Revision as of 08:58, 8 April 2021 editMathematician But Not Scientist (talk | contribs)8 edits added International Mathematical Knowledge Trust wikilink← Previous edit |
Revision as of 17:59, 8 April 2021 edit undoThousand1000,1000 (talk | contribs)7 edits + a reference from Kanoon Farhangi AmoozeshNext edit → |
Line 4: |
Line 4: |
|
] |date=March 23, 2016 |access-date=March 29, 2017}}</ref><ref>{{Cite web|url=http://maddmaths.simai.eu/archimede/matematica-e-arti-visive/|title=Matematica e arti visive: percorsi interdisciplinari fra matematica, arte e coding|last=Passaro|first=Davide|website=Maddmaths!|publisher=SIMAI Società Italiana di Matematica Applicata e Industriale|access-date=2019-02-04}}</ref><ref>{{cite web |title="A Bird in Flight" |url=https://www.futilitycloset.com/2018/04/22/a-bird-in-flight/ |website=] |access-date=25 March 2020 |archive-url=https://web.archive.org/web/20180423021644/https://www.futilitycloset.com/2018/04/22/a-bird-in-flight/ |archive-date=April 23, 2018 |date=April 22, 2018 |url-status=live}}</ref><ref>{{cite news |title=수학적 아름다움, 프랙털 아트의 세계 |url=https://www.sciencetimes.co.kr/news/%EC%88%98%ED%95%99%EC%A0%81-%EC%95%84%EB%A6%84%EB%8B%A4%EC%9B%80-%ED%94%84%EB%9E%99%ED%84%B8-%EC%95%84%ED%8A%B8%EC%9D%98-%EC%84%B8%EA%B3%84/ |access-date=8 December 2020 |work=Sciencetimes |date=8 December 2020 |archive-url=https://web.archive.org/web/20201208103131/https://www.sciencetimes.co.kr/news/%EC%88%98%ED%95%99%EC%A0%81-%EC%95%84%EB%A6%84%EB%8B%A4%EC%9B%80-%ED%94%84%EB%9E%99%ED%84%B8-%EC%95%84%ED%8A%B8%EC%9D%98-%EC%84%B8%EA%B3%84/ |archive-date=8 December 2020|url-status=live|trans-title=Mathematical beauty, the world of fractal art|language=ko}}</ref>]] |
|
] |date=March 23, 2016 |access-date=March 29, 2017}}</ref><ref>{{Cite web|url=http://maddmaths.simai.eu/archimede/matematica-e-arti-visive/|title=Matematica e arti visive: percorsi interdisciplinari fra matematica, arte e coding|last=Passaro|first=Davide|website=Maddmaths!|publisher=SIMAI Società Italiana di Matematica Applicata e Industriale|access-date=2019-02-04}}</ref><ref>{{cite web |title="A Bird in Flight" |url=https://www.futilitycloset.com/2018/04/22/a-bird-in-flight/ |website=] |access-date=25 March 2020 |archive-url=https://web.archive.org/web/20180423021644/https://www.futilitycloset.com/2018/04/22/a-bird-in-flight/ |archive-date=April 23, 2018 |date=April 22, 2018 |url-status=live}}</ref><ref>{{cite news |title=수학적 아름다움, 프랙털 아트의 세계 |url=https://www.sciencetimes.co.kr/news/%EC%88%98%ED%95%99%EC%A0%81-%EC%95%84%EB%A6%84%EB%8B%A4%EC%9B%80-%ED%94%84%EB%9E%99%ED%84%B8-%EC%95%84%ED%8A%B8%EC%9D%98-%EC%84%B8%EA%B3%84/ |access-date=8 December 2020 |work=Sciencetimes |date=8 December 2020 |archive-url=https://web.archive.org/web/20201208103131/https://www.sciencetimes.co.kr/news/%EC%88%98%ED%95%99%EC%A0%81-%EC%95%84%EB%A6%84%EB%8B%A4%EC%9B%80-%ED%94%84%EB%9E%99%ED%84%B8-%EC%95%84%ED%8A%B8%EC%9D%98-%EC%84%B8%EA%B3%84/ |archive-date=8 December 2020|url-status=live|trans-title=Mathematical beauty, the world of fractal art|language=ko}}</ref>]] |
|
|
|
|
|
'''A Bird in Flight''' are bird-like ] that were introduced by mathematical artist ].<ref>{{cite web |url= http://www.ams.org/mathimagery/thumbnails.php?album=40|title=Mathematical Concepts Illustrated by Hamid Naderi Yeganeh|publisher=] |date=November 2014 |access-date=September 19, 2015}}</ref><ref>{{cite web |url= https://mcs.blog.gustavus.edu/2015/09/18/mathematical-works-of-art/|title=Mathematical Works of Art|publisher=] |date=September 18, 2014 |access-date=September 19, 2015}}</ref><ref>{{cite web |url=https://plus.maths.org/content/not-bird|title=This is not a bird (or a moustache) |publisher=] |date= January 8, 2015|access-date=September 19, 2015}}</ref><ref>{{cite speech |title=Avian Arithmetic: The mathematics of bird flight |first=Peter |last=Cavanagh|event=]' Events|location=] Online, NY, United States|date=March 5, 2021 |url=https://momath.org/civicrm/?page=CiviCRM&q=civicrm%2Fevent%2Finfo&reset=1&id=4699|access-date=5 April 2021}}</ref><ref>{{cite web |last1=Gustlin |first1=Deborah |title=15.4: Digital Art |url=https://human.libretexts.org/Courses/ASCCC/A_World_Perspective_of_Art_Appreciation_(Gustlin_and_Gustlin)/15%3A_The_New_Millennium_(2000_-_2020)/15.04%3A_Digital_Art |website=] |access-date=19 March 2020}}</ref><ref>{{cite web |title=Mathematics Portal - IMKT |url=https://imkt.org/math-portal/ |publisher=] |access-date=24 February 2020}}</ref> Yeganeh has created these figures by combing through tens of thousands of ]. They are defined by ].<ref>{{cite news |last1=Antonick |first1=Gary |title=Round Robin |url=https://wordplay.blogs.nytimes.com/2016/01/25/moriconi-round-robin/ |access-date=27 February 2020 |work=] |date=January 25, 2016}}</ref><ref>{{cite news |title=Next da Vinci? Math genius using formulas to create fantastical works of art |url= http://edition.cnn.com/2015/09/17/arts/math-art/ |date=September 18, 2015 |first=Stephy |last=Chung |work=]}}</ref><ref>{{cite book |last1=Baugher |first1=Janée J. |title=The Ekphrastic Writer: Creating Art-Influenced Poetry, Fiction and Nonfiction |date=2020 |publisher=] |isbn=9781476639611 |page=56 |url=https://mcfarlandbooks.com/product/the-ekphrastic-writer/}}</ref> An example of such patterns is a set of 500 ] where for each <math>i=1, 2, 3, \ldots , 500</math> the endpoints of the <math>i</math>-th line segment are: |
|
'''A Bird in Flight''' are bird-like ] that were introduced by mathematical artist ].<ref>{{cite web |url= http://www.ams.org/mathimagery/thumbnails.php?album=40|title=Mathematical Concepts Illustrated by Hamid Naderi Yeganeh|publisher=] |date=November 2014 |access-date=September 19, 2015}}</ref><ref>{{cite web |url= https://mcs.blog.gustavus.edu/2015/09/18/mathematical-works-of-art/|title=Mathematical Works of Art|publisher=] |date=September 18, 2014 |access-date=September 19, 2015}}</ref><ref>{{cite web |url=https://plus.maths.org/content/not-bird|title=This is not a bird (or a moustache) |publisher=] |date= January 8, 2015|access-date=September 19, 2015}}</ref><ref>{{cite speech |title=Avian Arithmetic: The mathematics of bird flight |first=Peter |last=Cavanagh|event=]' Events|location=] Online, NY, United States|date=March 5, 2021 |url=https://momath.org/civicrm/?page=CiviCRM&q=civicrm%2Fevent%2Finfo&reset=1&id=4699|access-date=5 April 2021}}</ref><ref>{{cite web |last1=Gustlin |first1=Deborah |title=15.4: Digital Art |url=https://human.libretexts.org/Courses/ASCCC/A_World_Perspective_of_Art_Appreciation_(Gustlin_and_Gustlin)/15%3A_The_New_Millennium_(2000_-_2020)/15.04%3A_Digital_Art |website=] |access-date=19 March 2020}}</ref><ref>{{cite web |title=Mathematics Portal - IMKT |url=https://imkt.org/math-portal/ |publisher=] |access-date=24 February 2020}}</ref> Yeganeh has created these figures by combing through tens of thousands of ]. They are defined by ].<ref>{{cite news |last1=Antonick |first1=Gary |title=Round Robin |url=https://wordplay.blogs.nytimes.com/2016/01/25/moriconi-round-robin/ |access-date=27 February 2020 |work=] |date=January 25, 2016}}</ref><ref>{{cite news |title=Next da Vinci? Math genius using formulas to create fantastical works of art |url= http://edition.cnn.com/2015/09/17/arts/math-art/ |date=September 18, 2015 |first=Stephy |last=Chung |work=]}}</ref><ref>{{cite news |title=خلق تصاویر هنری با استفاده از فرمولهای ریاضی |url=https://www.kanoon.ir/Article/207291 |access-date=8 April 2021 |publisher=] |date=June 10, 2018 |archive-url=https://web.archive.org/web/20210408174804/https://www.kanoon.ir/Article/207291 |archive-date=8 April 2021 |language=Persian}}</ref><ref>{{cite book |last1=Baugher |first1=Janée J. |title=The Ekphrastic Writer: Creating Art-Influenced Poetry, Fiction and Nonfiction |date=2020 |publisher=] |isbn=9781476639611 |page=56 |url=https://mcfarlandbooks.com/product/the-ekphrastic-writer/}}</ref> An example of such patterns is a set of 500 ] where for each <math>i=1, 2, 3, \ldots , 500</math> the endpoints of the <math>i</math>-th line segment are: |
|
:<math> |
|
:<math> |
|
\left(\frac{3}{2}\left(\sin\left(\frac{2\pi i}{500}+\frac{\pi}{3}\right)\right)^{7},\,\frac{1}{4}\left(\cos\left(\frac{6\pi i}{500}\right)\right)^{2}\right) |
|
\left(\frac{3}{2}\left(\sin\left(\frac{2\pi i}{500}+\frac{\pi}{3}\right)\right)^{7},\,\frac{1}{4}\left(\cos\left(\frac{6\pi i}{500}\right)\right)^{2}\right) |