Misplaced Pages

Bochner's formula: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 21:53, 23 February 2009 editJjauregui (talk | contribs)237 edits suggest merger← Previous edit Revision as of 22:11, 13 August 2009 edit undoErik9bot (talk | contribs)439,480 edits add Category:Articles lacking sources (Erik9bot)Next edit →
Line 15: Line 15:


] ]
]


{{geometry-stub}} {{geometry-stub}}

Revision as of 22:11, 13 August 2009

It has been suggested that this article be merged with Bochner identity and Talk:Bochner identity#Merger proposal. (Discuss) Proposed since February 2009.
This article provides insufficient context for those unfamiliar with the subject. Please help improve the article by providing more context for the reader. (Learn how and when to remove this message)

In mathematics, Bochner's formula is a statement relating harmonic functions on a Riemannian manifold ( M , g ) {\displaystyle (M,g)} to the Ricci curvature. More specifically, if u : M R {\displaystyle u:M\rightarrow \mathbb {R} } is a harmonic function (i.e., g u = 0 {\displaystyle \triangle _{g}u=0} , where g {\displaystyle \triangle _{g}} is the Laplacian with respect to g {\displaystyle g} ), then

1 2 | u | 2 = | 2 u | 2 Ric ( u , u ) {\displaystyle \triangle {\frac {1}{2}}|\nabla u|^{2}=|\nabla ^{2}u|^{2}-{\mbox{Ric}}(\nabla u,\nabla u)} ,

where u {\displaystyle \nabla u} is the gradient of u {\displaystyle u} with respect to g {\displaystyle g} . The formula is an example of a Weitzenböck identity. Bochner used this formula to prove the Bochner vanishing theorem.

The Bochner formula is often proved using supersymmetry or Clifford algebra methods.

See also

Stub icon

This geometry-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: