Revision as of 18:00, 21 July 2005 editRashBold (talk | contribs)Extended confirmed users1,101 edits some corrections← Previous edit | Revision as of 19:34, 21 July 2005 edit undoRashBold (talk | contribs)Extended confirmed users1,101 edits finishing articleNext edit → | ||
Line 9: | Line 9: | ||
:::::::As<sub>2<sub>O<sub>3<sub> + 6 Zn + 12 HNO<sub>3<sub> → 2 AsH<sub>3<sub> + 6 Zn(NO<sub>3<sub>)<sub>2<sub> + 3 H<sub>2<sub>O | :::::::As<sub>2<sub>O<sub>3<sub> + 6 Zn + 12 HNO<sub>3<sub> → 2 AsH<sub>3<sub> + 6 Zn(NO<sub>3<sub>)<sub>2<sub> + 3 H<sub>2<sub>O | ||
In ], ] discovered that if arsenic trioxide was heated in the presence of ], a shiny black powder (arsenic mirror) would be formed over it. This is the reduction of As<sub>2<sub>O<sub>3<sub> by ]: | |||
::::::::::2 As<sub>2<sub>O<sub>3<sub> + 3 C → 3 CO<sub>2<sub> + 4 As | ::::::::::2 As<sub>2<sub>O<sub>3<sub> + 3 C → 3 CO<sub>2<sub> + 4 As | ||
Line 25: | Line 25: | ||
==Specific reactions involved with the Marsh test== | ==Specific reactions involved with the Marsh test== | ||
The Marsh test treats the sample with sulfuric acid and arsenic-free zinc. Even if there are minute amounts of arsenic present, the zinc reduces the As<sup>+3</sup>. Here are the two half-reactions: | The Marsh test treats the sample with sulfuric acid and arsenic-free zinc. Even if there are minute amounts of arsenic present, the zinc reduces the ] arsenic (As<sup>+3</sup>). Here are the two half-reactions: | ||
:::::::::Oxidation: Zn → Zn<sup>+2<sup> + 2e | :::::::::Oxidation: Zn → Zn<sup>+2<sup> + 2e | ||
Line 34: | Line 34: | ||
:::::::::As<sub>2</sub>O<sub>3</sub> + 6 Zn + 6 H<sup>+1</sup> → 2 As<sup>-3</sup> + 6 Zn<sup>+2</sup> + 3 H<sub>2</sub>O | :::::::::As<sub>2</sub>O<sub>3</sub> + 6 Zn + 6 H<sup>+1</sup> → 2 As<sup>-3</sup> + 6 Zn<sup>+2</sup> + 3 H<sub>2</sub>O | ||
But in an acidic medium, As< |
But in an acidic medium, As<sup>-3</sup> actually forms arsine gas (AsH<sub>3</sub>), so adding sulfuric acid (6 H<sub>2</sub>SO<sub>4</sub>) to each side of the equation we get: | ||
:::::::As<sub>2</sub>O<sub>3</sub> + 6 Zn + 6 H<sup>+1</sup> + 6 H<sub>2</sub>SO<sub>4</sub> → 2 As<sup>-3</sup> + 6 H<sub>2</sub>SO<sub>4</sub> + 6 Zn<sup>+2</sup> + 3 H<sub>2</sub>O, | :::::::As<sub>2</sub>O<sub>3</sub> + 6 Zn + 6 H<sup>+1</sup> + 6 H<sub>2</sub>SO<sub>4</sub> → 2 As<sup>-3</sup> + 6 H<sub>2</sub>SO<sub>4</sub> + 6 Zn<sup>+2</sup> + 3 H<sub>2</sub>O, | ||
Line 50: | Line 50: | ||
{{main|Marie LaFarge}} | {{main|Marie LaFarge}} | ||
Although the Marsh test was efficacious, its first publicly documented use — as the matter of fact the first time evidence from ] was introduced — was in ], ] in ] with the celebrated ]. Charles LaFarge, a foundry owner, was suspected of being poisoned with arsenic by his wife Marie. The circumstantial evidence was great: it was shown that she brought arsenic trioxide from a local chemist, supposedly to kill rats which infested their home. In addition, their maid swore that she mixed adding a white powder in his drink. Although the food was found to be positive for the poison using the old methods as well as the Marsh test, when the husband's body was exhumed and tested, the chemists assigned to the case were not able to do so. ], the renowned ] retained by the defence and an acknowledged authority of the Marsh test examined the results. He performed the test again and demonstrated that the Marsh test was not at fault for the misleading results but rather those who performed it did it incorrectly. Orfila proved the presence of arsenic in LaFarge's body. Faced with this fact, Marie was found guilty and sentenced to death, but later commuted to life imprisonment. | |||
==Effects of the Marsh test== | |||
The case proved to be controversial, for it divided the country into factions who were convinced or otherwise of Mme. LaFarge's guilt; nevertheless, the impact of the Marsh test was great. The French press covered the trial and gave the test the publicity it needed to make the field of forensic toxicology the legitimacy it deserved, although in some ways it trivialized it: Marsh test assays were actually done in salons, public lectures and even in some plays that recreated the LaFarge case. | |||
The existence of the Marsh test also served a deterrent effect: deliberate arsenic poisonings became rarer because of the fear of discovery became present. | |||
See also: ] |
Revision as of 19:34, 21 July 2005
The Marsh test is a highly sensitive method in the detection of arsenic, especially useful in the field of forensic toxicology when arsenic was used as a poison.
Arsenic, in the form of white arsenic trioxide, was a highly favored poison, for it is odorless, easily incorporated into food and drink, and before the advent of the Marsh test, untraceable in the body. For the untrained, arsenic poisoning would have symptoms similar to cholera. Indeed, in France it came to be known as poudre de succession, "inheritance powder" for obvious reasons.
Precursor methods
The first breakthrough in the detection of arsenic poisoning was in 1775 when Carl Wilhelm Scheele discovered a way to change arsenic trioxide to arsine gas (AsH3), a garlic-smelling gas by treating it with nitric acid (HNO3) and combining it with zinc.
- As2O3 + 6 Zn + 12 HNO3 → 2 AsH3 + 6 Zn(NO3)2 + 3 H2O
In 1787, Johann Metzger discovered that if arsenic trioxide was heated in the presence of charcoal, a shiny black powder (arsenic mirror) would be formed over it. This is the reduction of As2O3 by carbon:
- 2 As2O3 + 3 C → 3 CO2 + 4 As
In 1806, Valentine Rose took the stomach of a victim suspected of being poisoned and treated it with potassium carbonate (K2CO3), calcium oxide (CaO) and nitric acid. Any arsenic present would appear as arsenic trioxide and then could be subjected to Metzger's test.
However, the most common test (and used even today in water test kits) was discovered by Samuel Hahnemann. It would involve combining a sample fluid with hydrogen sulfide (H2S) in the presence of hydrochloric acid (HCl). A yellow precipitate, arsenic trisulfide (As2S3) would be formed if arsenic were present.
Circumstances and methodology behind the Marsh test
Even so, these tests have proven not be sensitive enough. In 1832, a certain John Bodle was brought to trial for poisoning his grandfather by putting arsenic in his coffee. James Marsh, a chemist working at the Royal British Arsenal in Woolwich was called by the prosecution to try to detect its presence. He performed the standard test by passing hydrogen sulfide through the suspect fluid. While Marsh was able to detect arsenic, the yellow precipitate did not keep very well, and by the time it was presented to the jury it deteriorated. The jury was not convinced, and John Bodle was acquitted.
Angered and frustrated by this, especially when John Bodle confessed later that he indeed killed his grandfather, Marsh decided to devise a better test to demonstate the presence of arsenic. Taking Scheele's method as a basis, he constructed a simple glass apparatus capable of not only detecting minute traces of it but also measure its quantity. While the Scheele test used nitric acid, in Marsh's case the suspect fluid would be mixed with sulfuric acid (H2SO4) and passed through a U-shaped tube with a piece of arsenic-free zinc at the end. If even a trace of arsenic was present, arsine gas would result. When he ignited this gas, it gas would decompose into arsenic and hydrogen. When he held a cold ceramic bowl, the arsenic would form a silvery-black deposit on the bowl, a result similar to that of Metzger's test. Not only could minute amounts of arsenic be detected (for as little as 0.02 mg), the test was very specific for arsenic. Although antimony (Sb) could give a false-positive test by forming a similar black deposit, it would not react with sodium hypochlorite (NaOCl), while arsenic would.
Specific reactions involved with the Marsh test
The Marsh test treats the sample with sulfuric acid and arsenic-free zinc. Even if there are minute amounts of arsenic present, the zinc reduces the trivalent arsenic (As). Here are the two half-reactions:
- Oxidation: Zn → Zn
- Reduction: As2O3 + 12e + 6H → 2As + 3 H2O
Overall, we have this reaction:
- As2O3 + 6 Zn + 6 H → 2 As + 6 Zn + 3 H2O
But in an acidic medium, As actually forms arsine gas (AsH3), so adding sulfuric acid (6 H2SO4) to each side of the equation we get:
- As2O3 + 6 Zn + 6 H + 6 H2SO4 → 2 As + 6 H2SO4 + 6 Zn + 3 H2O,
or as the As combines with the H to form arsine:
- As2O3 + 6 Zn + 6 H + 6 H2SO4 → 2AsH3 + 6 ZnSO4 + 3 H2O + 6 H,
or by eliminating the common ions:
- As2O3 + 6 Zn + 6 H2SO4 → 2AsH3 + 6 ZnSO4 + 3 H2O
First notable application
Main article: Marie LaFargeAlthough the Marsh test was efficacious, its first publicly documented use — as the matter of fact the first time evidence from forensic toxicology was introduced — was in Brive, France in 1840 with the celebrated LaFarge poisoning case. Charles LaFarge, a foundry owner, was suspected of being poisoned with arsenic by his wife Marie. The circumstantial evidence was great: it was shown that she brought arsenic trioxide from a local chemist, supposedly to kill rats which infested their home. In addition, their maid swore that she mixed adding a white powder in his drink. Although the food was found to be positive for the poison using the old methods as well as the Marsh test, when the husband's body was exhumed and tested, the chemists assigned to the case were not able to do so. Mathieu Orfila, the renowned toxicologist retained by the defence and an acknowledged authority of the Marsh test examined the results. He performed the test again and demonstrated that the Marsh test was not at fault for the misleading results but rather those who performed it did it incorrectly. Orfila proved the presence of arsenic in LaFarge's body. Faced with this fact, Marie was found guilty and sentenced to death, but later commuted to life imprisonment.
Effects of the Marsh test
The case proved to be controversial, for it divided the country into factions who were convinced or otherwise of Mme. LaFarge's guilt; nevertheless, the impact of the Marsh test was great. The French press covered the trial and gave the test the publicity it needed to make the field of forensic toxicology the legitimacy it deserved, although in some ways it trivialized it: Marsh test assays were actually done in salons, public lectures and even in some plays that recreated the LaFarge case.
The existence of the Marsh test also served a deterrent effect: deliberate arsenic poisonings became rarer because of the fear of discovery became present.
See also: Arsenic Act 1851