Revision as of 09:26, 16 November 2024 editChiswick Chap (talk | contribs)Autopatrolled, Extended confirmed users, Page movers, New page reviewers, Pending changes reviewers, Rollbackers295,993 edits →Behaviour: cite news decently, ce, rm repet.← Previous edit | Revision as of 09:38, 16 November 2024 edit undoChiswick Chap (talk | contribs)Autopatrolled, Extended confirmed users, Page movers, New page reviewers, Pending changes reviewers, Rollbackers295,993 edits merge refs, wl, article is a chaotic messNext edit → | ||
Line 13: | Line 13: | ||
}} | }} | ||
], found washed up on the shore near ], ], in September 1996]] | ], found washed up on the shore near ], ], in September 1996]] | ||
'''Oarfish''' are large, greatly elongated, ] ] fish belonging to the small ] Regalecidae.<ref name="FishbaseReg">{{FishBase_family|family=Regalecidae|year=2007|month=March}}</ref> Found in areas spanning from ] ocean zones to tropical ones, yet rarely seen, the oarfish family contains three ] in two ].<ref>{{Cite web |title=Regalecus glesne |url=https://www.floridamuseum.ufl.edu/discover-fish/species-profiles/regalecus-glesne/ |access-date=2024-06-23 |website=Discover Fishes |language=en-US}}</ref> One of these, the ] (''Regalecus glesne''), is the longest ] alive, growing up to about {{convert|8|m|ft|abbr=on}} in length.<ref>{{cite journal |last1=McClain |first1=Craig R. |last2=Balk |first2=Megan A. |last3=Benfield |first3=Mark C. | '''Oarfish''' are large, greatly elongated, ] ] fish belonging to the small ] Regalecidae.<ref name="FishbaseReg">{{FishBase_family|family=Regalecidae|year=2007|month=March}}</ref> Found in areas spanning from ] ocean zones to tropical ones, yet rarely seen, the oarfish family contains three ] in two ].<ref>{{Cite web |title=Regalecus glesne |url=https://www.floridamuseum.ufl.edu/discover-fish/species-profiles/regalecus-glesne/ |access-date=2024-06-23 |website=Discover Fishes |language=en-US}}</ref> One of these, the ] (''Regalecus glesne''), is the longest ] alive, growing up to about {{convert|8|m|ft|abbr=on}} in length.<ref name="McClain Balk 2015">{{cite journal |last1=McClain |first1=Craig R. |last2=Balk |first2=Megan A. |last3=Benfield |first3=Mark C. |last4=Branch |first4=Trevor A. |last5=Chen |first5=Catherine |last6=Cosgrove |first6=James |last7=Dove |first7=Alistair D.M. |last8=Gaskins |first8=Leo |last9=Helm |first9=Rebecca R. |last10=Hochberg |first10=Frederick G. |last11=Lee |first11=Frank B. |last12=Marshall |first12=Andrea |last13=McMurray |first13=Steven E. |last14=Schanche |first14=Caroline |last15=Stone |first15=Shane N. |last16=Thaler |first16=Andrew D. |display-authors=3 |title=Sizing ocean giants: patterns of intraspecific size variation in marine megafauna. |journal=PeerJ |date=2015-01-13 |volume=3 |issue=e715 |pages=e715 |doi=10.7717/peerj.715 |doi-access=free |pmid=25649000 |pmc=4304853}}</ref> | ||
|last4=Branch|first4=Trevor A. | |||
|last5=Chen|first5=Catherine | |||
|last6=Cosgrove|first6=James | |||
|last7=Dove|first7=Alistair D.M. | |||
|last8=Gaskins|first8=Leo | |||
|last9=Helm|first9=Rebecca R. | |||
|last10=Hochberg|first10=Frederick G. | |||
|last11=Lee|first11=Frank B. | |||
|last12=Marshall|first12=Andrea | |||
|last13=McMurray|first13=Steven E. | |||
|last14=Schanche|first14=Caroline | |||
|last15=Stone|first15=Shane N. | |||
|last16=Thaler|first16=Andrew D. | |||
|title=Sizing ocean giants: patterns of intraspecific size variation in marine megafauna. |journal=PeerJ |date=2015-01-13 |volume=3 |issue=e715 |pages=e715 |doi=10.7717/peerj.715 |doi-access=free |pmid=25649000 |pmc=4304853}}</ref> | |||
The ] ''oarfish'' is thought to be in reference either to their highly compressed and elongated bodies, or to the now discredited belief that the fish "row" themselves through the water with their pelvic fins.<ref name=EoF/><ref>{{Cite web |date=2013-01-27 |title=Los Angeles Times - California, national and world news - latimes.com |url=http://www.latimes.com/ |archive-url=https://archive.today/20130127180810/http://www.latimes.com/ |url-status=dead |archive-date=2013-01-27 |access-date=2022-04-06 |website=archive.ph}}</ref> The family name Regalecidae is derived from the ] ''regalis'', meaning "royal". Their rarity and large size, along with occasional beachings of oarfish after storms, and their habit of lingering at the surface when sick or dying, make oarfish a probable source of many ] tales. | The ] ''oarfish'' is thought to be in reference either to their highly compressed and elongated bodies, or to the now discredited belief that the fish "row" themselves through the water with their pelvic fins.<ref name=EoF/><ref>{{Cite web |date=2013-01-27 |title=Los Angeles Times - California, national and world news - latimes.com |url=http://www.latimes.com/ |archive-url=https://archive.today/20130127180810/http://www.latimes.com/ |url-status=dead |archive-date=2013-01-27 |access-date=2022-04-06 |website=archive.ph}}</ref> The family name Regalecidae is derived from the ] ''regalis'', meaning "royal". Their rarity and large size, along with occasional beachings of oarfish after storms, and their habit of lingering at the surface when sick or dying, make oarfish a probable source of many ] tales. | ||
Although the larger species are considered ] and are fished commercially to a minor extent, oarfish are rarely caught alive; their flesh is not well regarded for eating due to its ] consistency.<ref>{{Cite web|url=https://www.iflscience.com/plants-and-animals/rare-oarfish-washed-ashore-new-zealand/|title=Rare 'Sea Monster' Washes Ashore In New Zealand|website=IFLScience.com|date=28 April 2015 |access-date=22 November 2021}}</ref> | Although the larger species are considered ] and are fished commercially to a minor extent, oarfish are rarely caught alive; their flesh is not well regarded for eating due to its ] consistency.<ref>{{Cite web |url=https://www.iflscience.com/plants-and-animals/rare-oarfish-washed-ashore-new-zealand/ |title=Rare 'Sea Monster' Washes Ashore In New Zealand |website=IFLScience.com |date=28 April 2015 |access-date=22 November 2021}}</ref> | ||
⚫ | == Anatomy and morphology == | ||
⚫ | ==Anatomy and morphology== | ||
The dorsal fin originates from above the (relatively large) eyes and runs the entire length of the fish. Of the approximately 400 dorsal fin rays, the first 10 to 13 are elongated to varying degrees, forming a trailing crest embellished with reddish spots and flaps of skin at the ray tips. The pelvic fins are similarly elongated and adorned, reduced to one to five rays each. The ]s are greatly reduced and situated low on the body. The ] is completely absent and the ] may be reduced or absent, as well, with the body tapering to a fine point. All fins lack true ]. At least one account, from researchers in New Zealand, described the oarfish as giving off "electric shocks" when touched.<ref name=EoF>{{cite book |editor=Paxton, J.R. |editor2=Eschmeyer, W.N.|author= Olney, John E.|year=1998|title=Encyclopedia of Fishes|publisher= Academic Press|location=San Diego|pages= 157–159|isbn= 978-0-12-547665-2}}</ref> | The dorsal fin originates from above the (relatively large) eyes and runs the entire length of the fish. Of the approximately 400 dorsal fin rays, the first 10 to 13 are elongated to varying degrees, forming a trailing crest embellished with reddish spots and flaps of skin at the ray tips. The pelvic fins are similarly elongated and adorned, reduced to one to five rays each. The ]s are greatly reduced and situated low on the body. The ] is completely absent and the ] may be reduced or absent, as well, with the body tapering to a fine point. All fins lack true ]. At least one account, from researchers in New Zealand, described the oarfish as giving off "electric shocks" when touched.<ref name=EoF>{{cite book |editor=Paxton, J.R. |editor2=Eschmeyer, W.N.|author= Olney, John E.|year=1998|title=Encyclopedia of Fishes|publisher= Academic Press|location=San Diego|pages= 157–159|isbn= 978-0-12-547665-2}}</ref> | ||
Line 39: | Line 26: | ||
Oarfish coloration is also variable; the flanks are commonly covered with irregular bluish to blackish streaks, black dots, and squiggles. These markings quickly fade following death. It is probable that these markings are bioluminescent in the deep sea. | Oarfish coloration is also variable; the flanks are commonly covered with irregular bluish to blackish streaks, black dots, and squiggles. These markings quickly fade following death. It is probable that these markings are bioluminescent in the deep sea. | ||
⚫ | ] beach in 1860: The fish was {{convert|16|ft|m|abbr=on}} long and was originally described as a ].]] | ||
⚫ | The giant oarfish is by far the largest member of the family at a published total length of {{convert|8|m|ft|abbr=on}}—with unconfirmed reports of {{convert|11|m|ft|abbr=on}} and {{convert|17|m|ft|abbr=on}}<ref name=McClain |
||
⚫ | ] beach in 1860: The fish was {{convert|16|ft|m|abbr=on}} long and was originally described as a ].]] | ||
⚫ | In some |
||
⚫ | The giant oarfish is by far the largest member of the family at a published total length of {{convert|8|m|ft|abbr=on}}—with unconfirmed reports of {{convert|11|m|ft|abbr=on}} and {{convert|17|m|ft|abbr=on}}<ref name="McClain Balk 2015"/><ref>{{Cite web|url=http://news.bbc.co.uk/earth/hi/earth_news/newsid_8501000/8501251.stm|title=Giant deep sea fish first filmed|date=8 February 2010|access-date=22 November 2021|website=News.bbc.co.uk}}</ref><ref>{{Cite web|url=https://www.nytimes.com/2013/11/03/science/earth/oarfish-offer-chance-to-study-an-elusive-animal-long-thought-a-monster.html|title=Oarfish Offer Chance to Study an Elusive Animal Long Thought a Monster|first=Douglas|last=Quenqua|date=2 November 2013|access-date=22 November 2021|website=]}}</ref> specimens—and {{convert|270|kg|lb|abbr=on}} in weight.<ref>{{cite book |last=Burton |first=Maurice |title=International Wildlife Encyclopedia |year=2002 |publisher=Marshall Cavendish |location=New York |isbn=978-0-7614-7279-7 |pages=1767–1768 |url=https://books.google.com/books?id=E3jeDU7KuhEC&pg=PA1768 |edition=3rd |author-link=Maurice Burton |author2=Burton, Robert}}</ref> The streamer fish is known to reach 3 m (10 ft) in length,<ref>{{cite web|url=http://www.fishbase.org/summary/16851|title=''Agrostichthys parkeri'' (Benham, 1904) Streamer fish |publisher=FishBase Consortium|access-date=2013-11-03}}</ref> while the largest recorded specimen of '']'' measured 5.4 m (18 ft).<ref name=russelii/> | ||
⚫ | In some oarfish specimens, end of tails appear stump-like; this is likely the consequence of ], a ].<ref>{{cite web|title=Regalecus russelii, Oarfifsh|url=http://www.fishbase.us/summary/SpeciesSummary.php?genusname=Regalecus&speciesname=russelii|access-date=2020-10-30|website=www.fishbase.us}}</ref> | ||
] bone growth has been documented in several specimen of oarfish that have washed up on the coast of California. Hyperossified pterygiophores have been discovered to run along the entire dorsal length of oarfish. The function of this is to both provide structural support to the spine of oarfish during undulations (tail movement used for locomotion) and to remodel spines to prevent stress fractures that could occur from too much movement. It has also been hypothesized that this hyper ossification acts as a lever for the oarfish dorsal fins, which contributes to the organism's ].<ref>{{Cite journal |last1=Paig-Tran |first1=E. W. Misty |last2=Barrios |first2=Andrew S. |last3=Ferry |first3=Lara A. |date=2016-06-14 |title=Presence of repeating hyperostotic bones in dorsal pterygiophores of the oarfish, ''Regalecus russellii'' |url=http://dx.doi.org/10.1111/joa.12503 |journal=Journal of Anatomy |volume=229 |issue=4 |pages=560–567 |doi=10.1111/joa.12503 |pmid=27296623 |pmc=5013060 |issn=0021-8782}}</ref> Unlike many deep-sea fish, oarfish have no ]s for maintaining depth in the water column. It is likely that this lack of a swim bladder forces more frequent tail undulations as the main mode of depth regulation in oarfish.<ref>{{Cite journal |last1=Paig-Tran |first1=E. W. Misty |last2=Barrios |first2=Andrew S. |last3=Ferry |first3=Lara A. |date=October 2016 |title=Presence of repeating hyperostotic bones in dorsal pterygiophores of the oarfish, Regalecus russellii |journal=Journal of Anatomy |language=en |volume=229 |issue=4 |pages=560–567 |doi=10.1111/joa.12503 |pmc=5013060 |pmid=27296623}}</ref> | ] bone growth has been documented in several specimen of oarfish that have washed up on the coast of California. Hyperossified pterygiophores have been discovered to run along the entire dorsal length of oarfish. The function of this is to both provide structural support to the spine of oarfish during undulations (tail movement used for locomotion) and to remodel spines to prevent stress fractures that could occur from too much movement. It has also been hypothesized that this hyper ossification acts as a lever for the oarfish dorsal fins, which contributes to the organism's ].<ref>{{Cite journal |last1=Paig-Tran |first1=E. W. Misty |last2=Barrios |first2=Andrew S. |last3=Ferry |first3=Lara A. |date=2016-06-14 |title=Presence of repeating hyperostotic bones in dorsal pterygiophores of the oarfish, ''Regalecus russellii'' |url=http://dx.doi.org/10.1111/joa.12503 |journal=Journal of Anatomy |volume=229 |issue=4 |pages=560–567 |doi=10.1111/joa.12503 |pmid=27296623 |pmc=5013060 |issn=0021-8782}}</ref> Unlike many deep-sea fish, oarfish have no ]s for maintaining depth in the water column. It is likely that this lack of a swim bladder forces more frequent tail undulations as the main mode of depth regulation in oarfish.<ref>{{Cite journal |last1=Paig-Tran |first1=E. W. Misty |last2=Barrios |first2=Andrew S. |last3=Ferry |first3=Lara A. |date=October 2016 |title=Presence of repeating hyperostotic bones in dorsal pterygiophores of the oarfish, Regalecus russellii |journal=Journal of Anatomy |language=en |volume=229 |issue=4 |pages=560–567 |doi=10.1111/joa.12503 |pmc=5013060 |pmid=27296623}}</ref> | ||
== Phylogeny == | == Phylogeny == | ||
Through the analysis of the mitochondrial genome of ''Regalecus glesne'', the phylogenetic placement of the Giant Oarfish was further verified. Oarfish are considered Lampriformes (a phylogenetic order), and they have been placed here due to their morphology. However, analysis of the mitochondrial genome of an ''R. glesne'' specimen clusters the species with ''Trachipterus trachypterus'' and ''Zu cristatus,'' two other Lampriformes. These three species were clustered together due to similarity in genetic sequence and morphology, which further supports the phylogeny and evolution of Lampriformes.<ref>{{Cite journal |last1=Yu |first1=Yue |last2=Peng |first2=Xin |last3=Yang |first3=Can-Min |last4=Chen |first4=Xiao |last5=Chen |first5=Shaobo |last6=Qin |first6=Song |date=2019-07-03 |title=Complete mitochondrial genome and the phylogenetic position of the giant oarfish (Regalecus glesne) |url=https://doi.org/10.1080/23802359.2019.1623124 |journal=Mitochondrial DNA Part B |volume=4 |issue=2 |pages=2125–2126 |doi=10.1080/23802359.2019.1623124 |pmc=7687632 |pmid=33365437}}</ref> | Through the analysis of the mitochondrial genome of ''Regalecus glesne'', the phylogenetic placement of the Giant Oarfish was further verified. Oarfish are considered Lampriformes (a phylogenetic order), and they have been placed here due to their morphology. However, analysis of the mitochondrial genome of an ''R. glesne'' specimen clusters the species with ''Trachipterus trachypterus'' and ''Zu cristatus,'' two other Lampriformes. These three species were clustered together due to similarity in genetic sequence and morphology, which further supports the phylogeny and evolution of Lampriformes.<ref>{{Cite journal |last1=Yu |first1=Yue |last2=Peng |first2=Xin |last3=Yang |first3=Can-Min |last4=Chen |first4=Xiao |last5=Chen |first5=Shaobo |last6=Qin |first6=Song |date=2019-07-03 |title=Complete mitochondrial genome and the phylogenetic position of the giant oarfish (Regalecus glesne) |url=https://doi.org/10.1080/23802359.2019.1623124 |journal=Mitochondrial DNA Part B |volume=4 |issue=2 |pages=2125–2126 |doi=10.1080/23802359.2019.1623124 |pmc=7687632 |pmid=33365437}}</ref> | ||
== |
== Environmen == | ||
The oarfish |
The oarfish inhabits the ] to ] ocean layers, ranging from 250 meters (660 ft) to 1,000 meters (3,300 ft) and is rarely seen on the surface. A few have been found still barely alive, but usually if one floats to the surface, it dies due to depressurisation. At the depths the oarfish live, there are few or no currents. As a result, they build little muscle mass and they cannot survive in shallower turbulent water.<ref name=":0">{{Cite news |title=First-ever oarfish caught on rod and reel |url=http://www.sandiegoreader.com/news/2015/jun/30/fishing-report/ |work=San Diego Reader News |access-date=2015-06-30 |first1=Daniel |last1=Powell}}</ref> | ||
⚫ | == Distribution == | ||
⚫ | The members of the family have a worldwide range. They have wide, tropical, subtropical, and warm temperate distributions.<ref>{{Cite book|last=Roberts|first=T., R.|title=Systematics, biology, and distribution of the species of the oceanic oarfish genus Regalecus (Teleostei, Lampridiformes, Regalecidae).|publisher=French National Museum of Natural History|year=2012|isbn=978-1247669526|location=Paris|pages=202, 1–266}}</ref> The oarfish typically reside in the ] area of the sea.<ref name=":22">{{Cite journal |last1=Oka |first1=Shin-ichiro |last2=Nakamura |first2=Masaru |last3=Nozu |first3=Ryo |last4=Miyamoto |first4=Kei |date=2020-04-08 |title=First observation of larval oarfish, Regalecus russelii, from fertilized eggs through hatching, following artificial insemination in captivity |journal=Zoological Letters |volume=6 |issue=1 |page=4 |doi=10.1186/s40851-020-00156-6 |pmid=32292594 |pmc=7140580 |issn=2056-306X |doi-access=free }}</ref> However, human encounters with live oarfish are rare, and distribution information is collated from records of oarfish caught or washed ashore.<ref name=EoF/> | ||
⚫ | ==Distribution== | ||
⚫ | The members of the family |
||
==Ecology and life history== | == Ecology and life history == | ||
⚫ | Oarfish were first described in 1772.<ref>{{cite web|title=National Geographic|url=https://news.nationalgeographic.com/news/2013/10/131022-giant-oarfish-facts-sea-serpents/|archive-url=https://web.archive.org/web/20131022133403/http://news.nationalgeographic.com/news/2013/10/131022-giant-oarfish-facts-sea-serpents/|url-status=dead|archive-date=October 22, 2013|access-date=30 April 2018|date=2013-10-22}}</ref> |
||
An oarfish measuring {{convert|3.3|m|abbr=on}} and {{convert|63.5|kg|abbr=on}} was reported to have been caught in February 2003 using a ] ]ed with ] at ], ].<ref>{{cite news | Rare encounters with divers and accidental catches have supplied what little is known of oarfish ] (behavior) and ]. Oarfish are solitary animals and may frequent depths up to {{convert|1000|m|ft|abbr=on}}. An oarfish measuring {{convert|3.3|m|abbr=on}} and {{convert|63.5|kg|abbr=on}} was reported to have been caught in February 2003 using a ] ]ed with ] at ], ].<ref>{{cite news |url=http://www.timesonline.co.uk/tol/news/uk/article885150.ece | ||
|archive-url=https://web.archive.org/web/20090507224445/http://www.timesonline.co.uk/tol/news/uk/article885150.ece |url-status=dead |archive-date= May 7, 2009 |title=Woman angler lands legendary sea monster |access-date=25 February 2010 |last=Jenkins |first=Russell |date= 21 February 2003 |work=The Times |quote=The novice angler fishing off the rocks for mackerel thought that she must have hooked a big one. – Unfortunately the oarfish has been cut up into steaks for the pot.}}</ref> | |||
|url= http://www.timesonline.co.uk/tol/news/uk/article885150.ece | |||
|archive-url= https://web.archive.org/web/20090507224445/http://www.timesonline.co.uk/tol/news/uk/article885150.ece | |||
|url-status= dead | |||
|archive-date= May 7, 2009 | |||
|title= Woman angler lands legendary sea monster | |||
|access-date= 25 February 2010 | |||
|last= Jenkins | |||
|first= Russell | |||
|date= 21 February 2003 | |||
|publisher= The Times, London | |||
|quote= The novice angler fishing off the rocks for mackerel thought that she must have hooked a big one. – Unfortunately the oarfish has been cut up into steaks for the pot. | |||
}}</ref> | |||
===Behaviour=== | === Behaviour === | ||
In 2001, an oarfish was filmed alive in the wild. The {{convert|1.5|m|ft|abbr=off|adj=on}} fish was spotted by a group of U.S. Navy personnel during the inspection of a buoy in the ]. The oarfish was observed to propel itself by an ] mode of swimming; that is, rhythmically undulating the dorsal fin while keeping the body itself straight. Perhaps indicating a feeding posture, oarfish have been observed swimming in a vertical orientation. In this posture, the downstreaming light would silhouette the oarfishes' prey, making them easier to spot.<ref>{{cite web |url=http://www.nmfs.noaa.gov/speciesid/fish_page/fish82a.html |title=Sustainability species Identification; Oarfish (''Regalecus glesne Ascanius'') |publisher=NOAA Fisheries service |access-date=28 September 2012}}</ref> | In 2001, an oarfish was filmed alive in the wild. The {{convert|1.5|m|ft|abbr=off|adj=on}} fish was spotted by a group of U.S. Navy personnel during the inspection of a buoy in the ]. The oarfish was observed to propel itself by an ] mode of swimming; that is, rhythmically undulating the dorsal fin while keeping the body itself straight. Perhaps indicating a feeding posture, oarfish have been observed swimming in a vertical orientation. In this posture, the downstreaming light would silhouette the oarfishes' prey, making them easier to spot.<ref>{{cite web |url=http://www.nmfs.noaa.gov/speciesid/fish_page/fish82a.html |title=Sustainability species Identification; Oarfish (''Regalecus glesne Ascanius'') |publisher=NOAA Fisheries service |access-date=28 September 2012}}</ref> | ||
Line 89: | Line 69: | ||
]'']] | ]'']] | ||
⚫ | === Feeding ecology === | ||
⚫ | The slender oarfish, (]宮の使い "Ryūgū-No-Tsukai"), known in ]ese ] as the ''Messenger from the ]'', is said to portend ]s.<ref name="Yamamoto 2010">{{cite web |last=Yamamoto |first=Daiki |title=Sea serpents' arrival puzzling, or portentous? |date=4 March 2010 |publisher=Kyodo News |url=http://search.japantimes.co.jp/cgi-bin/nn20100306f3.html |access-date=6 March 2010 |quote=Toyama — A rarely seen deep-sea fish regarded as something of a mystery has been giving marine experts food for thought recently after showing up in large numbers along the Sea of Japan coast.}}</ref> After the ] which killed over 20,000 people, many in Japan pointed to the oarfish from 2009–2010 to build up this myth.<ref name=":1">{{cite news |last1=Stambaugh |first1=Alex |last2=Ogura |first2=Junko |url=https://www.cnn.com/2019/02/19/asia/okinawa-living-oarfish-intl-trnd/index.html |title=Pair of rare oarfish discovered alive in Japan |website=CNN |access-date=2019-02-24}}</ref> | ||
⚫ | The oarfish is often nicknamed the "doomsday fish" because, historically, appearances of the fish were linked with subsequent natural disasters, namely earthquakes or tsunamis.<ref>DiMella, Ashley, "", '']'', 17 August 2024</ref><ref name="Anguiano 2024">{{cite news |last=Anguiano |first=Dani |title=Second oarfish, mythical harbinger of doom, found washed up in California |url=https://www.theguardian.com/us-news/2024/nov/15/oarfish-california |work=] |date=15 November 2024}}</ref> | ||
⚫ | ===Feeding ecology=== | ||
Oarfish feed primarily on ], selectively straining tiny ]s, ], and other ]s from the water. Small fish, ], and ] are also taken.<ref>{{Cite journal|last=Roberts|first=Tyson R.|date=November 2017|title=Anatomy and physiology of the digestive system of the oarfish Regalecus russellii (Lampridiformes: Regalecidae)|url=http://link.springer.com/10.1007/s10228-017-0574-7|journal=Ichthyological Research|language=en|volume=64|issue=4|pages=475–477|doi=10.1007/s10228-017-0574-7|bibcode=2017IchtR..64..475R |s2cid=207064546|issn=1341-8998}}</ref> Large open-ocean ]s are all likely predators of oarfish. It has been observed that oarfish eat by suctioning prey such as plankton blooms while in the water.<ref>{{Cite journal |journal=Integrative and Comparative Biology | year=2015 |doi=10.1093/icb/icv028| pmid=25980566 | last1=Ferry | first1=L. A. | last2=Paig-Tran | first2=E. M. | last3=Gibb | first3=A. C. |title=Suction, Ram, and Biting: Deviations and Limitations to the Capture of Aquatic Prey | volume=55 | issue=1 | pages=97–109 | doi-access=free }}</ref> | Oarfish feed primarily on ], selectively straining tiny ]s, ], and other ]s from the water. Small fish, ], and ] are also taken.<ref>{{Cite journal|last=Roberts|first=Tyson R.|date=November 2017|title=Anatomy and physiology of the digestive system of the oarfish Regalecus russellii (Lampridiformes: Regalecidae)|url=http://link.springer.com/10.1007/s10228-017-0574-7|journal=Ichthyological Research|language=en|volume=64|issue=4|pages=475–477|doi=10.1007/s10228-017-0574-7|bibcode=2017IchtR..64..475R |s2cid=207064546|issn=1341-8998}}</ref> Large open-ocean ]s are all likely predators of oarfish. It has been observed that oarfish eat by suctioning prey such as plankton blooms while in the water.<ref>{{Cite journal |journal=Integrative and Comparative Biology | year=2015 |doi=10.1093/icb/icv028| pmid=25980566 | last1=Ferry | first1=L. A. | last2=Paig-Tran | first2=E. M. | last3=Gibb | first3=A. C. |title=Suction, Ram, and Biting: Deviations and Limitations to the Capture of Aquatic Prey | volume=55 | issue=1 | pages=97–109 | doi-access=free }}</ref> | ||
===Life history=== | === Life history === | ||
The ] ''Regalecus glesne'' is recorded as ] off ] from July to December; all species are presumed to not guard their eggs, and release brightly coloured, buoyant ], up to {{convert|6|mm|in|spell=in}} across, which are incorporated into the zooplankton.<ref name=EoF/> Based on their reproductive morphology, oarfish are thought to batch spawn. Within each breeding season that may last one or two months, individuals spawn once or multiple times in discrete spawning events before their gonads enter a long, regressive stage of reproductive development.<ref name=":2">{{Cite journal|last1=Forsgren|first1=Kristy L.|last2=Jamal|first2=Homam|last3=Barrios|first3=Andrew|last4=Paig-Tran|first4=E. W. Misty|date=2017|title=Reproductive Morphology of Oarfish (Regalecus russellii)|journal=The Anatomical Record |
The ] ''Regalecus glesne'' is recorded as ] off ] from July to December; all species are presumed to not guard their eggs, and release brightly coloured, buoyant ], up to {{convert|6|mm|in|spell=in}} across, which are incorporated into the zooplankton.<ref name=EoF/> Based on their reproductive morphology, oarfish are thought to batch spawn. Within each breeding season that may last one or two months, individuals spawn once or multiple times in discrete spawning events before their gonads enter a long, regressive stage of reproductive development.<ref name=":2">{{Cite journal |last1=Forsgren |first1=Kristy L. |last2=Jamal |first2=Homam |last3=Barrios|first3=Andrew |last4=Paig-Tran |first4=E. W. Misty |date=2017 |title=Reproductive Morphology of Oarfish (Regalecus russellii) |journal=The Anatomical Record |volume=300 |issue=9 |pages=1695–1704 |doi=10.1002/ar.23605 |pmid=28390152 |doi-access=free}}</ref> | ||
The eggs hatch after about three weeks into highly active ]e that feed on other zooplankton. The larvae have little resemblance to the adults, with long dorsal and pelvic fins and extensible mouths. |
The eggs hatch after about three weeks into highly active ]e that feed on other zooplankton. The larvae have little resemblance to the adults, with long dorsal and pelvic fins and extensible mouths. Larvae and juveniles have been observed drifting just below the surface. In contrast, adult oarfish are rarely seen at the surface when not sick or injured. It is probable that the fishes go deeper as they mature.<ref name="EoF"/> | ||
From January to February 2019, researchers tested and recorded the first successful instance of ] and hatching of the oarfish ('']'') using gonads from two washed-up specimens. Compared to adults, the body structure of newly hatched oarfish larvae look more compressed. The larvae often swam using mainly their pectoral fins, facing downward, with their mouths constantly open. The larvae were invertebrates but had bones in their head area, as well as fins. They died of starvation four days after they hatched.<ref>{{Cite journal|last1=Oka|first1=Shin-ichiro|last2=Nakamura|first2=Masaru|last3=Nozu|first3=Ryo|last4=Miyamoto|first4=Kei|date=2020|title=First observation of larval oarfish, Regalecus russelii, from fertilized eggs through hatching, following artificial insemination in captivity |
From January to February 2019, researchers tested and recorded the first successful instance of ] and hatching of the oarfish ('']'') using gonads from two washed-up specimens. Compared to adults, the body structure of newly hatched oarfish larvae look more compressed. The larvae often swam using mainly their pectoral fins, facing downward, with their mouths constantly open. The larvae were invertebrates but had bones in their head area, as well as fins. They died of starvation four days after they hatched.<ref>{{Cite journal |last1=Oka |first1=Shin-ichiro |last2=Nakamura |first2=Masaru |last3=Nozu |first3=Ryo |last4=Miyamoto |first4=Kei |date=2020 |title=First observation of larval oarfish, Regalecus russelii, from fertilized eggs through hatching, following artificial insemination in captivity |journal=Zoological Letters |volume=6|issue=1|page=4 |doi=10.1186/s40851-020-00156-6 |pmc=7140580 |pmid=32292594 |doi-access=free }}</ref> | ||
In addition to the otolith, recent studies have revealed more information about the reproductive organs of the oarfish. Using photographs, histological cross-sections, and measurements of four samples of ''R. russelii'', researchers were able to qualitatively describe the sexual organs of the species. These studies have shown that female oarfish have bifurcated ovaries containing a cavity through which the eggs pass before leaving the body of the oarfish.<ref name=":12">{{Cite journal |last1=Forsgren |first1=Kristy L. |last2=Jamal |first2=Homam |last3=Barrios |first3=Andrew |last4=Paig-Tran |first4=E.W. Misty |date=2017-04-22 |title=Reproductive Morphology of Oarfish (Regalecus russellii) |journal=The Anatomical Record |volume=300 |issue=9 |pages=1695–1704 |doi=10.1002/ar.23605 |pmid=28390152 |s2cid=205413717 |
In addition to the otolith, recent studies have revealed more information about the reproductive organs of the oarfish. Using photographs, histological cross-sections, and measurements of four samples of ''R. russelii'', researchers were able to qualitatively describe the sexual organs of the species. These studies have shown that female oarfish have bifurcated ovaries containing a cavity through which the eggs pass before leaving the body of the oarfish.<ref name=":12">{{Cite journal |last1=Forsgren |first1=Kristy L. |last2=Jamal |first2=Homam |last3=Barrios |first3=Andrew |last4=Paig-Tran |first4=E.W. Misty |date=2017-04-22 |title=Reproductive Morphology of Oarfish (Regalecus russellii) |journal=The Anatomical Record |volume=300 |issue=9 |pages=1695–1704 |doi=10.1002/ar.23605 |pmid=28390152 |s2cid=205413717 |doi-access=free }}</ref> ] on male oarfish are located in a similar place as the ] of female oarfish, near the digestive tract called the ].<ref name=":12" /> The oarfish have two separate, disconnected testes and the left testes observed were longer than the right testes. An analysis of these findings led researchers to conclude that ''R. russelii'' are likely batch-spawning fish that produce a large number of offspring every breeding season.<ref name=":12" /> | ||
=== Reproduction === | === Reproduction === | ||
Little is known of the breeding habits of these fish. A single female can produce hundreds of thousands, to millions of eggs. It lays its eggs in the water column and they float freely in the water.<ref>{{Cite journal |last1=Forsgren |first1=Kristy L. |last2=Jamal |first2=Homam |last3=Barrios |first3=Andrew |last4=Paig-Tran |first4=E.W. Misty |date=2017-04-22 |title=Reproductive Morphology of Oarfish (Regalecus russellii) |journal=The Anatomical Record |volume=300 |issue=9 |pages=1695–1704 |doi=10.1002/ar.23605 |pmid=28390152 |s2cid=205413717 |issn=1932-8486 |doi-access=free }}</ref> | |||
=== Predation === | === Predation === | ||
A |
A 2015 study suggested that the ] and the ] could both be predators of the oarfish, based on patterns of ] transmission.<ref name=":3">{{Cite journal |last1=Kuris |first1=Armand M. |last2=Jaramillo |first2=Alejandra G. |last3=McLaughlin |first3=John P. |last4=Weinstein |first4=Sara B. |last5=Garcia-Vedrenne |first5=Ana E. |last6=Poinar |first6=George O. |last7=Pickering |first7=Maria |last8=Steinauer |first8=Michelle L. |last9=Espinoza |first9=Magaly |last10=Ashford |first10=Jacob E. |last11=Dunn |first11=Gabriela L. P. |date=February 2015 |title=Monsters of the Sea Serpent: Parasites of an Oarfish,Regalecus russellii |url=http://dx.doi.org/10.1645/14-581.1 |journal=Journal of Parasitology |volume=101 |issue=1 |pages=41–44 |doi=10.1645/14-581.1 |pmid=25220829 |s2cid=32384405}}</ref> These conclusions were made based on analysis of the visceral tissue of an oarfish recovered by the Catalina Island Marine Institute, ].<ref name=":3"/> | ||
== Species == | == Species == | ||
Only three extant species in two extant genera are described: | |||
⚫ | Oarfish were first described in 1772.<ref>{{cite web |title=National Geographic |url=https://news.nationalgeographic.com/news/2013/10/131022-giant-oarfish-facts-sea-serpents/ |archive-url=https://web.archive.org/web/20131022133403/http://news.nationalgeographic.com/news/2013/10/131022-giant-oarfish-facts-sea-serpents/ |url-status=dead |archive-date=October 22, 2013 |access-date=30 April 2018|date=2013-10-22}}</ref> Three extant species in two extant genera are described: | ||
* Giant Oarfish ('']'') | * Giant Oarfish ('']'') | ||
* Russell's Oarfish ('']'') | * Russell's Oarfish ('']'') | ||
* Streamerfish ('']'') | * Streamerfish ('']'') | ||
== In folklore == | |||
⚫ | The slender oarfish, (]宮の使い "Ryūgū-No-Tsukai"), known in ]ese ] as the ''Messenger from the ]'', is said to portend ]s.<ref name="Yamamoto 2010">{{cite web |last=Yamamoto |first=Daiki |title=Sea serpents' arrival puzzling, or portentous? |date=4 March 2010 |publisher=Kyodo News |url=http://search.japantimes.co.jp/cgi-bin/nn20100306f3.html |access-date=6 March 2010 |quote=Toyama — A rarely seen deep-sea fish regarded as something of a mystery has been giving marine experts food for thought recently after showing up in large numbers along the Sea of Japan coast.}}</ref> After the ] which killed over 20,000 people, many in Japan pointed to the oarfish from 2009–2010 to build up this myth.<ref name=":1">{{cite news |last1=Stambaugh |first1=Alex |last2=Ogura |first2=Junko |url=https://www.cnn.com/2019/02/19/asia/okinawa-living-oarfish-intl-trnd/index.html |title=Pair of rare oarfish discovered alive in Japan |website=CNN |access-date=2019-02-24}}</ref> | ||
⚫ | The oarfish is often nicknamed the "doomsday fish" because, historically, appearances of the fish were linked with subsequent natural disasters, namely earthquakes or tsunamis.<ref>DiMella, Ashley, "", '']'', 17 August 2024</ref><ref name="Anguiano 2024">{{cite news |last=Anguiano |first=Dani |title=Second oarfish, mythical harbinger of doom, found washed up in California |url=https://www.theguardian.com/us-news/2024/nov/15/oarfish-california |work=] |date=15 November 2024}}</ref> | ||
==See also== | ==See also== | ||
* ] | * ] | ||
* ] | * ] | ||
==Bibliography== | ==Bibliography== | ||
*''Fishes: An Introduction to ichthyology''. Peter B. Moyle and Joseph J. Cech, Jr; p. 338. Printed in 2004. Prentice-Hall, Inc.; Upper Saddle River, New Jersey. {{ISBN|0-13-100847-1}} | *''Fishes: An Introduction to ichthyology''. Peter B. Moyle and Joseph J. Cech, Jr; p. 338. Printed in 2004. Prentice-Hall, Inc.; Upper Saddle River, New Jersey. {{ISBN|0-13-100847-1}} | ||
==References== | ==References== | ||
{{Reflist|2}} | |||
{{reflist|30em}} | |||
== External links == | == External links == | ||
{{Commons category|Regalecidae}} | {{Commons category|Regalecidae}} | ||
{{Wikispecies|Regalecus}} | {{Wikispecies|Regalecus}} | ||
Line 137: | Line 128: | ||
* | * | ||
* | * | ||
{{Taxonbar|from=Q1078201}} | {{Taxonbar|from=Q1078201}} | ||
Revision as of 09:38, 16 November 2024
Pelagic lampriform fish belonging to Regalecidae Not to be confused with Paddlefish.
Oarfish | |
---|---|
Giant oarfish | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Class: | Actinopterygii |
Order: | Lampriformes |
Family: | Regalecidae |
Genera | |
Oarfish are large, greatly elongated, pelagic lampriform fish belonging to the small family Regalecidae. Found in areas spanning from temperate ocean zones to tropical ones, yet rarely seen, the oarfish family contains three species in two genera. One of these, the giant oarfish (Regalecus glesne), is the longest bony fish alive, growing up to about 8 m (26 ft) in length.
The common name oarfish is thought to be in reference either to their highly compressed and elongated bodies, or to the now discredited belief that the fish "row" themselves through the water with their pelvic fins. The family name Regalecidae is derived from the Latin regalis, meaning "royal". Their rarity and large size, along with occasional beachings of oarfish after storms, and their habit of lingering at the surface when sick or dying, make oarfish a probable source of many sea serpent tales.
Although the larger species are considered game fish and are fished commercially to a minor extent, oarfish are rarely caught alive; their flesh is not well regarded for eating due to its gelatinous consistency.
Anatomy and morphology
The dorsal fin originates from above the (relatively large) eyes and runs the entire length of the fish. Of the approximately 400 dorsal fin rays, the first 10 to 13 are elongated to varying degrees, forming a trailing crest embellished with reddish spots and flaps of skin at the ray tips. The pelvic fins are similarly elongated and adorned, reduced to one to five rays each. The pectoral fins are greatly reduced and situated low on the body. The anal fin is completely absent and the caudal fin may be reduced or absent, as well, with the body tapering to a fine point. All fins lack true spines. At least one account, from researchers in New Zealand, described the oarfish as giving off "electric shocks" when touched.
Like other members of its order, the oarfish has a small yet highly protrusible oblique mouth with no visible teeth. The body is scaleless and the skin is covered with easily abraded, silvery ganoine. In the streamer fish (Agrostichthys parkeri), the skin is clad with hard tubercles. All species lack gas bladders and the number of gill rakers is variable.
Oarfish coloration is also variable; the flanks are commonly covered with irregular bluish to blackish streaks, black dots, and squiggles. These markings quickly fade following death. It is probable that these markings are bioluminescent in the deep sea.
The giant oarfish is by far the largest member of the family at a published total length of 8 m (26 ft)—with unconfirmed reports of 11 m (36 ft) and 17 m (56 ft) specimens—and 270 kg (600 lb) in weight. The streamer fish is known to reach 3 m (10 ft) in length, while the largest recorded specimen of Regalecus russelii measured 5.4 m (18 ft).
In some oarfish specimens, end of tails appear stump-like; this is likely the consequence of self-amputation, a defense mechanism against predators.
Hyperostotic bone growth has been documented in several specimen of oarfish that have washed up on the coast of California. Hyperossified pterygiophores have been discovered to run along the entire dorsal length of oarfish. The function of this is to both provide structural support to the spine of oarfish during undulations (tail movement used for locomotion) and to remodel spines to prevent stress fractures that could occur from too much movement. It has also been hypothesized that this hyper ossification acts as a lever for the oarfish dorsal fins, which contributes to the organism's buoyancy. Unlike many deep-sea fish, oarfish have no swim bladders for maintaining depth in the water column. It is likely that this lack of a swim bladder forces more frequent tail undulations as the main mode of depth regulation in oarfish.
Phylogeny
Through the analysis of the mitochondrial genome of Regalecus glesne, the phylogenetic placement of the Giant Oarfish was further verified. Oarfish are considered Lampriformes (a phylogenetic order), and they have been placed here due to their morphology. However, analysis of the mitochondrial genome of an R. glesne specimen clusters the species with Trachipterus trachypterus and Zu cristatus, two other Lampriformes. These three species were clustered together due to similarity in genetic sequence and morphology, which further supports the phylogeny and evolution of Lampriformes.
Environmen
The oarfish inhabits the epipelagic to mesopelagic ocean layers, ranging from 250 meters (660 ft) to 1,000 meters (3,300 ft) and is rarely seen on the surface. A few have been found still barely alive, but usually if one floats to the surface, it dies due to depressurisation. At the depths the oarfish live, there are few or no currents. As a result, they build little muscle mass and they cannot survive in shallower turbulent water.
Distribution
The members of the family have a worldwide range. They have wide, tropical, subtropical, and warm temperate distributions. The oarfish typically reside in the mesopelagic area of the sea. However, human encounters with live oarfish are rare, and distribution information is collated from records of oarfish caught or washed ashore.
Ecology and life history
Rare encounters with divers and accidental catches have supplied what little is known of oarfish ethology (behavior) and ecology. Oarfish are solitary animals and may frequent depths up to 1,000 m (3,300 ft). An oarfish measuring 3.3 m (11 ft) and 63.5 kg (140 lb) was reported to have been caught in February 2003 using a fishing rod baited with squid at Skinningrove, United Kingdom.
Behaviour
In 2001, an oarfish was filmed alive in the wild. The 1.5-metre (4.9-foot) fish was spotted by a group of U.S. Navy personnel during the inspection of a buoy in the Bahamas. The oarfish was observed to propel itself by an amiiform mode of swimming; that is, rhythmically undulating the dorsal fin while keeping the body itself straight. Perhaps indicating a feeding posture, oarfish have been observed swimming in a vertical orientation. In this posture, the downstreaming light would silhouette the oarfishes' prey, making them easier to spot.
In July 2008, scientists captured footage of an oarfish swimming in its natural habitat in the mesopelagic zone in the Gulf of Mexico. It is the first ever confirmed sighting of an oarfish at depth, as most specimens are discovered dying at the sea surface or washed ashore. The fish was estimated to be between five and ten metres (16 and 33 ft) in length.
As part of the SERPENT Project, five observations of apparently healthy oarfish Regalecus glesne by remotely operated vehicles were reported from the northern Gulf of Mexico between 2008 and 2011 at depths within the epipelagic and mesopelagic zones. These observations include the deepest verified record of R. glesne (463–492 m or 1,519–1,614 ft). In the 2011 sighting, an oarfish has been observed to switch from swimming with a vertical posture to swimming laterally, using lateral undulations of its entire body. Oarfish were found to have late or slow flight responses towards approaching remotely operated vehicles, supporting the hypothesis that they have few natural predators.
From December 2009 to March 2010, unusual numbers of the slender oarfish Regalecus russelii appeared in the waters and on the beaches of Japan.
In 2016, Animal Planet aired an episode of the television series River Monsters named "Deep Sea Demon" in which Jeremy Wade was filmed with a live oarfish. The oarfish at this location seemed to be using a buoy anchor chain as a guide to ascend to the surface. On his second diving attempt, he filmed two live oarfish as they came relatively close to the surface. Wade was able to touch one of the oarfish with his hand.
In January 2019 two oarfish were found alive in the nets of fishermen on the Japanese island of Okinawa.
Feeding ecology
Oarfish feed primarily on zooplankton, selectively straining tiny euphausiids, shrimp, and other crustaceans from the water. Small fish, jellyfish, and squid are also taken. Large open-ocean carnivores are all likely predators of oarfish. It has been observed that oarfish eat by suctioning prey such as plankton blooms while in the water.
Life history
The oceanodromous Regalecus glesne is recorded as spawning off Mexico from July to December; all species are presumed to not guard their eggs, and release brightly coloured, buoyant eggs, up to six millimetres (0.24 in) across, which are incorporated into the zooplankton. Based on their reproductive morphology, oarfish are thought to batch spawn. Within each breeding season that may last one or two months, individuals spawn once or multiple times in discrete spawning events before their gonads enter a long, regressive stage of reproductive development.
The eggs hatch after about three weeks into highly active larvae that feed on other zooplankton. The larvae have little resemblance to the adults, with long dorsal and pelvic fins and extensible mouths. Larvae and juveniles have been observed drifting just below the surface. In contrast, adult oarfish are rarely seen at the surface when not sick or injured. It is probable that the fishes go deeper as they mature.
From January to February 2019, researchers tested and recorded the first successful instance of artificial insemination and hatching of the oarfish (Regalecus russellii) using gonads from two washed-up specimens. Compared to adults, the body structure of newly hatched oarfish larvae look more compressed. The larvae often swam using mainly their pectoral fins, facing downward, with their mouths constantly open. The larvae were invertebrates but had bones in their head area, as well as fins. They died of starvation four days after they hatched.
In addition to the otolith, recent studies have revealed more information about the reproductive organs of the oarfish. Using photographs, histological cross-sections, and measurements of four samples of R. russelii, researchers were able to qualitatively describe the sexual organs of the species. These studies have shown that female oarfish have bifurcated ovaries containing a cavity through which the eggs pass before leaving the body of the oarfish. Testes on male oarfish are located in a similar place as the ovaries of female oarfish, near the digestive tract called the coelomic cavity. The oarfish have two separate, disconnected testes and the left testes observed were longer than the right testes. An analysis of these findings led researchers to conclude that R. russelii are likely batch-spawning fish that produce a large number of offspring every breeding season.
Reproduction
Little is known of the breeding habits of these fish. A single female can produce hundreds of thousands, to millions of eggs. It lays its eggs in the water column and they float freely in the water.
Predation
A 2015 study suggested that the shortfin mako shark and the sperm whale could both be predators of the oarfish, based on patterns of parasite transmission. These conclusions were made based on analysis of the visceral tissue of an oarfish recovered by the Catalina Island Marine Institute, California.
Species
Oarfish were first described in 1772. Three extant species in two extant genera are described:
- Giant Oarfish (Regalecus glesne)
- Russell's Oarfish (Regalecus russelii)
- Streamerfish (Agrostichthys parkeri)
In folklore
The slender oarfish, (竜宮の使い "Ryūgū-No-Tsukai"), known in Japanese folklore as the Messenger from the Sea God's Palace, is said to portend earthquakes. After the 2011 Tōhoku earthquake and tsunami which killed over 20,000 people, many in Japan pointed to the oarfish from 2009–2010 to build up this myth.
The oarfish is often nicknamed the "doomsday fish" because, historically, appearances of the fish were linked with subsequent natural disasters, namely earthquakes or tsunamis.
See also
Bibliography
- Fishes: An Introduction to ichthyology. Peter B. Moyle and Joseph J. Cech, Jr; p. 338. Printed in 2004. Prentice-Hall, Inc.; Upper Saddle River, New Jersey. ISBN 0-13-100847-1
References
- Froese, Rainer; Pauly, Daniel (eds.). "Family Regalecidae". FishBase. March 2007 version.
- "Regalecus glesne". Discover Fishes. Retrieved 2024-06-23.
- ^ McClain, Craig R.; Balk, Megan A.; Benfield, Mark C.; et al. (2015-01-13). "Sizing ocean giants: patterns of intraspecific size variation in marine megafauna". PeerJ. 3 (e715): e715. doi:10.7717/peerj.715. PMC 4304853. PMID 25649000.
- ^ Olney, John E. (1998). Paxton, J.R.; Eschmeyer, W.N. (eds.). Encyclopedia of Fishes. San Diego: Academic Press. pp. 157–159. ISBN 978-0-12-547665-2.
- "Los Angeles Times - California, national and world news - latimes.com". archive.ph. 2013-01-27. Archived from the original on 2013-01-27. Retrieved 2022-04-06.
- "Rare 'Sea Monster' Washes Ashore In New Zealand". IFLScience.com. 28 April 2015. Retrieved 22 November 2021.
- "Giant deep sea fish first filmed". News.bbc.co.uk. 8 February 2010. Retrieved 22 November 2021.
- Quenqua, Douglas (2 November 2013). "Oarfish Offer Chance to Study an Elusive Animal Long Thought a Monster". The New York Times. Retrieved 22 November 2021.
- Burton, Maurice; Burton, Robert (2002). International Wildlife Encyclopedia (3rd ed.). New York: Marshall Cavendish. pp. 1767–1768. ISBN 978-0-7614-7279-7.
- "Agrostichthys parkeri (Benham, 1904) Streamer fish". FishBase Consortium. Retrieved 2013-11-03.
- ^ "Regalecus russelii (Cuvier, 1816) species summary". FishBase Consortium. Retrieved 2013-11-03.
- "Regalecus russelii, Oarfifsh". www.fishbase.us. Retrieved 2020-10-30.
- Paig-Tran, E. W. Misty; Barrios, Andrew S.; Ferry, Lara A. (2016-06-14). "Presence of repeating hyperostotic bones in dorsal pterygiophores of the oarfish, Regalecus russellii". Journal of Anatomy. 229 (4): 560–567. doi:10.1111/joa.12503. ISSN 0021-8782. PMC 5013060. PMID 27296623.
- Paig-Tran, E. W. Misty; Barrios, Andrew S.; Ferry, Lara A. (October 2016). "Presence of repeating hyperostotic bones in dorsal pterygiophores of the oarfish, Regalecus russellii". Journal of Anatomy. 229 (4): 560–567. doi:10.1111/joa.12503. PMC 5013060. PMID 27296623.
- Yu, Yue; Peng, Xin; Yang, Can-Min; Chen, Xiao; Chen, Shaobo; Qin, Song (2019-07-03). "Complete mitochondrial genome and the phylogenetic position of the giant oarfish (Regalecus glesne)". Mitochondrial DNA Part B. 4 (2): 2125–2126. doi:10.1080/23802359.2019.1623124. PMC 7687632. PMID 33365437.
- Powell, Daniel. "First-ever oarfish caught on rod and reel". San Diego Reader News. Retrieved 2015-06-30.
- Roberts, T., R. (2012). Systematics, biology, and distribution of the species of the oceanic oarfish genus Regalecus (Teleostei, Lampridiformes, Regalecidae). Paris: French National Museum of Natural History. pp. 202, 1–266. ISBN 978-1247669526.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - Oka, Shin-ichiro; Nakamura, Masaru; Nozu, Ryo; Miyamoto, Kei (2020-04-08). "First observation of larval oarfish, Regalecus russelii, from fertilized eggs through hatching, following artificial insemination in captivity". Zoological Letters. 6 (1): 4. doi:10.1186/s40851-020-00156-6. ISSN 2056-306X. PMC 7140580. PMID 32292594.
- Jenkins, Russell (21 February 2003). "Woman angler lands legendary sea monster". The Times. Archived from the original on May 7, 2009. Retrieved 25 February 2010.
The novice angler fishing off the rocks for mackerel thought that she must have hooked a big one. – Unfortunately the oarfish has been cut up into steaks for the pot.
- "Sustainability species Identification; Oarfish (Regalecus glesne Ascanius)". NOAA Fisheries service. Retrieved 28 September 2012.
- Bourton, Jody (2010-02-08). "Giant bizarre deep sea fish filmed in Gulf of Mexico". BBC. Retrieved 2010-02-09.
- "SERPENT Project".
- Benfield, M.C. (5 June 2013). "Five in situ observations of live oarfish Regalecus glesne (Regalecidae) by remotely operated vehicles in the oceanic waters of the northern Gulf of Mexico". Journal of Fish Biology. 83 (1): 28–38. Bibcode:2013JFBio..83...28B. doi:10.1111/jfb.12144. PMID 23808690.
- ^ Benfield, M. C.; Cook, S.; Sharuga, S.; Valentine, M. M. (July 2013). "Five in situ observations of live oarfish Regalecus glesne (Regalecidae) by remotely operated vehicles in the oceanic waters of the northern Gulf of Mexico: in situ observations of regalecus glesne". Journal of Fish Biology. 83 (1): 28–38. Bibcode:2013JFBio..83...28B. doi:10.1111/jfb.12144. PMID 23808690.
- ^ Yamamoto, Daiki (4 March 2010). "Sea serpents' arrival puzzling, or portentous?". Kyodo News. Retrieved 6 March 2010.
Toyama — A rarely seen deep-sea fish regarded as something of a mystery has been giving marine experts food for thought recently after showing up in large numbers along the Sea of Japan coast.
- "Barcroft.tv". 12.barcroft.tv. Retrieved 22 November 2021.
- ^ Stambaugh, Alex; Ogura, Junko. "Pair of rare oarfish discovered alive in Japan". CNN. Retrieved 2019-02-24.
- Roberts, Tyson R. (November 2017). "Anatomy and physiology of the digestive system of the oarfish Regalecus russellii (Lampridiformes: Regalecidae)". Ichthyological Research. 64 (4): 475–477. Bibcode:2017IchtR..64..475R. doi:10.1007/s10228-017-0574-7. ISSN 1341-8998. S2CID 207064546.
- Ferry, L. A.; Paig-Tran, E. M.; Gibb, A. C. (2015). "Suction, Ram, and Biting: Deviations and Limitations to the Capture of Aquatic Prey". Integrative and Comparative Biology. 55 (1): 97–109. doi:10.1093/icb/icv028. PMID 25980566.
- Forsgren, Kristy L.; Jamal, Homam; Barrios, Andrew; Paig-Tran, E. W. Misty (2017). "Reproductive Morphology of Oarfish (Regalecus russellii)". The Anatomical Record. 300 (9): 1695–1704. doi:10.1002/ar.23605. PMID 28390152.
- Oka, Shin-ichiro; Nakamura, Masaru; Nozu, Ryo; Miyamoto, Kei (2020). "First observation of larval oarfish, Regalecus russelii, from fertilized eggs through hatching, following artificial insemination in captivity". Zoological Letters. 6 (1): 4. doi:10.1186/s40851-020-00156-6. PMC 7140580. PMID 32292594.
- ^ Forsgren, Kristy L.; Jamal, Homam; Barrios, Andrew; Paig-Tran, E.W. Misty (2017-04-22). "Reproductive Morphology of Oarfish (Regalecus russellii)". The Anatomical Record. 300 (9): 1695–1704. doi:10.1002/ar.23605. PMID 28390152. S2CID 205413717.
- Forsgren, Kristy L.; Jamal, Homam; Barrios, Andrew; Paig-Tran, E.W. Misty (2017-04-22). "Reproductive Morphology of Oarfish (Regalecus russellii)". The Anatomical Record. 300 (9): 1695–1704. doi:10.1002/ar.23605. ISSN 1932-8486. PMID 28390152. S2CID 205413717.
- ^ Kuris, Armand M.; Jaramillo, Alejandra G.; McLaughlin, John P.; Weinstein, Sara B.; Garcia-Vedrenne, Ana E.; Poinar, George O.; Pickering, Maria; Steinauer, Michelle L.; Espinoza, Magaly; Ashford, Jacob E.; Dunn, Gabriela L. P. (February 2015). "Monsters of the Sea Serpent: Parasites of an Oarfish,Regalecus russellii". Journal of Parasitology. 101 (1): 41–44. doi:10.1645/14-581.1. PMID 25220829. S2CID 32384405.
- "National Geographic". 2013-10-22. Archived from the original on October 22, 2013. Retrieved 30 April 2018.
- DiMella, Ashley, "'Doomsday fish' found dead in California days before earthquake struck Los Angeles", Fox News, 17 August 2024
- Anguiano, Dani (15 November 2024). "Second oarfish, mythical harbinger of doom, found washed up in California". The Guardian.
External links
- Deepsea footage of a live oarfish, BBC, 2010
- 4/9/2014 National Geographic Video, 2014
- LiveSciences 2015
- ROV footage, 2019