Misplaced Pages

Fermat's Last Theorem: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 18:15, 23 June 2002 editAxelBoldt (talk | contribs)Administrators44,502 edits BBC transcript← Previous edit Revision as of 19:40, 23 June 2002 edit undoPgdudda (talk | contribs)531 editsm spelling correctionNext edit →
Line 5: Line 5:
in which ''n'' is a natural number greater than 2. About this the 17th-century mathematician ] wrote in ] in his copy of Claude-Gaspar Bachet's translation of ]' ''Arithmetica'', "I have discovered a truly remarkable proof but this margin is too small to contain it". The reason why this statement is so significant is that all the other theorems proposed by Fermat were settled either by proofs he supplied, or by more rigorous proofs supplied afterwards. Mathematicians long were baffled by this statement, for they were unable either to prove or to disprove it. The theorem has the credit of most number of wrong proofs! in which ''n'' is a natural number greater than 2. About this the 17th-century mathematician ] wrote in ] in his copy of Claude-Gaspar Bachet's translation of ]' ''Arithmetica'', "I have discovered a truly remarkable proof but this margin is too small to contain it". The reason why this statement is so significant is that all the other theorems proposed by Fermat were settled either by proofs he supplied, or by more rigorous proofs supplied afterwards. Mathematicians long were baffled by this statement, for they were unable either to prove or to disprove it. The theorem has the credit of most number of wrong proofs!


For various special exponents ''n'', the theorem had been proved over the years, but the general case remained illusive. In ] ] proved the ], which implied that for any ''n''>2, there are at most finitely many coprime integers ''a'', ''b'' and ''c'' with ''a''<sup>''n''</sup> + ''b''<sup>''n''</sup> = ''c''<sup>''n''</sup>. For various special exponents ''n'', the theorem had been proved over the years, but the general case remained elusive. In ] ] proved the ], which implies that for any ''n''>2, there are at most finitely many coprime integers ''a'', ''b'' and ''c'' with ''a''<sup>''n''</sup> + ''b''<sup>''n''</sup> = ''c''<sup>''n''</sup>.


Using sophisticated tools from ] (in particular ] and ]s), ] and ]s, the English mathematician ], with help from his former student ], devised a proof of Fermat's Last Theorem that was published in ] in the journal '']''. Using sophisticated tools from ] (in particular ] and ]s), ] and ]s, the English mathematician ], with help from his former student ], devised a proof of Fermat's Last Theorem that was published in ] in the journal '']''.
Line 14: Line 14:
This latter conjecture proposes a deep connection between elliptic curves and modular forms. This latter conjecture proposes a deep connection between elliptic curves and modular forms.
Wiles and Taylor were able to establish a special case of the Taniyama-Shimura Conjecture sufficient to exclude such counterexamples arising from Fermat's last theorem. Wiles and Taylor were able to establish a special case of the Taniyama-Shimura Conjecture sufficient to exclude such counterexamples arising from Fermat's last theorem.



The story of the proof is almost as remarkable as the mystery of the theorem itself. Wiles spent 7 years in isolation working out nearly all the details. When he presented his proof in June 1993, he blew away his audience with the number of ideas and constructions used in his proof. Unfortunately, upon closer inspection a serious problem was discovered which seemed to break his original proof. Wiles and Taylor then spent about a year trying to repair the proof. In September 1994, they were able to resurrected the proof with some techniques Wiles had used in his earlier work and apparently created an even more elegant proof as a result. The story of the proof is almost as remarkable as the mystery of the theorem itself. Wiles spent 7 years in isolation working out nearly all the details. When he presented his proof in June 1993, he blew away his audience with the number of ideas and constructions used in his proof. Unfortunately, upon closer inspection a serious problem was discovered which seemed to break his original proof. Wiles and Taylor then spent about a year trying to repair the proof. In September 1994, they were able to resurrected the proof with some techniques Wiles had used in his earlier work and apparently created an even more elegant proof as a result.

Revision as of 19:40, 23 June 2002

Fermat's last theorem (also called Fermat's Great Theorem) states that there are no positive natural numbers a, b, and c such that

a + b = c

in which n is a natural number greater than 2. About this the 17th-century mathematician Pierre de Fermat wrote in 1637 in his copy of Claude-Gaspar Bachet's translation of Diophantus' Arithmetica, "I have discovered a truly remarkable proof but this margin is too small to contain it". The reason why this statement is so significant is that all the other theorems proposed by Fermat were settled either by proofs he supplied, or by more rigorous proofs supplied afterwards. Mathematicians long were baffled by this statement, for they were unable either to prove or to disprove it. The theorem has the credit of most number of wrong proofs!

For various special exponents n, the theorem had been proved over the years, but the general case remained elusive. In 1983 Gerd Faltings proved the Mordell conjecture, which implies that for any n>2, there are at most finitely many coprime integers a, b and c with a + b = c.

Using sophisticated tools from algebraic geometry (in particular elliptic curves and modular forms), Galois theory and Hecke algebras, the English mathematician Andrew Wiles, with help from his former student Richard Taylor, devised a proof of Fermat's Last Theorem that was published in 1995 in the journal Annals of Mathematics.

Frey had conjectured ("Epsilon conjecture"), and Ribet had proved in 1986, that every counterexample a + b = c to Fermat's last theorem would yield an elliptic curve

y = x (x - a) (x + b)

which would provide a counterexample to the Taniyama-Shimura Conjecture. This latter conjecture proposes a deep connection between elliptic curves and modular forms. Wiles and Taylor were able to establish a special case of the Taniyama-Shimura Conjecture sufficient to exclude such counterexamples arising from Fermat's last theorem.

The story of the proof is almost as remarkable as the mystery of the theorem itself. Wiles spent 7 years in isolation working out nearly all the details. When he presented his proof in June 1993, he blew away his audience with the number of ideas and constructions used in his proof. Unfortunately, upon closer inspection a serious problem was discovered which seemed to break his original proof. Wiles and Taylor then spent about a year trying to repair the proof. In September 1994, they were able to resurrected the proof with some techniques Wiles had used in his earlier work and apparently created an even more elegant proof as a result.

There is some doubt over whether the "..truly remarkable proof .." of Fermat's was correct. The methods used by Wiles were unknown when Fermat was writing, and it seems unlikely that Fermat managed to derive all the necessary mathematics to demonstrate the same solution (in the words of Andrew Wiles, "its impossible, this is a 20th century proof"). The alternatives are that there is a simpler proof that all other mathematicians up until this point have missed, or that Fermat was mistaken.

See also:

External links and References: