Misplaced Pages

Secant line: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 07:06, 8 May 2009 editPenubag (talk | contribs)Extended confirmed users, Pending changes reviewers, Rollbackers8,446 editsm Reverted edits by 69.140.112.191 (talk) to last version by 160.217.97.17← Previous edit Revision as of 07:30, 8 May 2009 edit undoPenubag (talk | contribs)Extended confirmed users, Pending changes reviewers, Rollbackers8,446 edits add tableNext edit →
Line 9: Line 9:


The secant can be calculated as ''1 / cos θ'' The secant can be calculated as ''1 / cos θ''
{{clear}}
{| class=wikitable align="right" style="margin-left:1em"
! style="text-align:left" | '''Function'''
! style="text-align:left" | '''Abbreviation'''
! style="text-align:left" | '''] (using ])'''
|- style="background-color:#FFFFFF"
| ''']'''
| sin
| <math>\sin \theta \equiv \cos \left(\frac{\pi}{2} - \theta \right) \equiv \frac{1}{\csc \theta}\,</math>
|- style="background-color:#FFFFFF"
| ''']'''
| cos
| <math>\cos \theta \equiv \sin \left(\frac{\pi}{2} - \theta \right) \equiv \frac{1}{\sec \theta}\,</math>
|- style="background-color:#FFFFFF"
| ''']'''
| tan<br />(or tg)
| <math>\tan \theta \equiv \frac{\sin \theta}{\cos \theta} \equiv \cot \left(\frac{\pi}{2} - \theta \right) \equiv \frac{1}{\cot \theta} \,</math>
|- style="background-color:#FFFFFF"
| ''']'''
| csc<br />(or cosec)
| <math>\csc \theta \equiv \sec \left(\frac{\pi}{2} - \theta \right) \equiv\frac{1}{\sin \theta} \,</math>
|- style="background-color:#74C0EF"
| ''']'''
| sec
| <math>\sec \theta \equiv \csc \left(\frac{\pi}{2} - \theta \right) \equiv\frac{1}{\cos \theta} \,</math>
|- style="background-color:#FFFFFF"
| ''']'''
| cot<br />(or ctg or ctn)
| <math>\cot \theta \equiv \frac{\cos \theta}{\sin \theta} \equiv \tan \left(\frac{\pi}{2} - \theta \right) \equiv \frac{1}{\tan \theta} \,</math>
|}


] ]

Revision as of 07:30, 8 May 2009


Secant line on a circle

A secant line of a curve is a line that (locally) intersects two points on the curve. The word secant comes from the Latin secare, for to cut.

It can be used to approximate the tangent to a curve, at some point P. If the secant to a curve is defined by two points, P and Q, with P fixed and Q variable, as Q approaches P along the curve, the direction of the secant approaches that of the tangent at P, assuming there is just one. As a consequence, one could say that the limit of the secant's slope, or direction, is that of the tangent. In calculus, this idea is the basis of the geometric definition of the derivative. A chord is the portion of a secant that lies within the curve.

The secant can be calculated as 1 / cos θ

Function Abbreviation Identities (using radians)
Sine sin sin θ cos ( π 2 θ ) 1 csc θ {\displaystyle \sin \theta \equiv \cos \left({\frac {\pi }{2}}-\theta \right)\equiv {\frac {1}{\csc \theta }}\,}
Cosine cos cos θ sin ( π 2 θ ) 1 sec θ {\displaystyle \cos \theta \equiv \sin \left({\frac {\pi }{2}}-\theta \right)\equiv {\frac {1}{\sec \theta }}\,}
Tangent tan
(or tg)
tan θ sin θ cos θ cot ( π 2 θ ) 1 cot θ {\displaystyle \tan \theta \equiv {\frac {\sin \theta }{\cos \theta }}\equiv \cot \left({\frac {\pi }{2}}-\theta \right)\equiv {\frac {1}{\cot \theta }}\,}
Cosecant csc
(or cosec)
csc θ sec ( π 2 θ ) 1 sin θ {\displaystyle \csc \theta \equiv \sec \left({\frac {\pi }{2}}-\theta \right)\equiv {\frac {1}{\sin \theta }}\,}
Secant sec sec θ csc ( π 2 θ ) 1 cos θ {\displaystyle \sec \theta \equiv \csc \left({\frac {\pi }{2}}-\theta \right)\equiv {\frac {1}{\cos \theta }}\,}
Cotangent cot
(or ctg or ctn)
cot θ cos θ sin θ tan ( π 2 θ ) 1 tan θ {\displaystyle \cot \theta \equiv {\frac {\cos \theta }{\sin \theta }}\equiv \tan \left({\frac {\pi }{2}}-\theta \right)\equiv {\frac {1}{\tan \theta }}\,}
Categories: