.<ref>
{{cite web|url=https://www.nahb.org/-/media/NAHB/advocacy/docs/top-priorities/codes/code-adoption/state-adoption-status-nec-june-2023.pdf|title=State Adoptions of the National Electrical Code|access-date=17 February 2024}}
</ref> In some cases, the NEC is amended, altered and may even be rejected in lieu of regional regulations as voted on by local governing bodies.


The "authority having jurisdiction" inspects for compliance with the standards.<ref>{{cite web|url=http://www.firewatchtrainingdvd.com/firewatch-training-dvd/what-are-the-area-classifications-for-a-fire/|title=What Are The NEC Area Classifications for a Firewatch?|access-date=15 October 2012|archive-url=https://web.archive.org/web/20160106223756/http://www.firewatchtrainingdvd.com/firewatch-training-dvd/what-are-the-area-classifications-for-a-fire/|archive-date=6 January 2016|url-status=dead}}</ref><ref>{{cite web|url=http://www.osha.gov/doc/outreachtraining/htmlfiles/elecstd.html|title=Electrical Standards for Construction|publisher=U.S. DOL, OSHA|access-date=15 October 2012}}</ref>
The '''National Electrical Code''' ('''NEC'''), or '''NFPA 70''', is a standard for the safe installation of ] and equipment. It is part of the National Fire Codes series published by the ] (NFPA). While the NEC is not itself a ], NEC use is commonly mandated by ] or ] law, as well as in jurisdictions outside of the US. The NEC ] the requirements for safe electrical installations into a single, standardized source.


The NEC should not be confused with the ] (NESC), published by the ] (IEEE). The NESC is used for electric power and communication utility systems including overhead lines, underground lines, and power substations.
==General==
HI KENT!!!
The NEC is developed by NFPA's Committee on the National Electrical Code. Work on the NEC is sponsored by the NFPA. The NEC is approved as an American National Standard by the ] (ANSI). It is formally identified as ANSI NFPA 70.


==Background==
First published in ], the NEC is updated and published every 3 years. ], the 2005 NEC is the latest edition. Most states adopt the most recent edition within a couple of years of its publication. As with any "uniform" code, a few jurisdictions regularly omit or modify some sections, or add their own requirements (sometimes based upon earlier versions of the NEC, or locally accepted practices). However, the NEC is the least amended model code.
The NEC is developed by NFPA's Committee on the National Electrical Code, which consists of twenty code-making panels and a technical correlating committee. Work on the NEC is sponsored by the National Fire Protection Association. The NEC is approved as an American national standard by the ] (ANSI). It is formally identified as ANSI/NFPA 70.


First published in 1897, the NEC is updated and published every three years, with the 2023 edition being the most current. Most states adopt the most recent edition within a few of years of its publication. As with any "uniform" code, jurisdictions may regularly omit or modify some sections, or add their own requirements (sometimes based upon earlier versions of the NEC, or locally accepted practices). However, no court has faulted anyone for using the latest version of the NEC, even when the local code was not updated.<ref>{{Cite book|url=https://books.google.com/books?id=ccIJAAAAQBAJ|title=Electrical Pre-Apprenticeship and Workforce Development Manual|last1=Chesapeake|first1=I. E. C.|last2=WECA|date=2012-01-08|publisher=Cengage Learning|isbn=978-1133710752|language=en}}</ref>
In the U.S., anyone, including the city issuing building permits, may face a civil ] ] (be sued) for negligently creating a situation that results in loss of life or property. Those who fail to adhere to well known best practices for safety have been held negligent. This means that the city should adopt and enforce ]s that specify standards and practices for ] systems (as well as other departments such as water and fuel-gas systems). This creates a system whereby a city can best avoid lawsuits by adopting a single, standard set of building code laws. This has led to the NEC becoming the ] standard set of electrical requirements. A licensed ] will have spent years of ] studying and practicing the NEC requirements prior to obtaining his or her license.


In the ], anyone, including the city issuing building permits, may face a civil ] ] for negligently creating a situation that results in loss of life or property. Those who fail to adhere to well known best practices for safety have been held negligent. This liability and the desire to protect residents has motivated cities to adopt and enforce ]s that specify standards and practices for ] systems (as well as other departments such as water and fuel-gas systems). That creates a system whereby a city can best avoid lawsuits by adopting a single standard set of building code laws. This has led to the NEC becoming the ] standard set of electrical requirements.<ref>{{Cite web|url=https://www.nema.org/Technical/FieldReps/Documents/NEC-Adoption-Map.pdf|title=NEC Adoption Map By State|date=July 2019|publisher=National Electrical Manufacturers Association}}</ref> A licensed ] will have spent years of ] studying and practicing the NEC requirements prior to obtaining their license.
==Structure of the NEC==
The NEC is composed of an introduction, nine chapters, annexes A through G, and the index. The Introduction sets forth the purpose, scope, enforcement and rules or information that are general in nature. The first four chapters cover definitions and rules for installations (voltages, connections, markings, etc), circuits and circuit protection, methods and materials for wiring (wiring devices, conductors, cables, etc), and general-purpose equipment (cords, receptacles, switches, heaters, etc). The next three chapters deal with special occupancies (high risk to multiple persons), specific equipment (signs, machinery, etc) and special conditions (emergency systems, Vibrators, alarms, etc). Chapter 8 is specific to additional requirements for communications systems (telephone, radio/TV, etc) and Chapter 9 is composed of ten tables regarding conductor, cable and conduit properties, among other things. Annexes A-G relate to referenced standards, calculations, examples, additional tables for proper implementation of various code articles (e.g., how many wires fit in a conduit) and a model adoption ordinance.


The Deactivation and Decommissioning (D&D) customized extension of the electrical code standard defined by National Electrical Code was developed since current engineering standards and code requirements do not adequately address the unique situations arising during D&D activities at ] (DOE) facilities. The additional guidance is needed to clarify the current electrical code for these situations. The guidance document provides guidance on how to interpret selected articles of NFPA 70, “National Electrical Code” (NEC), in particular certain articles within Article 590, “Temporary Power,” for D&D electrical activities at DOE sites.<ref>(D&D KM-IT Best Practice)</ref>
The introduction and the first 8 chapters contain numbered Articles, Parts, Sections (or Lists or Tables) italicized Exceptions, and Fine Print Notes (FPN) -- explanations that are not part of the rules. Articles are coded with numerals and letters, as ###.###(A)(#)(a) e.g., 804.22(C)(3)(b) could be read as "Section 804 point 22(C)(3)(b)." and would be found in Chapter 8. For internal references, some lengthy articles are further broken into "parts" with Roman-numerals (Parts I, II, III, etc).


The NEC also contains information about the official definition of ] and the related standards given by the ] and dealing with hazardous locations such as explosive atmospheres.
The NFPA also publishes a 1,100-page NEC Handbook (for each new NEC edition) that contains the entire code, plus additional illustrations and explanations, and helpful cross-references within the code and to earlier versions of the code.


===Public access===
Many NEC requirements refer to "listed" or "labeled" devices, and this means that the device has been designed, manufactured and marked in accordance with its relevant standards. To be '''listed''', the device has to meet the testing and other requirements set by a listing agency such as ] (UL) or ] (CSA), with reference to appropriate testing standards. Only a listed device can carry the listing brand of the listing agency. To be '''labeled''' as fit for a particular purpose (e.g., "wet locations") a device must be tested for that specific use by the listing agency and then the appropriate label applied to the device (typically in addition to the listing marks).
The NEC is available as a bound book containing approximately 1000 pages. It has been available in electronic form since the 1993 edition. Although the code is updated every three years, some jurisdictions do not immediately adopt the new edition.


The NEC is also available as a restricted, digitized ''coding model'' that can be read online free of charge on certain computing platforms that support the restricted viewer software; however this digital version cannot be saved, copied, or printed.
==Details of selected NEC requirements==
Articles 210 addresses "branch circuits" (as opposed to service or feeder circuits) and receptacles and fixtures on branch circuits. There are requirements for the minimum number of branches, and placement of receptacles, according to the location and purpose of the receptacle outlet. A ] (GFCI) is required on all outlets in bathrooms, outdoors and kitchens, and, in addition, for dwelling units: crawl-spaces, garages, boathouses, unfinished basements, and within 6 feet (1.8 m) of a wet-bar sink, with limited exceptions. ''See NEC for details.'' The NEC also has rules about such things as how many electrical sockets should be placed in a given residential dwelling per unit of floor area, and how far apart they can be in a given type of room, based upon the typical cord-length of small appliances (for example, not more than 12 feet apart, or 4 feet apart on kitchen countertops).


In the ], ] cannot be copyrighted and is freely accessible and copyable by anyone.<ref>Link to text of the court's decision for 293 F.3d 791, Peter VEECK, doing business as Regional Web, Plaintiff-Counter Defendant-Appellant, v. SOUTHERN BUILDING CODE CONGRESS INTERNATIONAL, INC., Defendant-Counter Claimant-Appellee., No. 99-40632, United States Court of Appeals, Fifth Circuit, June 7, 2002 https://law.resource.org/pub/us/case/reporter/F3/293/293.F3d.791.99-40632.html</ref> When a standards organization develops a new coding model and it is not yet accepted by any jurisdiction as law, it is still the private property of the standards organization and the reader may be restricted from downloading or printing the text for offline viewing. For that privilege, the coding model must still be purchased as either printed media or electronic format (e.g. ].) Once the coding model has been accepted as law, it loses copyright protection and may be freely obtained at no cost.
]


==Structure==
As of 1999 the NEC required that new 120-volt household receptacle outlets, for general purpose use, be both '']'' and ''polarized''. ] has implemented this in its U.S. standard socket configurations so that:
The NEC is composed of an introduction, nine chapters, annexes A through J, and the index. The introduction sets forth the purpose, scope, enforcement, and rules or information that are general in nature. The first four chapters cover definitions and rules for installations (voltages, connections, markings, etc.), circuits and circuit protection, methods and materials for wiring (wiring devices, conductors, cables, etc.), and general-purpose equipment (cords, receptacles, switches, heaters, etc.). The next three chapters deal with special occupancies (high risk to multiple persons), special equipment (signs, machinery, etc.) and special conditions (emergency systems, alarms, etc.). Chapter 8 is specific to additional requirements for communications systems (telephone, radio/TV, etc.) and chapter 9 is composed of tables regarding conductor, cable and conduit properties, among other things. Annexes A-J relate to referenced standards, calculations, examples, additional tables for proper implementation of various code articles (for example, how many wires fit in a conduit) and a model adoption ordinance.


The introduction and the first 8 chapters contain numbered parts, articles, sections (or lists or tables), item, specifics, inclusions/exclusions, precise inclusion/exclusion, italicized exceptions, and explanatory material – explanations that are not part of the rules. Articles are coded with numerals and letters, as ###.###(A)(#)(a). For example, 805.133(A)(1)(a)(1), would be read as "article 805, section 133, item (A) Separation from Other Conductors, specific (1) In Raceways, cable Trays, Boxes,... inclusion (a) Other Circuits, precise inclusion (1) Class 2 and Class 3...." and would be found in Chapter 8, Part IV Installation Methods Within Buildings. For internal references, some lengthy articles are further broken into "parts" with Roman-numerals (parts I, II, III, etc.).
* There must be a slot for a center-line, rounded pin connected to a common ].
* The two blade-shaped slots must be of differing sizes, to prevent ungrounded (2-wire) devices which use "neutral" as their only ground from being misconnected.


Each code article is numbered based on the chapter it is in. Those wiring methods acceptable by the NEC are found in chapter 3, thus all approved wiring method code articles are in the 300s. Efforts have been underway for some time to make the code easier to use. Some of those efforts include using the same extension for both code articles and for the support of wiring methods.
The NEC also has provisions that permit the use of grounded-type receptacles in nongrounded wiring (for example, the retrofit of 2-wire circuits) if a GFCI is used for protection of the new outlet (either itself or "downstream" from a GFCI). Art. 406.3(D)(3).


The NFPA also publishes a 1,497-page NEC Handbook (for each new NEC edition) that contains the entire code, plus additional illustrations and explanations, and helpful cross-references within the code and to earlier versions of the code. The explanations are only for reference and are not enforceable.
]
]
The 1999 Code required that new 240-volt receptacles be grounded also, which necessitates a fourth slot in their faces. U.S. 240 ] has two of these slots being 'hot', with the neutral being the center tap. There is only one standard for these circuits, but 240 V receptacles come in two incompatible varieties. In one the 'neutral' slot accepts a flat blade-prong. In the other the neutral slot accepts a blade with a right angle bend. These are officially NEMA types 14-50R (commonly used with number 8 wire for electric ranges) and 14-30R (commonly used with number 10 wire for electric clothes dryers), respectively, and differ only in current rating (50 A versus 30 A); previous installations would have used the 10-30 or 10-50 configuration.
Many NEC requirements refer to "listed" or "labeled" devices and appliances, and this means that the item has been designed, manufactured, tested or inspected, and marked in accordance with requirements of the listing agency. To be '''listed''', the device must meet testing and other requirements set by a listing agency such as ] (UL), ], ] (Formerly ETL), ] (CSA), or ] (FM). These are examples of "national recognized testing laboratories" (NRTL) approved by the ] under the requirements of 29 CFR 1910.7.<ref>{{Cite web|url=https://www.osha.gov/dts/otpca/nrtl/nrtllist.html|title=Nationally Recognized Testing Laboratories (NRTLs) {{!}} Current List of NRTLs|website=www.osha.gov|access-date=2016-03-28}}</ref> Only a listed device can carry the listing brand (or "mark") of the listing agency. Upon payment of an investigation fee to determine suitability, an investigation is started. To be '''labeled''' as fit for a particular purpose (for example "wet locations", "domestic range") a device must be tested for that specific use by the listing agency and then the appropriate label applied to the device. A fee is paid to the listing agency for each item so labeled, that is, for each label. Most NRTLs will also require that the manufacturer's facilities and processes be inspected as evidence that a product will be manufactured reliably and with the same qualities as the sample or samples submitted for evaluation. An NRTL may also conduct periodic sample testing of off-the-shelf products to confirm that safety design criteria are being upheld during production. Because of the reputation of these listing agencies, the "authority having jurisdiction" ( or "AHJ" – as they are commonly known) usually will quickly accept any device, appliance, or piece of equipment having such a label, provided that an end user or installer uses the product in accordance with manufacturer's instructions and the limitations of the listing standard. However, an AHJ, under the National Electrical Code provisions, has the authority to deny approval for even listed and labeled products. Likewise, an AHJ may make a written approval of an installation or product that does not meet either NEC or listing requirements, although this is normally done only after an appropriate review of the specific conditions of a particular case or location.


