Misplaced Pages

Allyl alcohol: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 20:11, 22 June 2023 editBernanke's Crossbow (talk | contribs)Extended confirmed users7,753 edits Other methods: Added MBH← Previous edit Revision as of 20:51, 7 July 2023 edit undoBernanke's Crossbow (talk | contribs)Extended confirmed users7,753 edits Other methods: added luche reductionNext edit →
Line 82: Line 82:
In principle, allyl alcohol can be obtained by ] of ]. In the laboratory, it has been prepared by the reaction of ] with ] or ]s.<ref>{{OrgSynth | collvol = 1 | collvolpages = 42 | prep = cv1p0042 | title = Allyl alcohol | author =Oliver Kamm | author2 =C. S. Marvel | name-list-style=amp | year = 1941}}</ref><ref>{{cite book|last=Cohen|first=Julius|title=Practical Organic Chemistry|edition=2nd|year=1900|publisher=Macmillan and Co., Limited|location=London|page=|url=https://archive.org/details/practicalorgani00cohegoog|quote=Practical Organic Chemistry Cohen Julius.}}</ref> In principle, allyl alcohol can be obtained by ] of ]. In the laboratory, it has been prepared by the reaction of ] with ] or ]s.<ref>{{OrgSynth | collvol = 1 | collvolpages = 42 | prep = cv1p0042 | title = Allyl alcohol | author =Oliver Kamm | author2 =C. S. Marvel | name-list-style=amp | year = 1941}}</ref><ref>{{cite book|last=Cohen|first=Julius|title=Practical Organic Chemistry|edition=2nd|year=1900|publisher=Macmillan and Co., Limited|location=London|page=|url=https://archive.org/details/practicalorgani00cohegoog|quote=Practical Organic Chemistry Cohen Julius.}}</ref>


Allyl alcohols in general can be prepared by ] of ] compounds by ], by the ], or the ]. Allyl alcohols in general can be prepared by ] of ] compounds by ]; by carbon-carbon bond forming reactions such as the ] and the ]; or by ] of ]s.


==Applications== ==Applications==

Revision as of 20:51, 7 July 2023

Organic compound (CH2=CHCH2OH)
Allyl alcohol
Skeletal formula
Ball-and-stick model
Names
Preferred IUPAC name Prop-2-en-1-ol
Other names Allyl alcohol
2-Propen-1-ol
1-Propen-3-ol
Vinyl carbinol
Allylic alcohol
Weed drench
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.003.156 Edit this at Wikidata
EC Number
  • 203-470-7
KEGG
PubChem CID
RTECS number
  • BA5075000
UNII
UN number 1098
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C3H6O/c1-2-3-4/h2,4H,1,3H2Key: XXROGKLTLUQVRX-UHFFFAOYSA-N
  • InChI=1/C3H6O/c1-2-3-4/h2,4H,1,3H2Key: XXROGKLTLUQVRX-UHFFFAOYAC
SMILES
  • C=CCO
Properties
Chemical formula C3H6O
Molar mass 58.080 g·mol
Appearance colorless liquid
Odor mustard-like
Density 0.854 g/ml
Melting point −129 °C
Boiling point 97 °C (207 °F; 370 K)
Solubility in water Miscible
Vapor pressure 17 mmHg
Acidity (pKa) 15.5 (H2O)
Magnetic susceptibility (χ) -36.70·10 cm/mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards Highly toxic, lachrymator
GHS labelling:
Pictograms GHS02: FlammableGHS06: ToxicGHS07: Exclamation markGHS09: Environmental hazard
Signal word Danger
Hazard statements H225, H301, H302, H311, H315, H319, H331, H335, H400
Precautionary statements P210, P233, P240, P241, P242, P243, P261, P264, P270, P271, P273, P280, P301+P310, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P311, P312, P321, P322, P330, P332+P313, P337+P313, P361, P362, P363, P370+P378, P391, P403+P233, P403+P235, P405, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
3 3 1
Flash point 21 °C (70 °F; 294 K)
Autoignition
temperature
378 °C (712 °F; 651 K)
Explosive limits 2.5–18.0%
Lethal dose or concentration (LD, LC):
LD50 (median dose) 80 mg/kg (rat, orally)
LC50 (median concentration) 1000 ppm (mammal, 1 hr)
76 ppm (rat, 8 hr)
207 ppm (mouse, 2 hr)
1000 ppm (rabbit, 3.5 hr)
1000 ppm (monkey, 4 hr)
1060 ppm (rat, 1 hr)
165 ppm (rat, 4 hr)
76 ppm (rat, 8 hr)
NIOSH (US health exposure limits):
PEL (Permissible) 2 ppm
REL (Recommended) TWA 2 ppm (5 mg/m) ST 4 ppm (10 mg/m)
IDLH (Immediate danger) 20 ppm
Safety data sheet (SDS) External MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Allyl alcohol (IUPAC name: prop-2-en-1-ol) is an organic compound with the structural formula CH2=CHCH2OH. Like many alcohols, it is a water-soluble, colourless liquid. It is more toxic than typical small alcohols. Allyl alcohol is used as a raw material for the production of glycerol, but is also used as a precursor to many specialized compounds such as flame-resistant materials, drying oils, and plasticizers. Allyl alcohol is the smallest representative of the allylic alcohols.

Production

Allyl alcohol can be obtained by many methods. It was first prepared in 1856 by Auguste Cahours and August Hofmann by hydrolysis of allyl iodide. Today allyl alcohol is produced commercially by the Olin and Shell corporations through the hydrolysis of allyl chloride:

CH 2 = CHCH 2 Cl + NaOH CH 2 = CHCH 2 OH + NaCl {\displaystyle {\ce {CH2=CHCH2Cl + NaOH -> CH2=CHCH2OH + NaCl}}}

Allyl alcohol can also be made by the rearrangement of propylene oxide, a reaction that is catalyzed by potassium alum at high temperature. The advantage of this method relative to the allyl chloride route is that it does not generate salt. Also avoiding chloride-containing intermediates is the "acetoxylation" of propylene to allyl acetate:

CH 2 = CHCH 3 + 1 2 O 2 + CH 3 COOH CH 2 = CHCH 2 OCOCH 3 + H 2 O {\displaystyle {\ce {CH2=CHCH3 + 1/2 O2 + CH3COOH -> CH2=CHCH2OCOCH3 + H2O}}}

Hydrolysis of this acetate gives allyl alcohol. In alternative fashion, propylene can be oxidized to acrolein, which upon hydrogenation gives the alcohol.

Other methods

In principle, allyl alcohol can be obtained by dehydrogenation of propanol. In the laboratory, it has been prepared by the reaction of glycerol with oxalic or formic acids.

Allyl alcohols in general can be prepared by allylic oxidation of allyl compounds by selenium dioxide; by carbon-carbon bond forming reactions such as the Prins reaction and the Morita-Baylis-Hillman reaction; or by Luche reduction of enones.

Applications

Allyl alcohol is converted mainly to glycidol, which is a chemical intermediate in the synthesis of glycerol, glycidyl ethers, esters, and amines. Also, a variety of polymerizable esters are prepared from allyl alcohol, e.g. diallyl phthalate.

Safety

Allyl alcohol is more toxic than related alcohols. Its threshold limit value (TLV) is 2 ppm. It is a lachrymator.

It is classified as an extremely hazardous substance in the United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act (42 U.S.C. 11002), and is subject to strict reporting requirements by facilities which produce, store, or use it in significant quantities.

See also

References

  1. ^ NIOSH Pocket Guide to Chemical Hazards. "#0017". National Institute for Occupational Safety and Health (NIOSH).
  2. Haynes, William M., ed. (2016). CRC Handbook of Chemistry and Physics (97th ed.). CRC Press. p. 5–88. ISBN 978-1498754286.
  3. Allyl alcohol toxicity
  4. "Allyl alcohol". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  5. ^ Ludger Krähling; Jürgen Krey; Gerald Jakobson; Johann Grolig; Leopold Miksche (2002). "Allyl Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_425. ISBN 978-3527306732.
  6. Oliver Kamm & C. S. Marvel (1941). "Allyl alcohol". Organic Syntheses; Collected Volumes, vol. 1, p. 42.
  7. Cohen, Julius (1900). Practical Organic Chemistry (2nd ed.). London: Macmillan and Co., Limited. p. 96. Practical Organic Chemistry Cohen Julius.
  8. "40 C.F.R.: Appendix A to Part 355—The List of Extremely Hazardous Substances and Their Threshold Planning Quantities" (PDF) (July 1, 2008 ed.). Government Printing Office. Archived from the original (PDF) on February 25, 2012. Retrieved October 29, 2011. {{cite journal}}: Cite journal requires |journal= (help)

External links

Categories: