Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
{{Short description|Type of year (GF) on a solar calendar}}
{{Short description|Type of year (GF) on a solar calendar}}
A '''leap year starting on Monday''' is any year with 366 days (i.e. it includes ]) that begins on ], 1 January, and ends on ], 31 December. Its ]s hence are '''GF'''. The most year was ] and the next such year will be ]. <ref name="math">{{cite web|url=https://webspace.science.uu.nl/~gent0113/calendar/isocalendar.htm |author=Robert van Gent |title=The Mathematics of the ISO 8601 Calendar |publisher=Utrecht University, Department of Mathematics |date=2017 |access-date=20 July 2017}}</ref> or, likewise, ] and ] in the obsolete ].
A '''leap year starting on Monday''' is any year with 366 days (i.e. it includes ]) that begins on ], 1 January, and ends on ], 31 December. Its ]s hence are '''GF'''. The most year was ] and the next one will be ]. <ref name="math">{{cite web|url=https://webspace.science.uu.nl/~gent0113/calendar/isocalendar.htm |author=Robert van Gent |title=The Mathematics of the ISO 8601 Calendar |publisher=Utrecht University, Department of Mathematics |date=2017 |access-date=20 July 2017}}</ref> or, likewise, ] and ] in the obsolete ].
Any leap year that starts on ], ] or ] has two ]s: those two in this leap year ] and ]. ] share this characteristic.
Any leap year that starts on ], ] or ] has two ]s: those two in this leap year ] and ]. ] share this characteristic.
Revision as of 20:38, 27 December 2024
Type of year (GF) on a solar calendar
A leap year starting on Monday is any year with 366 days (i.e. it includes 29 February) that begins on Monday, 1 January, and ends on Tuesday, 31 December. Its dominical letters hence are GF. The most year was 2024 and the next one will be 2052. or, likewise, 2008 and 2036 in the obsolete Julian calendar.
Additionally, this type of year has three months (January, April, and July) beginning exactly on the first day of the week, in areas which Monday is considered the first day of the week, Common years starting on Friday share this characteristic on the months of February, March, and November.
Calendars
Calendar for any leap year starting on Monday, presented as common in many English-speaking areas
January
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
February
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
March
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
April
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
May
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
June
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
July
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
August
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
September
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
October
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
November
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
December
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
ISO 8601-conformant calendar with week numbers for any leap year starting on Monday (dominical letter GF)
January
Wk
Mo
Tu
We
Th
Fr
Sa
Su
01
01
02
03
04
05
06
07
02
08
09
10
11
12
13
14
03
15
16
17
18
19
20
21
04
22
23
24
25
26
27
28
05
29
30
31
February
Wk
Mo
Tu
We
Th
Fr
Sa
Su
05
01
02
03
04
06
05
06
07
08
09
10
11
07
12
13
14
15
16
17
18
08
19
20
21
22
23
24
25
09
26
27
28
29
March
Wk
Mo
Tu
We
Th
Fr
Sa
Su
09
01
02
03
10
04
05
06
07
08
09
10
11
11
12
13
14
15
16
17
12
18
19
20
21
22
23
24
13
25
26
27
28
29
30
31
April
Wk
Mo
Tu
We
Th
Fr
Sa
Su
14
01
02
03
04
05
06
07
15
08
09
10
11
12
13
14
16
15
16
17
18
19
20
21
17
22
23
24
25
26
27
28
18
29
30
May
Wk
Mo
Tu
We
Th
Fr
Sa
Su
18
01
02
03
04
05
19
06
07
08
09
10
11
12
20
13
14
15
16
17
18
19
21
20
21
22
23
24
25
26
22
27
28
29
30
31
June
Wk
Mo
Tu
We
Th
Fr
Sa
Su
22
01
02
23
03
04
05
06
07
08
09
24
10
11
12
13
14
15
16
25
17
18
19
20
21
22
23
26
24
25
26
27
28
29
30
July
Wk
Mo
Tu
We
Th
Fr
Sa
Su
27
01
02
03
04
05
06
07
28
08
09
10
11
12
13
14
29
15
16
17
18
19
20
21
30
22
23
24
25
26
27
28
31
29
30
31
August
Wk
Mo
Tu
We
Th
Fr
Sa
Su
31
01
02
03
04
32
05
06
07
08
09
10
11
33
12
13
14
15
16
17
18
34
19
20
21
22
23
24
25
35
26
27
28
29
30
31
September
Wk
Mo
Tu
We
Th
Fr
Sa
Su
35
01
36
02
03
04
05
06
07
08
37
09
10
11
12
13
14
15
38
16
17
18
19
20
21
22
39
23
24
25
26
27
28
29
40
30
October
Wk
Mo
Tu
We
Th
Fr
Sa
Su
40
01
02
03
04
05
06
41
07
08
09
10
11
12
13
42
14
15
16
17
18
19
20
43
21
22
23
24
25
26
27
44
28
29
30
31
November
Wk
Mo
Tu
We
Th
Fr
Sa
Su
44
01
02
03
45
04
05
06
07
08
09
10
46
11
12
13
14
15
16
17
47
18
19
20
21
22
23
24
48
25
26
27
28
29
30
December
Wk
Mo
Tu
We
Th
Fr
Sa
Su
48
01
49
02
03
04
05
06
07
08
50
09
10
11
12
13
14
15
51
16
17
18
19
20
21
22
52
23
24
25
26
27
28
29
01
30
31
Applicable years
Gregorian Calendar
Leap years that begin on Monday, along with those starting on Saturday and Thursday, occur least frequently: 13 out of 97 (≈ 13.4%) total leap years in a 400-year cycle of the Gregorian calendar. Their overall frequency is thus 3.25% (13 out of 400) of years.
Like all leap year types, the one starting with 1 January on a Monday occurs exactly once in a 28-year cycle in the Julian calendar, i.e. in 3.57% of years. As the Julian calendar repeats after 28 years that means it will also repeat after 700 years, i.e. 25 cycles. The year's position in the cycle is given by the formula ((year + 8) mod 28) + 1).
Daylight saving ends on its latest possible date, April 7 – the period of daylight saving which ends on April 7 of a leap year starting on Monday is the only period ending in any year to last 27 weeks in Australia and 28 weeks in New Zealand; in all other instances, the period of daylight saving lasts only 26 weeks in Australia and 27 weeks in New Zealand
Columbus Day falls on its latest possible date, October 14 (this is the only year when Martin Luther King Jr. Day and Columbus Day are 39 weeks apart) They are 38 weeks apart in all other years
Thanksgiving Day falls on its latest possible date, November 28 (this is also the only year when Martin Luther King Jr. Day and Thanksgiving are 318 days apart) They are 311 days apart in all other years