==Requirements==
These changes in standards often cause problems for people living in older buildings.
Article 210 addresses "branch circuits" (as opposed to service or feeder circuits) and receptacles and fixtures on branch circuits.Electrical Construction and Maintenance Magazine, Branch Circuits, Part 2. There are requirements for the minimum number of branches, and placement of receptacles, according to the location and purpose of the receptacle outlet. Ten important items in Article 210 have been summarized in a codebook.<ref></ref>


Feeder and branch circuit wiring systems are designed primarily for ]. ] is listed by ] for interior wiring applications and became increasingly used around 1966 due to its lower cost. Prior to 1972, however, the aluminum wire used was manufactured to conform to the 1350 series aluminum alloy, but this alloy was eventually deemed unsuitable for branch circuits due to ] where the copper and aluminum touched, resulting in poor contact and resistance to current flow, connector overheating problems, and potential fire risk. Today, a new aluminum wire (AA-8000) has been approved for branch circuits that does not cause corrosion where it contacts copper, but it is not readily available and is not manufactured below size #8 AWG. Hence, ] is used almost exclusively in branch circuitry.
]


A ] (GFCI) is required for all receptacles in wet locations defined in the Code. The NEC also has rules about how many circuits and receptacles should be placed in a given residential dwelling, and how far apart they can be in a given type of room, based upon the typical cord length of small appliances.
Unlike traditional circuit breakers and fuses, which only open the circuit when the "hot" current exceeds a fixed value for a fixed time, a GFCI device will interrupt electrical service when more than 4 to 6 milliamperes of current in either conductor is leaked to ground (either directly or through a resistance, such as a person). A GFCI detects an imbalance between the current flowing in the "hot" side and the current in the "neutral" side. Socket outlets with GFCI have the added advantage of protecting other sockets 'downstream' of them, so that one GFCI socket can serve as protection for several conventional outlets, whether or not they are grounded. GFCI devices come in many configurations including circuit-breakers, portable devices and outlet receptacle sockets.


]
A GFCI socket typically has a pair of small push buttons between its two receptacles: one labeled 'test' and the other 'reset' (or T and R). Pressing 'test' will place a small imbalance in the line sensor, which will trip the device, resulting in an audible "snap". Pressing 'reset' will allow the socket to function normally after a test, or after a faulty appliance has been removed from the circuit or insulated from ground. If a GFCI Socket fails to trip when the test button is pushed (and the GFCI had been previously armed by first pressing in the reset button), it means the GFCI outlet must be replaced because it is no longer providing protection against ground faults.


As of 1962, the NEC required that new 120 Volt household receptacle outlets, for general purpose use, be both '']'' and ''polarized''. ] connectors implement these requirements.
Like fuses and circuit breakers, a GFCI socket has a finite number of uses. It must be replaced when a test fails to trip the device.


The NEC also permits grounding-type receptacles in non-grounded wiring protected by a GFCI; this only applies when old non-grounded receptacles are replaced with grounded receptacles, and the new receptacles must be marked with 'No equipment ground' and 'GFCI Protected' . ]
Another safety device introduced with the 1999 code is the ] (AFCI). This device detects arcs from hot to neutral that can develop when insulation between wires becomes frayed or damaged. While arcs from hot to neutral would not trip a GFCI device since current is still balanced, circuitry in an AFCI device detects those arcs and will shut down a circuit. AFCI devices generally replace the circuit breaker in the circuit. They are required on all 15 and 20 amp circuits to bedrooms, where experience has shown most arc fault fires originate. In the future it is likely that all circuits will require their use.
The 1999 Code required that new 120/240 volt receptacles, such as those for electric ranges and dryers, be grounded also, which necessitates a fourth slot in their faces. Changes in standards often create problems for new work in old buildings.
]
Unlike circuit breakers and fuses, which only open the circuit when the current exceeds a fixed value for a fixed time, a GFCI device will interrupt electrical service when more than 4 to 6 milliamperes of current in either conductor leaks to ground. A GFCI detects an imbalance between the current in the "hot" side and the current in the "neutral" side. One GFCI receptacle can serve as protection for several downstream conventional receptacles. GFCI devices come in many configurations including circuit-breakers, portable devices and receptacles.

Another safety device introduced with the 1999 code is the ] (AFCI). This device detects arcs from hot to neutral that can develop when insulation between wires becomes frayed or damaged. While arcs from hot to neutral would not trip a GFCI device since current is still balanced, circuitry in an AFCI device detects those arcs and will shut down a circuit. AFCI devices generally replace the circuit breaker in the circuit. As of the 1999 National Electrical Code, AFCI protection is required in new construction on all 15- and 20-amp, 125-volt circuits to bedrooms.<ref>{{Cite web|url=http://www.afcisafety.org/codes.html|title=AFCISafety.org|website=www.afcisafety.org|access-date=2016-03-28}}</ref>

===Conduit and cable protection===
The NEC requires that conductors of a circuit must be inside a raceway, cable, trench, cord, or cable tray. Additional protection such as NM cable inside raceway is needed if the installation method is subjected to physical damage as determined by the authority having jurisdiction.

===Temperature rating===
The temperature rating of a wire or cable is generally the maximum safe ambient temperature that the wire can carry full-load power without the cable insulation melting, oxidizing, or self-igniting. A full-load wire does heat up slightly due to the metallic resistance of the wire, but this wire heating is factored into the cable's temperature rating. (NEC 310.10)<ref name="table 310 reference and details">{{cite web |title=Temperature Limitations of Connections Must Not Be Exceeded |url=https://www.ecmag.com/section/codes-standards/temperature-limitations-connections-must-not-be-exceeded |website=Electrical Contractor Magazine |language=en}}</ref>

The NEC specifies acceptable numbers of conductors in crowded areas such as inside conduit, referred to as the ''fill rating''. If the accepted fill rating is exceeded, then all the cables in the conduit are ''derated'', lowering their acceptable maximum ambient ]. Derating is necessary because multiple conductors carrying full-load power generate heat that may exceed the normal insulation temperature rating. (NEC 310.16)

The NEC also specifies adjustments of the ampacity for wires in circular raceways exposed to sunlight on rooftops, due to the heating effects of solar radiation. Electrical Construction and Maintenance Magazine, Conductors for General Use, Chapter 3 Articles in NEC, starting with Article 342 This section is expected to be modified to include cables in future editions.

In certain situations, temperature rating can be higher than normal, such as for ] where two or more load-carrying wires are never likely to be in close proximity. A knob-and-tube installation uses wires suspended in air. This gives them a greater heat dissipation rating than standard three-wire ], which includes two tightly bundled load and return wires.<ref name="nm cable specifications">{{cite web |title=334.30 Securing and Supporting. |url=https://www.electricallicenserenewal.com/Electrical-Continuing-Education-Courses/NEC-Content.php?sectionID=891.0 |website=ElectricalLicenseRenewal.com}}</ref>

==Copyright Status==
NEC, like many NFPA standards, relies on sales of its copyrighted standards to fund its development. In 2016, the group PUBLIC.RESOURCE.ORG, INC published copies of the code online free of cost, arguing that as a standard adopted as law, it should be publicly available. The case challenges the nature of funding sources for development of the standards, which are often adopted as law, but created without taxpayer dollars. NFPA in response has pointed to its making a free version of its standards available online, albeit in a less convenient forum than the standard that is available for purchase.<ref>{{Cite web |title=Am. Soc'y for Testing & Materials v. Public.Resource.Org, Inc., 13-cv-1215 (TSC) {{!}} Casetext Search + Citator |url=https://casetext.com/case/am-socy-for-testing-materials-v-publicresourceorg-inc-3 |access-date=2023-03-04 |website=casetext.com}}</ref>


==See also== ==See also==
* ] * ]
* ] * ]
* ] * ]
* ]
* ] Workplace electrical safety requirements for employees

==References==
{{Reflist}}


==External links== ==External links==
* (Must register with the NFPA to access these documents)
*
*
*


]
]
] ]
]
] ]
]

Latest revision as of 01:03, 3 October 2024

Electrical wiring standard
Electrical installations
Wiring practice by region or country
Regulation of electrical installations
Cabling and accessories
Switching and protection devices
The National Electrical Code, 2008 edition

The National Electrical Code (NEC), or NFPA 70, is a regionally adoptable standard for the safe installation of electrical wiring and equipment in the United States. It is part of the National Fire Code series published by the National Fire Protection Association (NFPA), a private trade association. Despite the use of the term "national," it is not a federal law. It is typically adopted by states and municipalities in an effort to standardize their enforcement of safe electrical practices. In some cases, the NEC is amended, altered and may even be rejected in lieu of regional regulations as voted on by local governing bodies.

The "authority having jurisdiction" inspects for compliance with the standards.

The NEC should not be confused with the National Electrical Safety Code (NESC), published by the Institute of Electrical and Electronics Engineers (IEEE). The NESC is used for electric power and communication utility systems including overhead lines, underground lines, and power substations.

Background

The NEC is developed by NFPA's Committee on the National Electrical Code, which consists of twenty code-making panels and a technical correlating committee. Work on the NEC is sponsored by the National Fire Protection Association. The NEC is approved as an American national standard by the American National Standards Institute (ANSI). It is formally identified as ANSI/NFPA 70.

First published in 1897, the NEC is updated and published every three years, with the 2023 edition being the most current. Most states adopt the most recent edition within a few of years of its publication. As with any "uniform" code, jurisdictions may regularly omit or modify some sections, or add their own requirements (sometimes based upon earlier versions of the NEC, or locally accepted practices). However, no court has faulted anyone for using the latest version of the NEC, even when the local code was not updated.

In the United States, anyone, including the city issuing building permits, may face a civil liability lawsuit for negligently creating a situation that results in loss of life or property. Those who fail to adhere to well known best practices for safety have been held negligent. This liability and the desire to protect residents has motivated cities to adopt and enforce building codes that specify standards and practices for electrical systems (as well as other departments such as water and fuel-gas systems). That creates a system whereby a city can best avoid lawsuits by adopting a single standard set of building code laws. This has led to the NEC becoming the de facto standard set of electrical requirements. A licensed electrician will have spent years of apprenticeship studying and practicing the NEC requirements prior to obtaining their license.

The Deactivation and Decommissioning (D&D) customized extension of the electrical code standard defined by National Electrical Code was developed since current engineering standards and code requirements do not adequately address the unique situations arising during D&D activities at U.S. Department of Energy (DOE) facilities. The additional guidance is needed to clarify the current electrical code for these situations. The guidance document provides guidance on how to interpret selected articles of NFPA 70, “National Electrical Code” (NEC), in particular certain articles within Article 590, “Temporary Power,” for D&D electrical activities at DOE sites.

The NEC also contains information about the official definition of HAZLOC and the related standards given by the Occupational Safety and Health Administration and dealing with hazardous locations such as explosive atmospheres.

Public access

The NEC is available as a bound book containing approximately 1000 pages. It has been available in electronic form since the 1993 edition. Although the code is updated every three years, some jurisdictions do not immediately adopt the new edition.

The NEC is also available as a restricted, digitized coding model that can be read online free of charge on certain computing platforms that support the restricted viewer software; however this digital version cannot be saved, copied, or printed.

In the United States, statutory law cannot be copyrighted and is freely accessible and copyable by anyone. When a standards organization develops a new coding model and it is not yet accepted by any jurisdiction as law, it is still the private property of the standards organization and the reader may be restricted from downloading or printing the text for offline viewing. For that privilege, the coding model must still be purchased as either printed media or electronic format (e.g. PDF.) Once the coding model has been accepted as law, it loses copyright protection and may be freely obtained at no cost.

Structure

The NEC is composed of an introduction, nine chapters, annexes A through J, and the index. The introduction sets forth the purpose, scope, enforcement, and rules or information that are general in nature. The first four chapters cover definitions and rules for installations (voltages, connections, markings, etc.), circuits and circuit protection, methods and materials for wiring (wiring devices, conductors, cables, etc.), and general-purpose equipment (cords, receptacles, switches, heaters, etc.). The next three chapters deal with special occupancies (high risk to multiple persons), special equipment (signs, machinery, etc.) and special conditions (emergency systems, alarms, etc.). Chapter 8 is specific to additional requirements for communications systems (telephone, radio/TV, etc.) and chapter 9 is composed of tables regarding conductor, cable and conduit properties, among other things. Annexes A-J relate to referenced standards, calculations, examples, additional tables for proper implementation of various code articles (for example, how many wires fit in a conduit) and a model adoption ordinance.

The introduction and the first 8 chapters contain numbered parts, articles, sections (or lists or tables), item, specifics, inclusions/exclusions, precise inclusion/exclusion, italicized exceptions, and explanatory material – explanations that are not part of the rules. Articles are coded with numerals and letters, as ###.###(A)(#)(a). For example, 805.133(A)(1)(a)(1), would be read as "article 805, section 133, item (A) Separation from Other Conductors, specific (1) In Raceways, cable Trays, Boxes,... inclusion (a) Other Circuits, precise inclusion (1) Class 2 and Class 3...." and would be found in Chapter 8, Part IV Installation Methods Within Buildings. For internal references, some lengthy articles are further broken into "parts" with Roman-numerals (parts I, II, III, etc.).

Each code article is numbered based on the chapter it is in. Those wiring methods acceptable by the NEC are found in chapter 3, thus all approved wiring method code articles are in the 300s. Efforts have been underway for some time to make the code easier to use. Some of those efforts include using the same extension for both code articles and for the support of wiring methods.

The NFPA also publishes a 1,497-page NEC Handbook (for each new NEC edition) that contains the entire code, plus additional illustrations and explanations, and helpful cross-references within the code and to earlier versions of the code. The explanations are only for reference and are not enforceable.

Underwriters Laboratories, one of many of the testing laboratories recognized by OSHA.

Many NEC requirements refer to "listed" or "labeled" devices and appliances, and this means that the item has been designed, manufactured, tested or inspected, and marked in accordance with requirements of the listing agency. To be listed, the device must meet testing and other requirements set by a listing agency such as Underwriters Laboratories (UL), SGS North America, Intertek (Formerly ETL), Canadian Standards Association (CSA), or FM Approvals (FM). These are examples of "national recognized testing laboratories" (NRTL) approved by the U.S. Department of Labor's Occupational Safety and Health Administration (OSHA) under the requirements of 29 CFR 1910.7. Only a listed device can carry the listing brand (or "mark") of the listing agency. Upon payment of an investigation fee to determine suitability, an investigation is started. To be labeled as fit for a particular purpose (for example "wet locations", "domestic range") a device must be tested for that specific use by the listing agency and then the appropriate label applied to the device. A fee is paid to the listing agency for each item so labeled, that is, for each label. Most NRTLs will also require that the manufacturer's facilities and processes be inspected as evidence that a product will be manufactured reliably and with the same qualities as the sample or samples submitted for evaluation. An NRTL may also conduct periodic sample testing of off-the-shelf products to confirm that safety design criteria are being upheld during production. Because of the reputation of these listing agencies, the "authority having jurisdiction" ( or "AHJ" – as they are commonly known) usually will quickly accept any device, appliance, or piece of equipment having such a label, provided that an end user or installer uses the product in accordance with manufacturer's instructions and the limitations of the listing standard. However, an AHJ, under the National Electrical Code provisions, has the authority to deny approval for even listed and labeled products. Likewise, an AHJ may make a written approval of an installation or product that does not meet either NEC or listing requirements, although this is normally done only after an appropriate review of the specific conditions of a particular case or location.

Requirements

Article 210 addresses "branch circuits" (as opposed to service or feeder circuits) and receptacles and fixtures on branch circuits.Electrical Construction and Maintenance Magazine, Branch Circuits, Part 2. There are requirements for the minimum number of branches, and placement of receptacles, according to the location and purpose of the receptacle outlet. Ten important items in Article 210 have been summarized in a codebook.

Feeder and branch circuit wiring systems are designed primarily for copper conductors. Aluminum wiring is listed by Underwriters Laboratories for interior wiring applications and became increasingly used around 1966 due to its lower cost. Prior to 1972, however, the aluminum wire used was manufactured to conform to the 1350 series aluminum alloy, but this alloy was eventually deemed unsuitable for branch circuits due to galvanic corrosion where the copper and aluminum touched, resulting in poor contact and resistance to current flow, connector overheating problems, and potential fire risk. Today, a new aluminum wire (AA-8000) has been approved for branch circuits that does not cause corrosion where it contacts copper, but it is not readily available and is not manufactured below size #8 AWG. Hence, copper wire is used almost exclusively in branch circuitry.

A ground fault circuit interrupter (GFCI) is required for all receptacles in wet locations defined in the Code. The NEC also has rules about how many circuits and receptacles should be placed in a given residential dwelling, and how far apart they can be in a given type of room, based upon the typical cord length of small appliances.

Polarized, grounding, 120 Volt receptacle

As of 1962, the NEC required that new 120 Volt household receptacle outlets, for general purpose use, be both grounded and polarized. NEMA connectors implement these requirements.

The NEC also permits grounding-type receptacles in non-grounded wiring protected by a GFCI; this only applies when old non-grounded receptacles are replaced with grounded receptacles, and the new receptacles must be marked with 'No equipment ground' and 'GFCI Protected' .

240 V receptacle faces

The 1999 Code required that new 120/240 volt receptacles, such as those for electric ranges and dryers, be grounded also, which necessitates a fourth slot in their faces. Changes in standards often create problems for new work in old buildings.

A 120 volt combination AFCI/GFCI receptacle

Unlike circuit breakers and fuses, which only open the circuit when the current exceeds a fixed value for a fixed time, a GFCI device will interrupt electrical service when more than 4 to 6 milliamperes of current in either conductor leaks to ground. A GFCI detects an imbalance between the current in the "hot" side and the current in the "neutral" side. One GFCI receptacle can serve as protection for several downstream conventional receptacles. GFCI devices come in many configurations including circuit-breakers, portable devices and receptacles.

Another safety device introduced with the 1999 code is the arc-fault circuit interrupter (AFCI). This device detects arcs from hot to neutral that can develop when insulation between wires becomes frayed or damaged. While arcs from hot to neutral would not trip a GFCI device since current is still balanced, circuitry in an AFCI device detects those arcs and will shut down a circuit. AFCI devices generally replace the circuit breaker in the circuit. As of the 1999 National Electrical Code, AFCI protection is required in new construction on all 15- and 20-amp, 125-volt circuits to bedrooms.

Conduit and cable protection

The NEC requires that conductors of a circuit must be inside a raceway, cable, trench, cord, or cable tray. Additional protection such as NM cable inside raceway is needed if the installation method is subjected to physical damage as determined by the authority having jurisdiction.

Temperature rating

The temperature rating of a wire or cable is generally the maximum safe ambient temperature that the wire can carry full-load power without the cable insulation melting, oxidizing, or self-igniting. A full-load wire does heat up slightly due to the metallic resistance of the wire, but this wire heating is factored into the cable's temperature rating. (NEC 310.10)

The NEC specifies acceptable numbers of conductors in crowded areas such as inside conduit, referred to as the fill rating. If the accepted fill rating is exceeded, then all the cables in the conduit are derated, lowering their acceptable maximum ambient operating temperature. Derating is necessary because multiple conductors carrying full-load power generate heat that may exceed the normal insulation temperature rating. (NEC 310.16)

The NEC also specifies adjustments of the ampacity for wires in circular raceways exposed to sunlight on rooftops, due to the heating effects of solar radiation. Electrical Construction and Maintenance Magazine, Conductors for General Use, Chapter 3 Articles in NEC, starting with Article 342 This section is expected to be modified to include cables in future editions.

In certain situations, temperature rating can be higher than normal, such as for knob-and-tube wiring where two or more load-carrying wires are never likely to be in close proximity. A knob-and-tube installation uses wires suspended in air. This gives them a greater heat dissipation rating than standard three-wire NM-2 cable, which includes two tightly bundled load and return wires.

Copyright Status

NEC, like many NFPA standards, relies on sales of its copyrighted standards to fund its development. In 2016, the group PUBLIC.RESOURCE.ORG, INC published copies of the code online free of cost, arguing that as a standard adopted as law, it should be publicly available. The case challenges the nature of funding sources for development of the standards, which are often adopted as law, but created without taxpayer dollars. NFPA in response has pointed to its making a free version of its standards available online, albeit in a less convenient forum than the standard that is available for purchase.

See also

References

  1. "National Electrical Code" and "NEC" are registered trademarks of the NFPA.
  2. "State Adoptions of the National Electrical Code" (PDF). Retrieved 17 February 2024.
  3. "What Are The NEC Area Classifications for a Firewatch?". Archived from the original on 6 January 2016. Retrieved 15 October 2012.
  4. "Electrical Standards for Construction". U.S. DOL, OSHA. Retrieved 15 October 2012.
  5. Chesapeake, I. E. C.; WECA (2012-01-08). Electrical Pre-Apprenticeship and Workforce Development Manual. Cengage Learning. ISBN 978-1133710752.
  6. "NEC Adoption Map By State" (PDF). National Electrical Manufacturers Association. July 2019.
  7. Electrical Code Guidance for Decontamination and Decommissioning Activities at DOE Facilities(D&D KM-IT Best Practice)
  8. Link to text of the court's decision for 293 F.3d 791, Peter VEECK, doing business as Regional Web, Plaintiff-Counter Defendant-Appellant, v. SOUTHERN BUILDING CODE CONGRESS INTERNATIONAL, INC., Defendant-Counter Claimant-Appellee., No. 99-40632, United States Court of Appeals, Fifth Circuit, June 7, 2002 https://law.resource.org/pub/us/case/reporter/F3/293/293.F3d.791.99-40632.html
  9. "Nationally Recognized Testing Laboratories (NRTLs) | Current List of NRTLs". www.osha.gov. Retrieved 2016-03-28.
  10. National Electrical Code Top Ten Tips: Article 210, Branch Circuits
  11. "AFCISafety.org". www.afcisafety.org. Retrieved 2016-03-28.
  12. "Temperature Limitations of Connections Must Not Be Exceeded". Electrical Contractor Magazine.
  13. "334.30 Securing and Supporting". ElectricalLicenseRenewal.com.
  14. "Am. Soc'y for Testing & Materials v. Public.Resource.Org, Inc., 13-cv-1215 (TSC) | Casetext Search + Citator". casetext.com. Retrieved 2023-03-04.

External links

Categories: