Misplaced Pages

P-i-n and n-i-p: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactivelyNext edit →Content deleted Content addedVisualWikitext
Revision as of 13:18, 3 November 2008 editMac (talk | contribs)23,294 edits Created page with 'Typically, amorphous silicon thin-film cells use a p-i-n structure, whereas CdTe cells use an n-i-p structure. The basic scenario is as follows: A thre...'  Revision as of 13:18, 3 November 2008 edit undoMac (talk | contribs)23,294 editsmNo edit summaryNext edit →
Line 3: Line 3:
The basic scenario is as follows: A three-layer sandwich is created, with a middle intrinsic (i-type or undoped) layer between an n-type layer and a p-type layer. This geometry sets up an electric field between the p- and n-type regions that stretches across the middle intrinsic resistive region. Light generates free electrons and holes in the intrinsic region, which are then separated by the electric field. The basic scenario is as follows: A three-layer sandwich is created, with a middle intrinsic (i-type or undoped) layer between an n-type layer and a p-type layer. This geometry sets up an electric field between the p- and n-type regions that stretches across the middle intrinsic resistive region. Light generates free electrons and holes in the intrinsic region, which are then separated by the electric field.


== P-i-n== == p-i-n==
In the p-i-n amorphous silicon (a-Si) cell, the top layer is p-type a-Si, the middle layer is intrinsic silicon, and the bottom layer is n-type a-Si. Amorphous silicon has many atomic-level electrical defects when it is highly conductive. So very little current would flow if an a-Si cell had to depend on diffusion. However, in a p-i-n cell, current flows because the free electrons and holes are generated within the influence of an electric field, rather than having to move toward the field. In the p-i-n amorphous silicon (a-Si) cell, the top layer is p-type a-Si, the middle layer is intrinsic silicon, and the bottom layer is n-type a-Si. Amorphous silicon has many atomic-level electrical defects when it is highly conductive. So very little current would flow if an a-Si cell had to depend on diffusion. However, in a p-i-n cell, current flows because the free electrons and holes are generated within the influence of an electric field, rather than having to move toward the field.



Revision as of 13:18, 3 November 2008

Typically, amorphous silicon thin-film cells use a p-i-n structure, whereas CdTe cells use an n-i-p structure.

The basic scenario is as follows: A three-layer sandwich is created, with a middle intrinsic (i-type or undoped) layer between an n-type layer and a p-type layer. This geometry sets up an electric field between the p- and n-type regions that stretches across the middle intrinsic resistive region. Light generates free electrons and holes in the intrinsic region, which are then separated by the electric field.

p-i-n

In the p-i-n amorphous silicon (a-Si) cell, the top layer is p-type a-Si, the middle layer is intrinsic silicon, and the bottom layer is n-type a-Si. Amorphous silicon has many atomic-level electrical defects when it is highly conductive. So very little current would flow if an a-Si cell had to depend on diffusion. However, in a p-i-n cell, current flows because the free electrons and holes are generated within the influence of an electric field, rather than having to move toward the field.

n-i-p

In a CdTe cell, the device structure is similar to the a-Si cell, except the order of layers is flipped upside down. Specifically, in a typical CdTe cell, the top layer is p-type cadmium sulfide (CdS), the middle layer is intrinsic CdTe, and the bottom layer is n-type zinc telluride (ZnTe).

References

Stub icon

This article about renewable energy is a stub. You can help Misplaced Pages by expanding it.

Categories: