Misplaced Pages

Typical antipsychotic: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 20:45, 5 December 2006 edit67.53.73.18 (talk)No edit summary← Previous edit Latest revision as of 13:22, 14 November 2024 edit undoInternetArchiveBot (talk | contribs)Bots, Pending changes reviewers5,382,355 edits Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5) (Whoop whoop pull up - 21735 
(238 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Short description|Class of drugs}}
'''Typical antipsychotics''' (sometimes referred to as '''conventional antipsychotics''', '''classical neuroleptics''' or '''major tranquilizers''') are a class of ] drugs first developed in the ]s and used to treat ] (in particular, ]), and are generally being replaced by ] drugs. Typical antipsychotics may also be used for the treatment of acute mania, agitation, and other conditions.
{{Infobox drug class
| Name = <!-- omit to use page name -->
| Image = Chlorpromazine.svg
| ImageClass = skin-invert-image
| Alt =
| Caption = ] of ], the first neuroleptic drug
| Pronounce =
| Synonyms = First generation antipsychotics, conventional antipsychotics, classical neuroleptics, traditional antipsychotics, major tranquilizers
<!-- Class identifiers -->
| Use =
| ATC_prefix =
| Mode_of_action =
| Mechanism_of_action =
| Biological_target =
| Chemical_class =
<!-- Clinical data -->
| Drugs.com = <!-- {{Drugs.com|drug-class|?}} -->
| Consumer_Reports =
| medicinenet =
| rxlist =
<!-- External links -->
| MeshID =
}}
]
'''Typical antipsychotics''' (also known as '''major ]''', and '''first generation antipsychotics''') are a class of ] drugs first developed in the 1950s and used to treat ] (in particular, ]). Typical antipsychotics may also be used for the treatment of acute mania, agitation, and other conditions. The first typical antipsychotics to come into medical use were the ]s, namely ] which was discovered ].<ref>{{cite journal | vauthors = Shen WW | title = A history of antipsychotic drug development | journal = Comprehensive Psychiatry | volume = 40 | issue = 6 | pages = 407–14 | year = 1999 | pmid = 10579370 | doi = 10.1016/s0010-440x(99)90082-2 }}</ref> Another prominent grouping of antipsychotics are the ], an example of which is ]. The newer, second-generation antipsychotics, also known as ], have largely supplanted the use of typical antipsychotics as first-line agents due to the higher risk of movement disorders with typical antipsychotics.


Both generations of medication tend to block receptors in the brain's ], but atypicals at the time of marketing were claimed to differ from typical antipsychotics in that they are less likely to cause ] (EPS), which include unsteady ]-type movements, ], and other involuntary movements (e.g. ], which can persist after stopping the medication).<ref>{{cite journal | title = A roadmap to key pharmacologic principles in using antipsychotics | journal = Primary Care Companion to the Journal of Clinical Psychiatry | volume = 9 | issue = 6 | pages = 444–54 | year = 2007 | pmid = 18185824 | pmc = 2139919 | doi = 10.4088/PCC.v09n0607 }}</ref> More recent research has demonstrated the side effect profile of these drugs is similar to older drugs, causing the leading medical journal '']'' to write in its editorial "the time has come to abandon the terms first-generation and second-generation antipsychotics, as they do not merit this distinction."<ref>{{cite journal | vauthors = Tyrer P, Kendall T | title = The spurious advance of antipsychotic drug therapy | journal = Lancet | volume = 373 | issue = 9657 | pages = 4–5 | date = January 2009 | pmid = 19058841 | doi = 10.1016/S0140-6736(08)61765-1 | s2cid = 19951248 | url = http://www.thelancet.com/journals/lancet/issue/current?tab=past | access-date = 2023-03-02 | archive-date = 2023-02-06 | archive-url = https://web.archive.org/web/20230206214800/https://www.thelancet.com/journals/lancet/issue/current?tab=past | url-status = dead }}</ref> While typical antipsychotics are more likely to cause EPS, atypicals are more likely to cause adverse metabolic effects, such as ] and increase the risk for ].<ref>{{cite web|url=http://www.rcpsych.ac.uk/healthadvice/treatmentswellbeing/antipsychoticmedication.aspx%7B%7Bfull%7D%7D|title=Not found|website=www.rcpsych.ac.uk|access-date=8 May 2018|url-status=live|archive-url=https://web.archive.org/web/20180508094647/https://www.rcpsych.ac.uk/healthadvice/treatmentswellbeing/antipsychoticmedication.aspx%7B%7Bfull%7D%7D|archive-date=8 May 2018}}</ref>
Traditional antipsychotics are broken down into low-potency and high-potency classifications. ] and ] are examples of high-potency typical antipsychotics, and ] is an example of a low potency antipsychotic. High-potency typical antipsychotics tend to be associated with more ] (EPS) and less histaminic (e.g. sedation), alpha adrenergic (e.g. orthostasis) and anticholinergic (e.g. dry mouth) side effects, while low-potency typical antipsychotics tend to be associated with less EPS but more H1, alpha1, and muscarinic side effects.


== Depot injections== == Clinical uses ==
Typical antipsychotics block the ] receptor, causing a tranquilizing effect.<ref name="Schatzberg 2019">{{cite book |title=Schatzberg's Manual of Clinical Psychopharmacology |date=2019 |publisher=American Psychiatric Association Publishing |isbn=978-1-61537-230-0 |edition=Ninth |url=https://www.appi.org/Products/Psychopharmacology/Schatzbergs-Manual-of-Clinical-Psychopharmacology |access-date=2020-06-21 |archive-date=2020-06-21 |archive-url=https://web.archive.org/web/20200621155952/https://www.appi.org/Products/Psychopharmacology/Schatzbergs-Manual-of-Clinical-Psychopharmacology |url-status=dead }}</ref> It is thought that 60–80% of D2 receptors need to be occupied for antipsychotic effect.<ref name="Schatzberg 2019" /> For reference, the typical antipsychotic ] tends to block about 80% of D2 receptors at doses ranging from 2 to 5&nbsp;mg per day.<ref name="Schatzberg 2019" /> On the aggregate level, no typical antipsychotic is more effective than any other, though people will vary in which antipsychotic they prefer to take based on individual differences in tolerability and effectiveness.<ref name="Schatzberg 2019" /> Typical antipsychotics can be used to treat, e.g., schizophrenia or severe agitation.<ref name="Schatzberg 2019" /> Haloperidol, due to the availability of a rapid-acting injectable formulation and decades of use, remains the most commonly used antipsychotic for treating severe agitation in the emergency department setting.<ref name="Schatzberg 2019" />


== Adverse effects ==
Some of the high-potency antipsychotics, particularly ] and ], have been formulated as the decanoate ester (e.g. ]) to allow for a slow release of the active drug when given as a deep, intramuscular injection. This has the advantage of providing reliable dosing for a person who has trouble with compliance. Depot injections can also be used for ] patients to ensure compliance with a community treatment order when the patient would refuse to take daily oral medication. For practical reasons, depot preparations are limited to high-potency antipsychotics so the treating physician has a limited choice. It is therefore preferable to use oral medications if the cooperation and compliance of the patient can be obtained.
{{further|Phenothiazines}}


Adverse effects vary among the various agents in this class of medications, but common effects include: dry mouth, ] stiffness, muscle cramping, ]s, ] and ] gain. EPS refers to a cluster of symptoms consisting of ], ], and ]. Anticholinergics such as ] and ] are commonly prescribed to treat the EPS. 4% of users develop ] while on typical antipsychotics.<ref name="2870650PMID">{{cite journal | vauthors = Yassa R, Lal S | title = Prevalence of the rabbit syndrome | journal = The American Journal of Psychiatry | volume = 143 | issue = 5 | pages = 656–7 | date = May 1986 | pmid = 2870650 | doi = 10.1176/ajp.143.5.656 }}</ref>
== Common side effects ==


There is a risk of developing a serious condition called ] as a side effect of antipsychotics, including typical antipsychotics. The risk of developing tardive dyskinesia after chronic typical antipsychotic usage varies on several factors, such as age and gender, as well as the specific antipsychotic used. The commonly reported incidence of TD among younger patients is about 5% per year. Among older patients incidence rates as high as 20% per year have been reported. The average prevalence is approximately 30%.<ref>{{cite journal | vauthors = Llorca PM, Chereau I, Bayle FJ, Lancon C | title = Tardive dyskinesias and antipsychotics: a review | journal = European Psychiatry | volume = 17 | issue = 3 | pages = 129–38 | date = May 2002 | pmid = 12052573 | doi = 10.1016/S0924-9338(02)00647-8 | s2cid = 40761404 }}</ref> There are few treatments that have consistently been shown to be effective for the treatment of tardive dyskinesia, though an ] inhibitor like ] may help.<ref name="FDA approves valben">{{cite web | author = Office of the Commissioner |title=FDA approves first drug to treat tardive dyskinesia |url=https://www.fda.gov/news-events/press-announcements/fda-approves-first-drug-treat-tardive-dyskinesia |website=FDA |access-date=18 June 2020 |language=en |date=24 March 2020}}</ref> The atypical antipsychotic ] has also been suggested as an alternative antipsychotic for patients experiencing tardive dyskinesia.<ref name="Pardis et al 2019">{{cite journal | vauthors = Pardis P, Remington G, Panda R, Lemez M, Agid O | title = Clozapine and tardive dyskinesia in patients with schizophrenia: A systematic review | journal = Journal of Psychopharmacology | volume = 33 | issue = 10 | pages = 1187–1198 | date = October 2019 | pmid = 31347436 | doi = 10.1177/0269881119862535 | s2cid = 198912192 }}</ref> Tardive dyskinesia may reverse upon discontinuation of the offending agent or it may be irreversible, withdrawal may also make tardive dyskinesia more severe.<ref>{{cite web |url=https://medlineplus.gov/ency/article/000685.htm |title=Tardive dyskinesia: MedlinePlus Medical Encyclopedia |access-date=2017-01-18 |url-status=live |archive-url=https://web.archive.org/web/20170131184044/https://medlineplus.gov/ency/article/000685.htm |archive-date=2017-01-31 }}{{full citation needed|date=September 2018}}</ref>
Side effects vary among the various agents in this class of medications, but common side effects include: dry mouth, ] stiffness, muscle cramping, ]s, ] and ]-gain. EPS is a cluster of symptoms consisting of ], ]s, and ]. Anticholinergics such as ] and ] are commonly prescribed to treat the symptoms of EPS.


] (NMS) is a rare, but potentially fatal side effect of antipsychotic treatment. NMS is characterized by fever, muscle rigidity, autonomic dysfunction, and altered mental status. Treatment includes discontinuation of the offending agent and supportive care.
== Risks of serious side effects ==


The role of typical antipsychotics has come into question recently as studies have suggested that typical antipsychotics may increase the risk of death in elderly patients. A 2005 retrospective cohort study from the ''New England Journal of Medicine'' showed an increase in risk of death with the use of typical antipsychotics that was on par with the increase shown with atypical antipsychotics.<ref>{{cite journal | vauthors = Wang PS, Schneeweiss S, Avorn J, Fischer MA, Mogun H, Solomon DH, Brookhart MA | title = Risk of death in elderly users of conventional vs. atypical antipsychotic medications | journal = The New England Journal of Medicine | volume = 353 | issue = 22 | pages = 2335–41 | date = December 2005 | pmid = 16319382 | doi = 10.1056/NEJMoa052827 | s2cid = 35202051 | doi-access = free }}</ref> This has led some to question the common use of antipsychotics for the treatment of agitation in the elderly, particularly with the availability of alternatives such as mood stabilizing and antiepileptic drugs.
There is a significant risk of the serious condition ] developing as a side effect of typical antipsychotics. The risk of developing tardive dyskinesia after chronic typical antipsychotic usage varies on several factors, such as age and gender. The commonly reported incidence of TD among younger patients is about 5% per year. Among older patients incidence rates as high than 20% per year have been reported. The average prevalence is approximately 30% . There are no treatments that have consistently been shown to be effective for the treatment of tardive dyskinesias, however branched chain ]s, melatonin, and vitamin E have been suggested as possible treatments. The atypical antipsychotic ] has also been suggested as an alternative antipsychotic for patients experiencing tardive dyskinesia. Tardive dyskinesia may reverse upon discontinuation of the offending agent or it may be irreversible.


== Potency ==
], or NMS, is a rare, but potentially fatal side effect of antipsychotic treatment. NMS is characterized by fever, muscle rigidity, autonomic dysfunction, and altered mental status. Treatment includes discontinuation of the offending agent and supportive care.
Traditional antipsychotics are classified as ''high-potency'', ''mid-potency'', or ''low-potency'' based on their potency for the D2 receptor:


{| class="wikitable"
The role of typical antipsychotics has come into question recently as studies have suggested that atypical antipsychotics may increase the risk of death in elderly patients. A retrospective cohort study from the New England Journal of Medicine on Dec. 1, 2005 showed an increase in risk of death with the use of typical antipsychotics that was on par with the increase shown with atypical antipsychotics. This has led some to question the common use of antipsychotics for the treatment of agitation in the elderly, particularly with the availability of alternatives such as mood stabilizing and antiepileptic drugs.
! Potency !! Examples !! Adverse effect profile
|-
|high|| ] and ] || more ] (EPS) and less ] effects (e.g. ]), ] antagonism (e.g. ]), and ] effects (e.g. ])
|-
|middle|| ] and ] || intermediate D2 affinity, with more off-target effects than high-potency agents
|-
|low|| ] || less risk of EPS but more antihistaminic effects, alpha adrenergic antagonism, and anticholinergic effects
|}


] (Compazine, Buccastem, Stemetil) and ] (Orap) are less commonly used to treat psychotic states, and so are sometimes excluded from this classification.<ref name="isbn0-684-82737-9">{{cite book | last = Gitlin | first = Michael J. | name-list-style = vanc |title=The psychotherapist's guide to psychopharmacology |publisher=Free Press |location=New York |year=1996 |page=392 |isbn=0-684-82737-9 }}</ref>
==Typical medications==


A related concept to D2 potency is the concept of "chlorpromazine equivalence", which provides a measure of the relative effectiveness of antipsychotics.<ref name="pmid12823080">{{cite journal | vauthors = Woods SW | title = Chlorpromazine equivalent doses for the newer atypical antipsychotics | journal = The Journal of Clinical Psychiatry | volume = 64 | issue = 6 | pages = 663–7 | date = June 2003 | pmid = 12823080 | doi = 10.4088/JCP.v64n0607 }}</ref><ref name="pmid14624195">{{cite journal | vauthors = Rijcken CA, Monster TB, Brouwers JR, de Jong-van den Berg LT | title = Chlorpromazine equivalents versus defined daily doses: how to compare antipsychotic drug doses? | journal = Journal of Clinical Psychopharmacology | volume = 23 | issue = 6 | pages = 657–9 | date = December 2003 | pmid = 14624195 | doi = 10.1097/01.jcp.0000096247.29231.3a | s2cid = 12939895 }}</ref> The measure specifies the amount (mass) in milligrams of a given drug that must be administered in order to achieve desired effects equivalent to those of 100 milligrams of chlorpromazine.<ref name="Patel et al 2013">{{cite journal | vauthors = Patel MX, Arista IA, Taylor M, Barnes TR | title = How to compare doses of different antipsychotics: a systematic review of methods | journal = Schizophrenia Research | volume = 149 | issue = 1–3 | pages = 141–8 | date = September 2013 | pmid = 23845387 | doi = 10.1016/j.schres.2013.06.030 | s2cid = 45642900 }}</ref> Another method is "defined daily dose" (DDD), which is the assumed average dose of an antipsychotic that an adult would receive during long-term treatment.<ref name="Patel et al 2013" /> DDD is primarily used for comparing the utilization of antipsychotics (e.g. in an insurance claim database), rather than comparing therapeutic effects between antipsychotics.<ref name="Patel et al 2013" /> Maximum dose methods are sometimes used to compare between antipsychotics as well.<ref name="Patel et al 2013" /> It is important to note that these methods do not generally account for differences between the tolerability (i.e. the risk of side effects) or the safety between medications.<ref name="Patel et al 2013" />
* ] (Largactil<sup>&reg;</sup>, Thorazine<sup>&reg;</sup>)

* ] (Prolixin<sup>&reg;</sup>)
For a list of typical antipsychotics organized by potency, see below:
* ] (Haldol<sup>&reg;</sup>)

===Low potency===
{{div col|colwidth=25vw}}
* ]
* ]
* ]
* ]
* ]
* ]
* ]†
{{end div col}}
===Medium potency===
{{div col|colwidth=25vw}}
* ]
* ] * ]
* ] (Navane<sup>&reg;</sup>)
* ] (Mellaril<sup>&reg;</sup>)
* ]
* ] (Loxapac<sup>&reg;</sup>, Loxitane<sup>&reg;</sup>)
* ] * ]
* ]
* ] (Compazine<sup>&reg;</sup>, Buccastem<sup>&reg;</sup>, Stemetil<sup>&reg;</sup>)
{{end div col}}
* ] (Orap<sup>&reg;</sup>)
===High potency===
{{div col|colwidth=25vw}}
* ]
* ]
* ]
* ]
* ]
* ]
* ]
* ]
* ]
{{end div col}}
†: discontinued or withdrawn products<ref>{{cite book|title=Martindale: The Complete Drug Reference|publisher=The Royal Pharmaceutical Society of Great Britain|access-date=2 November 2013|year=2013|url=http://www.medicinescomplete.com/mc/martindale/current/}}</ref>

== Long-acting injectables ==
Some typical antipsychotics have been formulated as a long-acting injectable (LAI), or "]", formulation. Depot injections are also used on persons under ] to force compliance with a court treatment order when the person would refuse to take daily oral medication. This has the effect of dosing a person who doesn't consent to take the drug. The United Nations Special Rapporteur On Torture has classified this as a human rights violation and cruel or inhuman treatment.<ref>{{cite web | url=https://www.madinamerica.com/wp-content/uploads/2013/03/torture.pdf | title=Special rapporteur on torture and other cruel, inhuman or degrading treatment or punishment | access-date=2024-02-07}}</ref>

The first LAI antipsychotics (often referred to as simply "LAIs") were the typical antipsychotics fluphenazine and haloperidol.<ref name="Kennedy 2012">{{cite journal | vauthors = Kennedy WK |title=When and how to use long-acting injectable antipsychotics |journal=Current Psychiatry |date=2012|volume=11 |issue=8 |pages=40–43 |url=https://www.mdedge.com/psychiatry/article/64796/schizophrenia-other-psychotic-disorders/when-and-how-use-long-acting |language=en}}</ref> Both fluphenazile and haloperidol are formulated as ], referring to the attachment of a decanoic acid group to the antipsychotic molecule.<ref name="Kennedy 2012" /> These are then dissolved in an organic oil.<ref name="Kennedy 2012" /> Together, these modifications prevent the active medications from being released immediately upon injection, attaining a slow release of the active medications (note, though, that the fluphenazine decanoate product is unique for reaching peak fluphenazine blood levels within 24 hours after administration<ref name="Carpenter et al 2018">{{cite journal | vauthors = Carpenter J, Wong KK |title=Long-acting injectable antipsychotics: What to do about missed doses |journal=Current Psychiatry |date=2018|volume=17 |issue=7 |pages=10–12, 14–19, 56 |url=https://www.mdedge.com/psychiatry/article/168776/schizophrenia-other-psychotic-disorders/long-acting-injectable |language=en}}</ref>).<ref name="Kennedy 2012" /> Fluphenazine decanoate can be administered every 7 to 21 days (usually every 14 to 28 days),<ref name="Carpenter et al 2018" /> while haloperidol decanoate can be administered every 28 days, though some people receive more or less frequent injections.<ref name="Kennedy 2012" /> If a scheduled injection of either haloperidol decanoate or fluphenazine decanoate is missed, recommendations for administering make-up injectable dose(s) or providing antipsychotics to be taken by mouth vary by, e.g., how long ago the last injection was and how many previous injections the person has received (i.e., if ] of the medication have been reached or not).<ref name="Carpenter et al 2018" />

Both of the typical antipsychotic LAIs are inexpensive in comparison to the atypical LAIs.<ref name="Kennedy 2012" /> Doctors usually prefer atypical LAIs over typical LAIs due to the differences in adverse effects between typical and atypical antipsychotics in general.<ref name="Carpenter et al 2018" />

{{Pharmacokinetics of long-acting injectable antipsychotics}}

== History ==
{{Main|Antipsychotic#History}}
]) from the 1950s, reflecting the perceptions of psychosis, including the now-discredited perception of a tendency towards violence, from the time when antipsychotics were discovered<ref>The text reads: "When the patient lashes out against 'them' - THORAZINE (brand of chlorpromazine) quickly puts an end to his violent outburst. 'Thorazine' is especially effective when the psychotic episode is triggered by delusions or hallucinations. At the outset of treatment, Thorazine's combination of antipsychotic and sedative effects provides both emotional and physical calming. Assaultive or destructive behavior is rapidly controlled. As therapy continues, the initial sedative effect gradually disappears. But the antipsychotic effect continues, helping to dispel or modify delusions, hallucinations and confusion, while keeping the patient calm and approachable. SMITH KLINE AND FRENCH LABORATORIES leaders in psychopharmaceutical research."</ref>]]

The original antipsychotic drugs were happened upon largely by chance and then tested for their effectiveness. The first, ], was developed as a surgical ] after an initial report in 1952.<ref name="Schatzberg 2019" /> It was first used in psychiatric institutions because of its powerful tranquilizing effect; at the time it was advertised as a "pharmacological ]".<ref name=pieters>{{cite journal | vauthors = Pieters T, Majerus B | title = The introduction of chlorpromazine in Belgium and the Netherlands (1951-1968); tango between old and new treatment features | journal = Studies in History and Philosophy of Biological and Biomedical Sciences | volume = 42 | issue = 4 | pages = 443–52 | date = December 2011 | pmid = 22035718 | doi = 10.1016/j.shpsc.2011.05.003 | url = http://orbilu.uni.lu/handle/10993/2251 | url-status = live | archive-url = https://web.archive.org/web/20170709194021/http://orbilu.uni.lu/handle/10993/2251 | df = dmy-all | archive-date = 9 July 2017 }}</ref> (Note that "tranquilizing" here only refers to changes in external behavior, while the experience a person has internally may be one of increased agitation but inability to express it.)<ref>{{Cite journal|last=Muench|first=John|date=1 March 2010|title=Adverse Effects Of Antipsychotics|url=https://www.aafp.org/afp/2010/0301/p617.html|access-date=23 March 2021|journal=American Family Physician|volume=81|issue=5|pages=617–622}}</ref>

Until the 1970s there was considerable debate within psychiatry on the most appropriate term to use to describe the new drugs.<ref name="king">{{cite journal | vauthors = King C, Voruganti LN | title = What's in a name? The evolution of the nomenclature of antipsychotic drugs | journal = Journal of Psychiatry & Neuroscience | volume = 27 | issue = 3 | pages = 168–75 | date = May 2002 | pmid = 12066446 | pmc = 161646 }}</ref> In the late 1950s the most widely used term was "neuroleptic", followed by "major ]" and then "ataraxic".<ref name="king"/> The word ''neuroleptic'' was coined in 1955 by Delay and Deniker after their discovery (1952) of the antipsychotic effects of chlorpromazine.<ref name="king"/> It is derived from the {{langx|el|"]"}} (''neuron'', originally meaning "]" but today referring to the ]s) and "]" (''lambanō'', meaning "take hold of"). Thus, the word means ''taking hold of one's nerves''. It was often taken to refer also to common effects such as reduced activity in general, as well as lethargy and impaired motor control. Although these effects are unpleasant and harmful, they were, along with akathisia, considered a reliable sign that the drug was working.<ref name=pieters /> These terms have been largely replaced by the term "antipsychotic" in medical and advertising literature, which refers to the medication's more-marketable effects.<ref name="king"/>


== See also == == See also ==
* ] * ]
* ]
* ]
* ]
* ]
* ]
* ]

== References ==
{{reflist}}


{{Antipsychotics}} {{Antipsychotics}}
{{Dopaminergics}}
]
]


{{DEFAULTSORT:Typical Antipsychotic}}
]
]
]

Latest revision as of 13:22, 14 November 2024

Class of drugs
Typical antipsychotic
Drug class
Skeletal formula of chlorpromazine, the first neuroleptic drug
SynonymsFirst generation antipsychotics, conventional antipsychotics, classical neuroleptics, traditional antipsychotics, major tranquilizers
Legal status
In Wikidata
Bottle containing capsules of loxapine, a mid-potency typical antipsychotic

Typical antipsychotics (also known as major tranquilizers, and first generation antipsychotics) are a class of antipsychotic drugs first developed in the 1950s and used to treat psychosis (in particular, schizophrenia). Typical antipsychotics may also be used for the treatment of acute mania, agitation, and other conditions. The first typical antipsychotics to come into medical use were the phenothiazines, namely chlorpromazine which was discovered serendipitously. Another prominent grouping of antipsychotics are the butyrophenones, an example of which is haloperidol. The newer, second-generation antipsychotics, also known as atypical antipsychotics, have largely supplanted the use of typical antipsychotics as first-line agents due to the higher risk of movement disorders with typical antipsychotics.

Both generations of medication tend to block receptors in the brain's dopamine pathways, but atypicals at the time of marketing were claimed to differ from typical antipsychotics in that they are less likely to cause extrapyramidal symptoms (EPS), which include unsteady Parkinson's disease-type movements, internal restlessness, and other involuntary movements (e.g. tardive dyskinesia, which can persist after stopping the medication). More recent research has demonstrated the side effect profile of these drugs is similar to older drugs, causing the leading medical journal The Lancet to write in its editorial "the time has come to abandon the terms first-generation and second-generation antipsychotics, as they do not merit this distinction." While typical antipsychotics are more likely to cause EPS, atypicals are more likely to cause adverse metabolic effects, such as weight gain and increase the risk for type II diabetes.

Clinical uses

Typical antipsychotics block the dopamine 2 receptor (D2) receptor, causing a tranquilizing effect. It is thought that 60–80% of D2 receptors need to be occupied for antipsychotic effect. For reference, the typical antipsychotic haloperidol tends to block about 80% of D2 receptors at doses ranging from 2 to 5 mg per day. On the aggregate level, no typical antipsychotic is more effective than any other, though people will vary in which antipsychotic they prefer to take based on individual differences in tolerability and effectiveness. Typical antipsychotics can be used to treat, e.g., schizophrenia or severe agitation. Haloperidol, due to the availability of a rapid-acting injectable formulation and decades of use, remains the most commonly used antipsychotic for treating severe agitation in the emergency department setting.

Adverse effects

Further information: Phenothiazines

Adverse effects vary among the various agents in this class of medications, but common effects include: dry mouth, muscle stiffness, muscle cramping, tremors, EPS and weight gain. EPS refers to a cluster of symptoms consisting of akathisia, parkinsonism, and dystonia. Anticholinergics such as benztropine and diphenhydramine are commonly prescribed to treat the EPS. 4% of users develop rabbit syndrome while on typical antipsychotics.

There is a risk of developing a serious condition called tardive dyskinesia as a side effect of antipsychotics, including typical antipsychotics. The risk of developing tardive dyskinesia after chronic typical antipsychotic usage varies on several factors, such as age and gender, as well as the specific antipsychotic used. The commonly reported incidence of TD among younger patients is about 5% per year. Among older patients incidence rates as high as 20% per year have been reported. The average prevalence is approximately 30%. There are few treatments that have consistently been shown to be effective for the treatment of tardive dyskinesia, though an VMAT2 inhibitor like valbenazine may help. The atypical antipsychotic clozapine has also been suggested as an alternative antipsychotic for patients experiencing tardive dyskinesia. Tardive dyskinesia may reverse upon discontinuation of the offending agent or it may be irreversible, withdrawal may also make tardive dyskinesia more severe.

Neuroleptic malignant syndrome (NMS) is a rare, but potentially fatal side effect of antipsychotic treatment. NMS is characterized by fever, muscle rigidity, autonomic dysfunction, and altered mental status. Treatment includes discontinuation of the offending agent and supportive care.

The role of typical antipsychotics has come into question recently as studies have suggested that typical antipsychotics may increase the risk of death in elderly patients. A 2005 retrospective cohort study from the New England Journal of Medicine showed an increase in risk of death with the use of typical antipsychotics that was on par with the increase shown with atypical antipsychotics. This has led some to question the common use of antipsychotics for the treatment of agitation in the elderly, particularly with the availability of alternatives such as mood stabilizing and antiepileptic drugs.

Potency

Traditional antipsychotics are classified as high-potency, mid-potency, or low-potency based on their potency for the D2 receptor:

Potency Examples Adverse effect profile
high fluphenazine and haloperidol more extrapyramidal side effects (EPS) and less antihistaminic effects (e.g. sedation), alpha adrenergic antagonism (e.g. orthostatic hypotension), and anticholinergic effects (e.g. dry mouth)
middle perphenazine and loxapine intermediate D2 affinity, with more off-target effects than high-potency agents
low chlorpromazine less risk of EPS but more antihistaminic effects, alpha adrenergic antagonism, and anticholinergic effects

Prochlorperazine (Compazine, Buccastem, Stemetil) and Pimozide (Orap) are less commonly used to treat psychotic states, and so are sometimes excluded from this classification.

A related concept to D2 potency is the concept of "chlorpromazine equivalence", which provides a measure of the relative effectiveness of antipsychotics. The measure specifies the amount (mass) in milligrams of a given drug that must be administered in order to achieve desired effects equivalent to those of 100 milligrams of chlorpromazine. Another method is "defined daily dose" (DDD), which is the assumed average dose of an antipsychotic that an adult would receive during long-term treatment. DDD is primarily used for comparing the utilization of antipsychotics (e.g. in an insurance claim database), rather than comparing therapeutic effects between antipsychotics. Maximum dose methods are sometimes used to compare between antipsychotics as well. It is important to note that these methods do not generally account for differences between the tolerability (i.e. the risk of side effects) or the safety between medications.

For a list of typical antipsychotics organized by potency, see below:

Low potency

Medium potency

High potency

†: discontinued or withdrawn products

Long-acting injectables

Some typical antipsychotics have been formulated as a long-acting injectable (LAI), or "depot", formulation. Depot injections are also used on persons under involuntary commitment to force compliance with a court treatment order when the person would refuse to take daily oral medication. This has the effect of dosing a person who doesn't consent to take the drug. The United Nations Special Rapporteur On Torture has classified this as a human rights violation and cruel or inhuman treatment.

The first LAI antipsychotics (often referred to as simply "LAIs") were the typical antipsychotics fluphenazine and haloperidol. Both fluphenazile and haloperidol are formulated as decanoates, referring to the attachment of a decanoic acid group to the antipsychotic molecule. These are then dissolved in an organic oil. Together, these modifications prevent the active medications from being released immediately upon injection, attaining a slow release of the active medications (note, though, that the fluphenazine decanoate product is unique for reaching peak fluphenazine blood levels within 24 hours after administration). Fluphenazine decanoate can be administered every 7 to 21 days (usually every 14 to 28 days), while haloperidol decanoate can be administered every 28 days, though some people receive more or less frequent injections. If a scheduled injection of either haloperidol decanoate or fluphenazine decanoate is missed, recommendations for administering make-up injectable dose(s) or providing antipsychotics to be taken by mouth vary by, e.g., how long ago the last injection was and how many previous injections the person has received (i.e., if steady state levels of the medication have been reached or not).

Both of the typical antipsychotic LAIs are inexpensive in comparison to the atypical LAIs. Doctors usually prefer atypical LAIs over typical LAIs due to the differences in adverse effects between typical and atypical antipsychotics in general.

Pharmacokinetics of long-acting injectable antipsychotics
Medication Brand name Class Vehicle Dosage Tmax t1/2 single t1/2 multiple logP Ref
Aripiprazole lauroxil Aristada Atypical Water 441–1064 mg/4–8 weeks 24–35 days ? 54–57 days 7.9–10.0
Aripiprazole monohydrate Abilify Maintena Atypical Water 300–400 mg/4 weeks 7 days ? 30–47 days 4.9–5.2
Bromperidol decanoate Impromen Decanoas Typical Sesame oil 40–300 mg/4 weeks 3–9 days ? 21–25 days 7.9
Clopentixol decanoate Sordinol Depot Typical Viscoleo 50–600 mg/1–4 weeks 4–7 days ? 19 days 9.0
Flupentixol decanoate Depixol Typical Viscoleo 10–200 mg/2–4 weeks 4–10 days 8 days 17 days 7.2–9.2
Fluphenazine decanoate Prolixin Decanoate Typical Sesame oil 12.5–100 mg/2–5 weeks 1–2 days 1–10 days 14–100 days 7.2–9.0
Fluphenazine enanthate Prolixin Enanthate Typical Sesame oil 12.5–100 mg/1–4 weeks 2–3 days 4 days ? 6.4–7.4
Fluspirilene Imap, Redeptin Typical Water 2–12 mg/1 week 1–8 days 7 days ? 5.2–5.8
Haloperidol decanoate Haldol Decanoate Typical Sesame oil 20–400 mg/2–4 weeks 3–9 days 18–21 days 7.2–7.9
Olanzapine pamoate Zyprexa Relprevv Atypical Water 150–405 mg/2–4 weeks 7 days ? 30 days
Oxyprothepin decanoate Meclopin Typical ? ? ? ? ? 8.5–8.7
Paliperidone palmitate Invega Sustenna Atypical Water 39–819 mg/4–12 weeks 13–33 days 25–139 days ? 8.1–10.1
Perphenazine decanoate Trilafon Dekanoat Typical Sesame oil 50–200 mg/2–4 weeks ? ? 27 days 8.9
Perphenazine enanthate Trilafon Enanthate Typical Sesame oil 25–200 mg/2 weeks 2–3 days ? 4–7 days 6.4–7.2
Pipotiazine palmitate Piportil Longum Typical Viscoleo 25–400 mg/4 weeks 9–10 days ? 14–21 days 8.5–11.6
Pipotiazine undecylenate Piportil Medium Typical Sesame oil 100–200 mg/2 weeks ? ? ? 8.4
Risperidone Risperdal Consta Atypical Microspheres 12.5–75 mg/2 weeks 21 days ? 3–6 days
Zuclopentixol acetate Clopixol Acuphase Typical Viscoleo 50–200 mg/1–3 days 1–2 days 1–2 days 4.7–4.9
Zuclopentixol decanoate Clopixol Depot Typical Viscoleo 50–800 mg/2–4 weeks 4–9 days ? 11–21 days 7.5–9.0
Note: All by intramuscular injection. Footnotes: = Microcrystalline or nanocrystalline aqueous suspension. = Low-viscosity vegetable oil (specifically fractionated coconut oil with medium-chain triglycerides). = Predicted, from PubChem and DrugBank. Sources: Main: See template.

History

Main article: Antipsychotic § History
Advertisement for Thorazine (chlorpromazine) from the 1950s, reflecting the perceptions of psychosis, including the now-discredited perception of a tendency towards violence, from the time when antipsychotics were discovered

The original antipsychotic drugs were happened upon largely by chance and then tested for their effectiveness. The first, chlorpromazine, was developed as a surgical anesthetic after an initial report in 1952. It was first used in psychiatric institutions because of its powerful tranquilizing effect; at the time it was advertised as a "pharmacological lobotomy". (Note that "tranquilizing" here only refers to changes in external behavior, while the experience a person has internally may be one of increased agitation but inability to express it.)

Until the 1970s there was considerable debate within psychiatry on the most appropriate term to use to describe the new drugs. In the late 1950s the most widely used term was "neuroleptic", followed by "major tranquilizer" and then "ataraxic". The word neuroleptic was coined in 1955 by Delay and Deniker after their discovery (1952) of the antipsychotic effects of chlorpromazine. It is derived from the Greek: "νεῦρον" (neuron, originally meaning "sinew" but today referring to the nerves) and "λαμβάνω" (lambanō, meaning "take hold of"). Thus, the word means taking hold of one's nerves. It was often taken to refer also to common effects such as reduced activity in general, as well as lethargy and impaired motor control. Although these effects are unpleasant and harmful, they were, along with akathisia, considered a reliable sign that the drug was working. These terms have been largely replaced by the term "antipsychotic" in medical and advertising literature, which refers to the medication's more-marketable effects.

See also

References

  1. Shen WW (1999). "A history of antipsychotic drug development". Comprehensive Psychiatry. 40 (6): 407–14. doi:10.1016/s0010-440x(99)90082-2. PMID 10579370.
  2. "A roadmap to key pharmacologic principles in using antipsychotics". Primary Care Companion to the Journal of Clinical Psychiatry. 9 (6): 444–54. 2007. doi:10.4088/PCC.v09n0607. PMC 2139919. PMID 18185824.
  3. Tyrer P, Kendall T (January 2009). "The spurious advance of antipsychotic drug therapy". Lancet. 373 (9657): 4–5. doi:10.1016/S0140-6736(08)61765-1. PMID 19058841. S2CID 19951248. Archived from the original on 2023-02-06. Retrieved 2023-03-02.
  4. "Not found". www.rcpsych.ac.uk. Archived from the original on 8 May 2018. Retrieved 8 May 2018.
  5. ^ Schatzberg's Manual of Clinical Psychopharmacology (Ninth ed.). American Psychiatric Association Publishing. 2019. ISBN 978-1-61537-230-0. Archived from the original on 2020-06-21. Retrieved 2020-06-21.
  6. Yassa R, Lal S (May 1986). "Prevalence of the rabbit syndrome". The American Journal of Psychiatry. 143 (5): 656–7. doi:10.1176/ajp.143.5.656. PMID 2870650.
  7. Llorca PM, Chereau I, Bayle FJ, Lancon C (May 2002). "Tardive dyskinesias and antipsychotics: a review". European Psychiatry. 17 (3): 129–38. doi:10.1016/S0924-9338(02)00647-8. PMID 12052573. S2CID 40761404.
  8. Office of the Commissioner (24 March 2020). "FDA approves first drug to treat tardive dyskinesia". FDA. Retrieved 18 June 2020.
  9. Pardis P, Remington G, Panda R, Lemez M, Agid O (October 2019). "Clozapine and tardive dyskinesia in patients with schizophrenia: A systematic review". Journal of Psychopharmacology. 33 (10): 1187–1198. doi:10.1177/0269881119862535. PMID 31347436. S2CID 198912192.
  10. "Tardive dyskinesia: MedlinePlus Medical Encyclopedia". Archived from the original on 2017-01-31. Retrieved 2017-01-18.
  11. Wang PS, Schneeweiss S, Avorn J, Fischer MA, Mogun H, Solomon DH, Brookhart MA (December 2005). "Risk of death in elderly users of conventional vs. atypical antipsychotic medications". The New England Journal of Medicine. 353 (22): 2335–41. doi:10.1056/NEJMoa052827. PMID 16319382. S2CID 35202051.
  12. Gitlin MJ (1996). The psychotherapist's guide to psychopharmacology. New York: Free Press. p. 392. ISBN 0-684-82737-9.
  13. Woods SW (June 2003). "Chlorpromazine equivalent doses for the newer atypical antipsychotics". The Journal of Clinical Psychiatry. 64 (6): 663–7. doi:10.4088/JCP.v64n0607. PMID 12823080.
  14. Rijcken CA, Monster TB, Brouwers JR, de Jong-van den Berg LT (December 2003). "Chlorpromazine equivalents versus defined daily doses: how to compare antipsychotic drug doses?". Journal of Clinical Psychopharmacology. 23 (6): 657–9. doi:10.1097/01.jcp.0000096247.29231.3a. PMID 14624195. S2CID 12939895.
  15. ^ Patel MX, Arista IA, Taylor M, Barnes TR (September 2013). "How to compare doses of different antipsychotics: a systematic review of methods". Schizophrenia Research. 149 (1–3): 141–8. doi:10.1016/j.schres.2013.06.030. PMID 23845387. S2CID 45642900.
  16. Martindale: The Complete Drug Reference. The Royal Pharmaceutical Society of Great Britain. 2013. Retrieved 2 November 2013.
  17. "Special rapporteur on torture and other cruel, inhuman or degrading treatment or punishment" (PDF). Retrieved 2024-02-07.
  18. ^ Kennedy WK (2012). "When and how to use long-acting injectable antipsychotics". Current Psychiatry. 11 (8): 40–43.
  19. ^ Carpenter J, Wong KK (2018). "Long-acting injectable antipsychotics: What to do about missed doses". Current Psychiatry. 17 (7): 10–12, 14–19, 56.
  20. Parent M, Toussaint C, Gilson H (1983). "Long-term treatment of chronic psychotics with bromperidol decanoate: clinical and pharmacokinetic evaluation". Current Therapeutic Research. 34 (1): 1–6.
  21. ^ Jørgensen A, Overø KF (1980). "Clopenthixol and flupenthixol depot preparations in outpatient schizophrenics. III. Serum levels". Acta Psychiatrica Scandinavica. Supplementum. 279: 41–54. doi:10.1111/j.1600-0447.1980.tb07082.x. PMID 6931472.
  22. ^ Reynolds JE (1993). "Anxiolytic sedatives, hypnotics and neuroleptics.". Martindale: The Extra Pharmacopoeia (30th ed.). London: Pharmaceutical Press. pp. 364–623.
  23. Ereshefsky L, Saklad SR, Jann MW, Davis CM, Richards A, Seidel DR (May 1984). "Future of depot neuroleptic therapy: pharmacokinetic and pharmacodynamic approaches". The Journal of Clinical Psychiatry. 45 (5 Pt 2): 50–9. PMID 6143748.
  24. ^ Curry SH, Whelpton R, de Schepper PJ, Vranckx S, Schiff AA (April 1979). "Kinetics of fluphenazine after fluphenazine dihydrochloride, enanthate and decanoate administration to man". British Journal of Clinical Pharmacology. 7 (4): 325–31. doi:10.1111/j.1365-2125.1979.tb00941.x. PMC 1429660. PMID 444352.
  25. Young D, Ereshefsky L, Saklad SR, Jann MW, Garcia N (1984). Explaining the pharmacokinetics of fluphenazine through computer simulations. (Abstract.). 19th Annual Midyear Clinical Meeting of the American Society of Hospital Pharmacists. Dallas, Texas.
  26. Janssen PA, Niemegeers CJ, Schellekens KH, Lenaerts FM, Verbruggen FJ, van Nueten JM, Marsboom RH, Hérin VV, Schaper WK (November 1970). "The pharmacology of fluspirilene (R 6218), a potent, long-acting and injectable neuroleptic drug". Arzneimittel-Forschung. 20 (11): 1689–98. PMID 4992598.
  27. Beresford R, Ward A (January 1987). "Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in psychosis". Drugs. 33 (1): 31–49. doi:10.2165/00003495-198733010-00002. PMID 3545764.
  28. Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year follow-up". International Pharmacopsychiatry. 17 (4): 238–46. doi:10.1159/000468580. PMID 7185768.
  29. Larsson M, Axelsson R, Forsman A (1984). "On the pharmacokinetics of perphenazine: a clinical study of perphenazine enanthate and decanoate". Current Therapeutic Research. 36 (6): 1071–88.
  30. The text reads: "When the patient lashes out against 'them' - THORAZINE (brand of chlorpromazine) quickly puts an end to his violent outburst. 'Thorazine' is especially effective when the psychotic episode is triggered by delusions or hallucinations. At the outset of treatment, Thorazine's combination of antipsychotic and sedative effects provides both emotional and physical calming. Assaultive or destructive behavior is rapidly controlled. As therapy continues, the initial sedative effect gradually disappears. But the antipsychotic effect continues, helping to dispel or modify delusions, hallucinations and confusion, while keeping the patient calm and approachable. SMITH KLINE AND FRENCH LABORATORIES leaders in psychopharmaceutical research."
  31. ^ Pieters T, Majerus B (December 2011). "The introduction of chlorpromazine in Belgium and the Netherlands (1951-1968); tango between old and new treatment features". Studies in History and Philosophy of Biological and Biomedical Sciences. 42 (4): 443–52. doi:10.1016/j.shpsc.2011.05.003. PMID 22035718. Archived from the original on 9 July 2017.
  32. Muench, John (1 March 2010). "Adverse Effects Of Antipsychotics". American Family Physician. 81 (5): 617–622. Retrieved 23 March 2021.
  33. ^ King C, Voruganti LN (May 2002). "What's in a name? The evolution of the nomenclature of antipsychotic drugs". Journal of Psychiatry & Neuroscience. 27 (3): 168–75. PMC 161646. PMID 12066446.
Antipsychotics (N05A)
Typical
Disputed
Atypical
Others
Dopamine receptor modulators
D1-like
Agonists
PAMs
Antagonists
D2-like
Agonists
Antagonists
Categories: