Misplaced Pages

Biosequestration: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 08:07, 7 October 2009 editAlan Liefting (talk | contribs)Autopatrolled, Extended confirmed users, File movers, Pending changes reviewers, Rollbackers134,250 editsNo edit summary← Previous edit Revision as of 10:31, 8 October 2009 edit undo121.127.207.75 (talk) Rubisco enzymeNext edit →
Line 2: Line 2:


== Carbon in the Earth's atmosphere == == Carbon in the Earth's atmosphere ==
It is generally accepted by ] that the ] content of the ] since before the ] was 0.03 percent.<ref>JE Lovelock. Gaia. A New Look at Life on Earth. Oxford University Press. Oxford. 1989 p80</ref> The capture of atmosphereic C02 level has been largely a function of absorption by sea water, vegetation and soils.<ref>Tim Flannery. The Weather Makers. The History and Future Impact of Climate Change. Text Publishing. Melbourne.2005. p29</ref> The capacity of the oceans to absorb C02 is decreasing.<ref>CL Sabine et al. The oceanic sink for anthropogenic C02 Science 2004; 305:367-71.</ref> Given the potential adverse effects of rising atmospheric C02 levels (see ]) his increases the imperative to develops policies and laws that increase photosynthesis and biosequestration. It is generally accepted by ] that the ] content of the ] since before the ] was 0.03 percent.<ref>JE Lovelock. Gaia. A New Look at Life on Earth. Oxford University Press. Oxford. 1989 p80</ref> The capture of atmosphereic C02 level has been largely a function of absorption by sea water, vegetation and soils.<ref>Tim Flannery. The Weather Makers. The History and Future Impact of Climate Change. Text Publishing. Melbourne.2005. p29</ref> The capacity of the oceans to absorb C02 is decreasing.<ref>CL Sabine et al. The oceanic sink for anthropogenic C02 Science 2004; 305:367-71.</ref> Given the potential adverse effects of rising atmospheric C02 levels (see ]) this increases the importance of developing policies and laws that increase photosynthesis and biosequestration.

== Enhanced photosynthesis ==
Biosequestration may be enhanced by improving ] by modifying ] genes in plants to increase the catalytic and/or oxygenation activity of that enzyme.<ref>{{cite journal |author=Spreitzer RJ, Salvucci ME |title=Rubisco: structure, regulatory interactions, and possibilities for a better enzyme |journal=Annu Rev Plant Biol |volume=53 |issue= |pages=449–75 |year=2002 |pmid=12221984 |doi=10.1146/annurev.arplant.53.100301.135233 |url=http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.arplant.53.100301.135233?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dncbi.nlm.nih.gov}}</ref>


== References == == References ==

Revision as of 10:31, 8 October 2009

Biosequestration is the capture of atmospheric carbon by photosynthesis. It is crucial to the initiation, evolution and preservation of life.

Carbon in the Earth's atmosphere

It is generally accepted by geochemists that the carbon dioxide content of the atmosphere since before the industrial revolution was 0.03 percent. The capture of atmosphereic C02 level has been largely a function of absorption by sea water, vegetation and soils. The capacity of the oceans to absorb C02 is decreasing. Given the potential adverse effects of rising atmospheric C02 levels (see climate change) this increases the importance of developing policies and laws that increase photosynthesis and biosequestration.

Enhanced photosynthesis

Biosequestration may be enhanced by improving photosynthetic efficiency by modifying RuBisCO genes in plants to increase the catalytic and/or oxygenation activity of that enzyme.

References

  1. JE Lovelock. Gaia. A New Look at Life on Earth. Oxford University Press. Oxford. 1989 p80
  2. Tim Flannery. The Weather Makers. The History and Future Impact of Climate Change. Text Publishing. Melbourne.2005. p29
  3. CL Sabine et al. The oceanic sink for anthropogenic C02 Science 2004; 305:367-71.
  4. Spreitzer RJ, Salvucci ME (2002). "Rubisco: structure, regulatory interactions, and possibilities for a better enzyme". Annu Rev Plant Biol. 53: 449–75. doi:10.1146/annurev.arplant.53.100301.135233. PMID 12221984.
Categories: