Misplaced Pages

Nicolaus Copernicus: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 16:06, 23 October 2010 view sourceTaylorgarcia (talk | contribs)1 edit His JobTag: references removed← Previous edit Revision as of 16:06, 23 October 2010 view source Gfoley4 (talk | contribs)Administrators40,870 editsm Reverted edits by Taylorgarcia to last version by 98.176.12.43 (GLOO)Next edit →
Line 197: Line 197:
By then Copernicus' work was nearing its definitive form, and rumors about his theory had reached educated people all over Europe. Despite urgings from many quarters, Copernicus delayed publication of his book, perhaps from fear of criticism—a fear delicately expressed in the subsequent ] of his masterpiece to ]. Scholars disagree on whether Copernicus' concern was limited to possible astronomical and philosophical objections, or whether he was also concerned about religious objections.<ref name=fear>Koyré ] and Rosen ] take the view that Copernicus was indeed concerned about possible objections from theologians, while Lindberg and Numbers ] argue against it. Koestler ] also denies it. Indirect evidence that Copernicus was concerned about objections from theologians comes from a letter written to him by ] in 1541, in which Osiander advises Copernicus to adopt a proposal by which he says "you will be able to appease the Peripatetics and theologians whose opposition you fear." ]</ref> By then Copernicus' work was nearing its definitive form, and rumors about his theory had reached educated people all over Europe. Despite urgings from many quarters, Copernicus delayed publication of his book, perhaps from fear of criticism—a fear delicately expressed in the subsequent ] of his masterpiece to ]. Scholars disagree on whether Copernicus' concern was limited to possible astronomical and philosophical objections, or whether he was also concerned about religious objections.<ref name=fear>Koyré ] and Rosen ] take the view that Copernicus was indeed concerned about possible objections from theologians, while Lindberg and Numbers ] argue against it. Koestler ] also denies it. Indirect evidence that Copernicus was concerned about objections from theologians comes from a letter written to him by ] in 1541, in which Osiander advises Copernicus to adopt a proposal by which he says "you will be able to appease the Peripatetics and theologians whose opposition you fear." ]</ref>


===The book===
I ♥ Jesus's hair! Its styly! I ♥ DOUBLE CHINS! A CHIN ×2!!!
]'', 1543. '''Click on image to read book.''']]

Copernicus was still working on '']'' (even if not convinced that he wanted to publish it) when in 1539 ], a ] ], arrived in Frombork. ], a close theological ally of ], had arranged for Rheticus to visit several astronomers and study with them.

Rheticus became Copernicus' pupil, staying with him for two years and writing a book, '']'' (First Account), outlining the essence of Copernicus' theory. In 1542 Rheticus published a treatise on ] by Copernicus (later included in the second book of ''De revolutionibus'').

Under strong pressure from Rheticus, and having seen the favorable first general reception of his work, Copernicus finally agreed to give ''De revolutionibus'' to his close friend, ], bishop of ] (''Kulm''), to be delivered to Rheticus for printing by the ] printer ] at ] (''Nürnberg''), ]. While Rheticus initially supervised the printing, he had to leave Nuremberg before it was completed, and he handed over the task of supervising the rest of the printing to a Lutheran theologian, ].<ref>] .</ref>

Osiander added an unauthorised and unsigned preface, defending the work against those who might be offended by the novel hypotheses. He explained that astronomers may find different causes for observed motions, and choose whatever is easier to grasp. As long as a hypothesis allows reliable computation, it does not have to match what a philosopher might seek as the truth.


===Death=== ===Death===

Revision as of 16:06, 23 October 2010

"Copernicus" redirects here. For other uses, see Copernicus (disambiguation).
Nicolaus Copernicus
Portrait, 1580, Toruń Old Town City Hall
Born(1473-02-19)19 February 1473,
Toruń (Thorn), Royal Prussia, Kingdom of Poland
Died24 May 1543(1543-05-24) (aged 70),
Frombork (Frauenburg), Prince-Bishopric of Warmia, Kingdom of Poland
Alma materKraków University, Bologna University, University of Padua, University of Ferrara
Known forHeliocentrism
Scientific career
FieldsMathematics, astronomy, canon law, medicine, economics
Signature

Nicolaus Copernicus (Template:Lang-pl; Template:Lang-de; in his youth, Niclas Koppernigk; Template:Lang-it; 19 February 1473 – 24 May 1543) was a Renaissance astronomer, priest and the first person to formulate a comprehensive heliocentric cosmology, which displaced the Earth from the center of the universe.

Copernicus' epochal book, De revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres), published just before his death in 1543, is often regarded as the starting point of modern astronomy and the defining epiphany that began the scientific revolution. His heliocentric model, with the Sun at the center of the universe, demonstrated that the observed motions of celestial objects can be explained without putting Earth at rest in the center of the universe. His work stimulated further scientific investigations, becoming a landmark in the history of science that is often referred to as the Copernican Revolution.

Among the great polymaths of the Renaissance, Copernicus was a mathematician, astronomer, physician, quadrilingual polyglot, classical scholar, translator, artist, Catholic cleric, jurist, governor, military leader, diplomat and economist. Among his many responsibilities, astronomy figured as little more than an avocation – yet it was in that field that he made his mark upon the world.

Life

Toruń birthplace (ul. Kopernika 15, left). Together with the house at no. 17 (right), it forms the Muzeum Mikołaja Kopernika.

Nicolaus Copernicus was born on 19 February 1473, in the city of Thorn (Toruń) in Royal Prussia, part of the Kingdom of Poland.

His father was a merchant from Kraków and his mother was the daughter of a wealthy Toruń merchant. Nicolaus was the youngest of four children. His brother Andreas (Andrew) became an Augustinian canon at Frombork (Frauenburg). His sister Barbara, named after her mother, became a Benedictine nun and in her final years (she died after 1517) prioress of a convent in Chełmno (Culm, Kulm). His sister Katharina married the businessman and Toruń city councilor Barthel Gertner and left five children, whom Copernicus looked after to the end of his life.

Copernicus never married or had children.

Father's family

The father’s family can be traced to a village in Silesia near Nysa (Neiße). The village's name has been variously spelled Kopernik, Köppernig, Köppernick, and today Koperniki. In the 14th century, members of the family began moving to various other Silesian cities, to the Polish capital, Kraków (Cracow, 1367), and to Toruń (1400). The father, likely the son of Jan, came from the Kraków line.

Nicolaus was named after his father, who appears in records for the first time as a well-to-do Catholic merchant who dealt in copper, selling it mostly in Danzig (Gdańsk). He moved from Kraków to Toruń around 1458. Toruń, situated on the Vistula River, was at that time embroiled in the Thirteen Years' War (1454–66), in which the Kingdom of Poland and the Prussian Confederation, an alliance of Prussian cities, gentry and clergy, fought the Teutonic Order over control of the region. In this war predominantly German-culture and German speaking Hanseatic cities like Danzig (Gdańsk) and Thorn (Toruń), the hometown of Nicolaus Copernicus, chose to support the Polish king, who promised to respect the cities' traditional vast independence, which the Teutonic Order had challenged. The father of Nicolaus was actively engaged in the politics of the day, and supported Poland and the cities against the Teutonic Order. In 1454 he mediated negotiations between Poland’s Cardinal Zbigniew Oleśnicki and the Prussian cities for repayment of war loans. In the Second Peace of Thorn (1466), the Teutonic Order formally relinquished all claims to its western provinces, which as Royal Prussia remained a region of Poland for the next 300 years.

The father married Barbara Watzenrode, the astronomer's mother, between 1461 and 1464. He died sometime between 1483 and 1485. Upon the father’s death, young Nicolaus’ maternal uncle, Lucas Watzenrode the Younger (1447–1512), took the boy under his protection and saw to his education and career.

Mother's family

Copernicus' maternal uncle, Lucas Watzenrode the Younger

Nicolaus’ mother, Barbara Watzenrode, was the daughter of Lucas Watzenrode the Elder and his wife Katherine (née Modlibóg). Not much is known about her life, but she is believed to have died when Nicolaus was a small boy. The Watzenrodes, who were Roman Catholic, had come from the Świdnica (Schweidnitz) region of Silesia and had settled in Toruń after 1360, becoming prominent members of the city’s patrician class. Through the Watzenrodes' extensive family relationships by marriage, they were related to wealthy families of Toruń, Danzig and Elbląg (Elbing), and to the prominent Czapski, Działyński, Konopacki and Kościelecki noble families. The Modlibógs (literally, in Polish, "Pray to God") were a prominent Roman Catholic Polish family who had been well known in Poland's history since 1271. Lucas and Katherine had three children: Lucas Watzenrode the Younger, who would become Copernicus' patron; Barbara, the astronomer's mother; and Christina, who in 1459 married the merchant and mayor of Toruń, Tiedeman von Allen.

Lucas Watzenrode the Elder was well-regarded in Toruń as a devout man and honest merchant, and he was active politically. He was a decided opponent of the Teutonic Knights and an ally of Polish King Casimir IV Jagiellon. In 1453 he was the delegate from Toruń at the Grudziądz (Graudenz) conference that planned to ally the cities of the Prussian Confederation with Casimir IV in their subsequent war against the Teutonic Knights. During the Thirteen Years' War that ensued the following year, he actively supported the war effort with substantial monetary subsidies, with political activity in Toruń and Danzig, and by personally fighting in battles at Łasin (Lessen) and Marienburg (Malbork). He died in 1462.

Lucas Watzenrode the Younger, the astronomer's maternal uncle and patron, was educated at the University of Krakow (now Jagiellonian University) and at the universities of Cologne and Bologna. He was a bitter opponent of the Teutonic Order and its Grand Master, who once referred to Watzenrode as “the devil incarnate.” In 1489 Watzenrode was elected Bishop of Warmia (Ermeland, Ermland) against the preference of King Casimir IV, who had hoped to install his own son in that seat. As a result, Watzenrode quarreled with the king until Casimir IV’s death three years later. Watzenrode was then able to form close relations with three successive Polish monarchs: John I Albert, Alexander Jagiellon, and Sigismund I the Old. He was a friend and key advisor to each ruler, and his influence greatly strengthened the ties between Warmia and Poland proper. Watzenrode came to be considered the most powerful man in Warmia, and his wealth, connections and influence allowed him to secure Copernicus’ education and career as a canon at Frombork (Frauenberg) Cathedral.

Languages

German-language letter from Copernicus to Duke Albert of Prussia, giving medical advice for George von Kunheim (1541)

Copernicus is postulated to have spoken Latin, German, and Polish with equal fluency. He also spoke Greek and Italian. The vast majority of Copernicus’ surviving works are in Latin, which in his lifetime was the language of academia in Europe. Latin was also the official language of the Roman Catholic Church and of Poland's royal court, and thus all of Copernicus’ correspondence with the Church and with Polish leaders was in Latin.

There survives a German-language correspondence between Copernicus and Duke Albert of Prussia. Some scholars hold that German should be considered Copernicus’ native language because Thorn/Toruń was then predominantly German-speaking, because a German-language correspondence survives to illustrate Copernicus' proficiency in that language, and because, while studying law at Bologna in 1496, he signed into the German natio (Natio Germanorum)—a student organization which, according to its 1497 by-laws, was open to German-speaking students of all kingdoms and states.

On the other hand, Renaissance Poles wrote variously in Latin, in Polish or in both languages.

Name

In Copernicus’ day, people were often called after the places where they lived. Like the Silesian village that inspired it, Copernicus’ surname has been spelled variously. Today the English-speaking world knows the astronomer principally by the Latinized name, "Nicolaus Copernicus."

The surname likely had something to do with the local Silesian copper-mining industry, though some scholars assert that it may have been inspired by the dill plant (in Polish, "koperek" or "kopernik") that grows wild in Silesia.

As was to be the case with William Shakespeare a century later, numerous spelling variants of the name are documented for the astronomer and his relatives. The name first appeared as a place name in Silesia in the 13th century, where it was spelled variously in Latin documents. Copernicus "was rather indifferent about orthography." During his childhood, the name of his father (and thus of the future astronomer) was recorded in Toruń as Niclas Koppernigk around 1480. At Kraków he signed his name "Nicolaus Nicolai de Torunia." At Bologna in 1496, he registered in the Matricula Nobilissimi Germanorum Collegii resp. Annales Clarissimae Nacionis Germanorum of the Natio Germanica Bononiae as Dominus Nicolaus Kopperlingk de Thorn – IX grosseti. At Padua, Copernicus signed his name "Nicolaus Copernik", later as "Coppernicus." He signed a self-portrait, a copy of which is now at Jagiellonian University, "N Copernic." The astronomer Latinized his name to Coppernicus, generally with two "p"s (in 23 of 31 documents studied), but later in life he used a single "p". On the title page of De revolutionibus, Rheticus published the name as (in the genitive, or possessive, case) "Nicolai Copernici".

Education

Collegium Maius, Kraków
Nicolaus Copernicus Monument in Kraków

Copernicus' uncle Watzenrode maintained contacts with the leading intellectual figures in Poland and was a friend of the influential Italian-born humanist and Kraków courtier, Filippo Buonaccorsi. Watzenrode seems first to have sent young Copernicus to the St. John's School at Toruń where he himself had been a master. Later, according to Armitage (some scholars differ), the boy attended the Cathedral School at Włocławek, up the Vistula River from Toruń, which prepared pupils for entrance to the University of Krakow, Watzenrode's alma mater in Poland's capital.

In the winter semester of 1491–92 Copernicus, as "Nicolaus Nicolai de Thuronia," matriculated together with his brother Andrew at the University of Krakow (now Jagiellonian University). Copernicus began his studies in the Department of Arts (from the fall of 1491, presumably until the summer or fall of 1495) in the heyday of the Kraków astronomical-mathematical school, acquiring the foundations for his subsequent mathematical achievements. According to a later but credible tradition (Jan Brożek), Copernicus was a pupil of Albert Brudzewski, who by then (from 1491) was a professor of Aristotelian philosophy but taught astronomy privately outside the university; Copernicus became familiar with Brożek's widely read commentary to Georg von Peuerbach's Theoricæ novæ planetarum and almost certainly attended the lectures of Bernard of Biskupie and Wojciech Krypa of Szamotuły and probably other astronomical lectures by Jan of Głogów, Michael of Wrocław, Wojciech of Pniewy and Marcin Bylica of Olkusz.

Copernicus' Kraków studies gave him a thorough grounding in the mathematical-astronomical knowledge taught at the university (arithmetic, geometry, geometric optics, cosmography, theoretical and computational astronomy), a good knowledge of the philosophical and natural-science writings of Aristotle (De coelo, Metaphysics) and Averroes (which later would play an important role in shaping his theory), stimulated his interest in learning, and made him conversant with humanistic culture. Copernicus broadened the knowledge that he took from the university lecture halls with independent reading of books that he acquired during his Kraków years (Euclid, Haly Abenragel, the Alfonsine Tables, Johannes Regiomontanus' Tabulae directionum); to this period, probably, also date his earliest scientific notes, now preserved partly at Uppsala University. At Kraków Copernicus began collecting a large library on astronomy; it would later be carried off as war booty by the Swedes during the Deluge and is now at the Uppsala University Library.

Copernicus' four years at Kraków played an important role in the development of his critical faculties and initiated his analysis of the logical contradictions in the two "official" systems of astronomy—Aristotle's theory of homocentric spheres, and Ptolemy's mechanism of eccentrics and epicycles--the surmounting and discarding of which constituted the first step toward the creation of Copernicus' own doctrine of the structure of the universe.

Without taking a degree, probably in the fall of 1495, Copernicus left Kraków for the court of his uncle Watzenrode, who in 1489 had been elevated to Prince-Bishop of Warmia and soon (after November 1495) sought to place his nephew in a Warmia canonry vacated by the 26 August 1495 death of its previous tenant. For unclear reasons—probably due to opposition from part of the chapter, who appealed to Rome--Copernicus' installation was delayed, inclining Watzenrode to send both his nephews to study law in Italy, seemingly with a view to furthering their ecclesiastic careers and thereby also strengthening his own influence in the Warmia chapter.

Leaving Warmia in mid-1496—possibly with the retinue of the chapter's chancellor, Jerzy Pranghe, who was going to Italy—in the fall (October?) of that year Copernicus arrived in Bologna and a few months later (after 6 January 1497) signed himself into the register of the Bologna University of Jurists' "German nation," which also included Polish youths from Silesia, Prussia and Pomerania as well as students of other nationalities.

It was only on 20 October 1497 that Copernicus, by proxy, formally succeeded to the Warmia canonry, which had been granted to him two years earlier. To this, by a document dated 10 January 1503 at Padua, he would add a sinecure at the Collegiate Church of the Holy Cross in Wrocław (Breslau), Silesia, Bohemia. Despite having received a papal indult on 29 November 1508 to receive further benefices, through his ecclesiastic career Copernicus not only did not acquire further prebends and higher stations (prelacies) at the chapter, but in 1538 he relinquished the Wrocław sinecure. It is uncertain whether he was ordained a priest; he may only have taken minor orders, which sufficed for assuming a chapter canonry.

Via Galliera 65, Bologna, site of house of Domenico Maria Novara. Plaque on portico commemorates Copernicus.
"Here, where stood the house of Domenico Maria Novara, professor of the ancient Studium of Bologna, NICOLAUS COPERNICUS, the Polish mathematician and astronomer who would revolutionize concepts of the universe, conducted brilliant celestial observations with his teacher in 1497–1500. Placed on the 5th centenary of birth by the City, the University, the Academy of Sciences of the Institute of Bologna, the Polish Academy of Sciences. 1473 1973."

During his three-year stay at Bologna, between fall 1496 and spring 1501, Copernicus seems to have devoted himself less keenly to studying canon law (he received his doctorate in law only after seven years, following a second return to Italy in 1503) than to studying the humanities--probably attending lectures by Filippo Beroaldo, Antonio Urceo, called Codro, Giovanni Garzoni and Alessandro Achillini--and to studying astronomy. He met the famous astronomer Domenico Maria Novara da Ferrara and became his disciple and assistant. Copernicus was developing new ideas inspired by reading the "Epitome of the Almagest" (Epitome in Almagestum Ptolemei) by George von Peuerbach and Johannes Regiomontanus (Venice, 1496). He verified its observations about certain peculiarities in Ptolemy's theory of the Moon's motion, by conducting on 9 March 1497 at Bologna a memorable observation of Aldebaran, the brightest star in the Taurus constellation, whose results reinforced his doubts as to the geocentric system. Copernicus the humanist sought confirmation for his growing doubts through close reading of Greek and Latin authors (Pythagoras, Aristarchos of Samos, Cleomedes, Cicero, Pliny the Elder, Plutarch, Philolaus, Heraclides, Ecphantos, Plato), gathering, especially while at Padua, fragmentary historic information about ancient astronomical, cosmological and calendar systems.

Copernicus spent the jubilee year 1500 in Rome, where he arrived with his brother Andrew that spring, doubtless to perform an apprenticeship at the Papal Curia. Here, too, however, he continued his astronomical work begun at Bologna, observing, for example, a lunar eclipse on the night of 5–6 November 1500. According to a later account by Rheticus, Copernicus also—probably privately, rather than at the Roman Sapienza--as a "Professor Mathematum" (professor of astronomy) delivered, "to numerous... students and... leading masters of the science," public lectures devoted probably to a critique of the mathematical solutions of contemporary astronomy.

On his return journey doubtless stopping briefly at Bologna, in mid-1501 Copernicus arrived back in Warmia. After on 28 July receiving from the chapter a two-year extension of leave in order to study medicine (since "he may in future be a useful medical advisor to our Reverend Superior and the gentlemen of the chapter"), in late summer or in the fall he returned again to Italy, probably accompanied by his brother Andrew and by Canon B. Sculteti. This time he studied at the University of Padua, famous as a seat of medical learning, and—except for a brief visit to Ferrara in May-June 1503 to pass examinations for, and receive, his doctorate in canon law—he remained at Padua from fall 1501 to summer 1503.

Copernicus studied medicine probably under the direction of leading Padua professors—Bartolomeo da Montagnana, Girolamo Fracastoro, Gabriele Zerbi, Alessandro Benedetti—and read medical treatises that he acquired at this time, by Valescus de Taranta, Jan Mesue, Hugo Senensis, Jan Ketham, Arnold de Villa Nova, and Michele Savonarola, which would form the embryo of his later medical library.

One of the subjects that Copernicus must have studied was astrology, since it was considered an important part of a medical education. However, unlike most other prominent Renaissance astronomers, he appears never to have practiced or expressed any interest in astrology.

As at Bologna, Copernicus did not limit himself to his official studies. It was probably the Padua years that saw the beginning of his Hellenistic interests. He familiarized himself with Greek language and culture with the aid of Theodorus Gaza's grammar (1495) and J.B. Chrestonius' dictionary (1499), expanding his studies of antiquity, begun at Bologna, to the writings of Bessarion, J. Valla and others. There also seems to be evidence that it was during his Padua stay that there finally crystallized the idea of basing a new system of the world on the movement of the Earth.

As the time approached for Copernicus to return home, in spring 1503 he journeyed to Ferrara where, on 31 May 1503, having passed the obligatory examinations, he was granted the degree of doctor of canon law. No doubt it was soon after (at latest, in fall 1503) that he left Italy for good to return to Warmia.

Work

Astronomer Copernicus: Conversation with God, by Matejko. In background: Frombork Cathedral.

Having completed all his studies in Italy, 30-year-old Copernicus returned to Warmia, where — apart from brief journeys to Kraków and to nearby Prussian cities (Toruń, Gdańsk, Elbląg, Grudziądz, Malbork, Königsberg) — he would live out the remaining 40 years of his life.

The Prince-Bishopric of Warmia enjoyed substantial autonomy, with its own diet (parliament), army, monetary unit (the same as in the other parts of Royal Prussia) and treasury.

From 1503 to 1510, or perhaps till his uncle's death (29 March 1512), Copernicus was his personal secretary and physician and resided in the Bishop's castle at Lidzbark Warmiński (Heilsberg). It is there that he began work on his heliocentric theory. In his official capacity, he took part in nearly all his uncle's political, ecclesiastic and administrative-economic duties. From the beginning of 1504, Copernicus accompanied Watzenrode to sessions of the Royal Prussian diet held at Malbork and Elbląg and, write Dobrzycki and Hajdukiewicz, "participated... in all the more important events in the complex diplomatic game that that ambitious politician and statesman played in defense of the particular interests of Prussia and Warmia, between hostility to the Order and loyalty to the Crown."

Copernicus' translation of Theophylact Simocatta's Epistles. Cover shows coats-of-arms of (clockwise from top) Poland, Lithuania and Kraków.

In 1504–12 Copernicus made numerous journeys as part of his uncle's retinue—in 1504, to Toruń and Gdańsk (Danzig), to a session of the Royal Prussian Council in the presence of Poland's King Alexander Jagiellon; to sessions of the Prussian diet at Malbork (1506), Elbląg (1507) and Sztum (1512); and he may have attended a Poznań session (1510) and the coronation of Poland's King Sigismund I the Old in Kraków (1507). Watzenrode's itinerary suggests that in spring 1509 Copernicus may have attended the Kraków sejm.

It was probably on the latter occasion, in Kraków, that Copernicus submitted for printing at Jan Haller's press his translation, from Greek to Latin, of a collection, by the 7th-century Byzantine historian Theophylact Simocatta, of 85 brief poems called Epistles, or letters, supposed to have passed between various characters in a Greek story. They are of three kinds—"moral," offering advice on how people should live; "pastoral," giving little pictures of shepherd life; and "amorous," comprising love poems. They are arranged to follow one another in a regular rotation of subjects. Copernicus had translated the Greek verses into Latin prose, and he now published his version as Theophilacti scolastici Simocati epistolae morales, rurales et amatoriae interpretatione latina, which he dedicated to his uncle in gratitude for all the benefits he had received from him. With this translation, Copernicus declared himself on the side of the humanists in the struggle over the question whether Greek literature should be revived. Copernicus' first poetic work was a Greek epigram, composed probably during a visit to Kraków, for Johannes Dantiscus' epithalamium for Barbara Zapolya's 1512 wedding to King Zygmunt I the Old.

Some time before 1514, Copernicus wrote an initial outline of his heliocentric theory known only from later transcripts, by the title (perhaps given to it by a copyist), Nicolai Copernici de hypothesibus motuum coelestium a se constitutis commentariolus—commonly referred to as the Commentariolus. It was a succinct theoretical description of the world's heliocentric mechanism, without mathematical apparatus, and differed in some important details of geometric construction from De revolutionibus; but it was already based on the same assumptions regarding Earth's triple motions. The Commentariolus, which Copernicus consciously saw as merely a first sketch for his planned book, was not intended for printed distribution. He made only a very few manuscript copies available to his closest acquaintances, including, it seems, several Kraków astronomers with whom he collaborated in 1515–30 in observing eclipses. Tycho Brahe would include a fragment from the Commentariolus in his own treatise, Astronomiae instauratae progymnasmata, published in Prague in 1602, based on a manuscript that he had received from the Bohemian physician and astronomer Tadeáš Hájek, a friend of Rheticus. The Commentariolus would appear complete in print for the first time only in 1878.

Copernicus' tower at Frombork, where he lived and worked; rebuilt recently
Frombork Cathedral mount and fortifications. In foreground: statue of Copernicus

In 1510 or 1512 Copernicus moved to Frombork, a town to the northwest at the Vistula Lagoon on the Baltic Sea coast. There, in April 1512, he participated in the election of Fabian of Lossainen as Prince-Bishop of Warmia. It was only in early June 1512 that the chapter gave Copernicus an "external curia"—a house outside the defensive walls of the cathedral mount. In 1514 he purchased the northwestern tower within the walls of the Frombork stronghold. He would maintain both these residences to the end of his life, despite the devastation of the chapter's buildings by a raid against Frombork carried out by the Teutonic Order in January 1520, during which Copernicus' astronomical instruments were probably destroyed. Copernicus conducted astronomical observations in 1513–16 presumably from his external curia; and in 1522–43, from an unidentified "small tower" (turricula), using primitive instruments modeled on ancient ones—the quadrant, triquetrum, armillary sphere. At Frombork Copernicus conducted over half of his more than 60 registered astronomical observations.

Having settled permanently at Frombork, where he would reside to the end of his life, with interruptions in 1516-19 and 1520–21, Copernicus found himself at the Warmia chapter's economic and administrative center, which was also one of Warmia's two chief centers of political life. In the difficult, politically complex situation of Warmia, threatened externally by the Teutonic Order's aggressions (attacks by Teutonic bands; the Polish-Teutonic War of 1519-21; Albrecht's plans to annex Warmia), internally subject to strong separatist pressures (the selection of the prince-bishops of Warmia; currency reform), he, together with part of the chapter, represented a program of strict cooperation with the Polish Crown and demonstrated in all his public activities (the defense of his country against the Order's plans of conquest; proposals to unify its monetary system with the Polish Crown's; support for Poland's interests in the Warmia dominion's ecclesiastic administration) that he was consciously a citizen of the Polish-Lithuanian Republic. Soon after the death of uncle Bishop Watzenrode, he participated in the signing of the Second Treaty of Piotrków Trybunalski (7 December 1512), governing the appointment of the Bishop of Warmia, declaring, despite opposition from part of the chapter, for loyal cooperation with the Polish Crown.

That same year (before 8 November 1512) Copernicus assumed responsibility, as magister pistoriae, for administering the chapter's economic enterprises (he would hold this office again in 1530), having already since 1511 fulfilled the duties of chancellor and visitor of the chapter's estates.

His administrative and economic dutes did not distract Copernicus, in 1512-15, from intensive observational activity. The results of his observations of Mars and Saturn in this period, and especially a series of four observations of the Sun made in 1515, led to discovery of the variability of Earth's eccentric and of the movement of the solar apogee in relation to the fixed stars, which in 1515-19 prompted his first revisions of certain assumptions of his system. Some of the observations that he made in this period may have had a connection with a proposed reform of the Julian calendar made in the first half of 1513 at the request of the Bishop of Fossombrone, Paul of Middelburg. Their contacts in this matter in the period of the Fifth Lateran Council were later memorialized in a complimentary mention in Copernicus' dedicatory epistle in De revolutionibus orbium coelestium and in a treatise by Paul of Middelburg, Secundum compendium correctionis Calendarii (1516), which mentions Copernicus among the learned men who had sent the Council proposals for the calendar's emendation.

Olsztyn Castle

During 1516–21, Copernicus resided at Olsztyn Castle as economic administrator of Warmia, including Olsztyn (Allenstein) and Pieniężno (Mehlsack). While there, he wrote a manuscript, Locationes mansorum desertorum (Locations of Deserted Fiefs), with a view to populating those fiefs with industrious farmers and so bolstering the economy of Warmia. When Olsztyn was besieged by the Teutonic Knights during the Polish–Teutonic War (1519–21), Copernicus directed the defense of Olsztyn and Warmia by Royal Polish forces. He also represented the Polish side in the ensuing peace negotiations.

Copernicus worked for years with the Royal Prussian diet, and with Duke Albert of Prussia (against whom Copernicus had defended Warmia in the Polish-Teutonic War), and advised King Sigismund, on monetary reform. He participated in discussions in the East Prussian diet about coinage reform in the Prussian countries; a question that concerned the diet was who had the right to mint coin. Political developments in Prussia culminated in the 1525 establishment of the Duchy of Prussia as a Protestant state in vassalage to Poland.

In 1526 Copernicus wrote a study on the value of money, Monetae cudendae ratio. In it he formulated an early iteration of the theory, now called Gresham's Law, that "bad" (debased) coinage drives "good" (un-debased) coinage out of circulation—70 years before Thomas Gresham. He also formulated a version of quantity theory of money. Copernicus' recommendations on monetary reform were widely read by leaders of both Prussia and Poland in their attempts to stabilize currency.

Thorvaldsen's Copernicus Monument in Warsaw

In 1533, Johann Widmanstetter, secretary to Pope Clement VII, explained Copernicus' heliocentric system to the Pope and two cardinals. The Pope was so pleased that he gave Widmanstetter a valuable gift.

In 1535 Bernard Wapowski wrote a letter to a gentleman in Vienna, urging him to publish an enclosed almanac, which he claimed had been written by Copernicus. This is the first and only mention of a Copernicus almanac in the historical records. The "almanac" was likely Copernicus' tables of planetary positions. Wapowski's letter mentions Copernicus' theory about the motions of the earth. Nothing came of Wapowski's request, because he died a couple of weeks later.

Following the death of Prince-Bishop of Warmia Mauritius Ferber (1 July 1537), Copernicus participated in the election of his successor, Johannes Dantiscus (20 September 1537). Copernicus was one of four candidates for the post, written in at the initiative of Tiedemann Giese; but his candidacy was actually pro forma, since Dantiscus had earlier been named coadjutor bishop to Ferber.

At first Copernicus maintained friendly relations with the new Prince-Bishop, assisting him medically in spring 1538 and accompanying him that summer on an inspection tour of Chapter holdings. But that autumn, their friendship was strained by suspicions over Copernicus' housekeeper, Anna Schilling, whom Dantiscus removed from Frombork in 1539.

Copernicus with medicinal plant

In his younger days, Copernicus the physician had treated his uncle, brother and other chapter members. In later years he was called upon to attend the elderly bishops who in turn occupied the see of Warmia—Mauritius Ferber and Johannes Dantiscus—and, in 1539, his old friend Tiedemann Giese, Bishop of Chełmno (Kulm). In treating such important patients, he sometimes sought consultations from other physicians, including the physician to Duke Albert and, by letter, the Polish Royal Physician.

In the spring of 1541, Duke Albert summoned Copernicus to Königsberg to attend the Duke's counselor, George von Kunheim, who had fallen seriously ill, and for whom the Prussian doctors seemed unable to do anything. Copernicus went willingly; he had met von Kunheim during negotiations over reform of the coinage. And Copernicus had come to feel that Albert himself was not such a bad person; the two had many intellectual interests in common. The Chapter readily gave Copernicus permission to go, as it wished to remain on good terms with the Duke, despite his Lutheran faith. In about a month the patient recovered, and Copernicus returned to Frombork. For a time, he continued to receive reports on von Kunheim's condition, and to send him medical advice by letter.

Throughout this period of his life, Copernicus continued making astronomical observations and calculations, but only as his other responsibilities permitted and never in a professional capacity.

Some of Copernicus' close friends turned Protestant, but Copernicus never showed a tendency in that direction. The first attacks on him came from Protestants. Wilhelm Gnapheus, a Dutch refugee settled in Elbląg, wrote a comedy in Latin, Morosophus (The Foolish Sage), and staged it at the Latin school that he had established there. In the play, Copernicus was caricatured as a haughty, cold, aloof man who dabbled in astrology, considered himself inspired by God, and was rumored to have written a large work that was moldering in a chest.

Elsewhere Protestants were the first to react to news of Copernicus' theory. Melanchthon wrote:

Some people believe that it is excellent and correct to work out a thing as absurd as did that Sarmatian astronomer who moves the earth and stops the sun. Indeed, wise rulers should have curbed such light-mindedness.

Nevertheless, in 1551, eight years after Copernicus' death, astronomer Erasmus Reinhold published, under the sponsorship of Copernicus' former military adversary, the Protestant Duke Albert, the Prussian Tables, a set of astronomical tables based on Copernicus' work. Astronomers and astrologers quickly adopted it in place of its predecessors.

Heliocentrism

Mid-16th-century portrait

Some time before 1514 Copernicus made available to friends his "Commentariolus" ("Little Commentary"), a forty-page manuscript describing his ideas about the heliocentric hypothesis. It contained seven basic assumptions. Thereafter he continued gathering data for a more detailed work.

About 1532 Copernicus had basically completed his work on the manuscript of De revolutionibus orbium coelestium; but despite urging by his closest friends, he resisted openly publishing his views, not wishing—as he confessed—to risk the scorn "to which he would expose himself on account of the novelty and incomprehensibility of his theses."

In 1533, Johann Albrecht Widmannstetter delivered a series of lectures in Rome outlining Copernicus' theory. Pope Clement VII and several Catholic cardinals heard the lectures and were interested in the theory. On 1 November 1536, Cardinal Nikolaus von Schönberg, Archbishop of Capua, wrote to Copernicus from Rome:

Some years ago word reached me concerning your proficiency, of which everybody constantly spoke. At that time I began to have a very high regard for you... For I had learned that you had not merely mastered the discoveries of the ancient astronomers uncommonly well but had also formulated a new cosmology. In it you maintain that the earth moves; that the sun occupies the lowest, and thus the central, place in the universe... Therefore with the utmost earnestness I entreat you, most learned sir, unless I inconvenience you, to communicate this discovery of yours to scholars, and at the earliest possible moment to send me your writings on the sphere of the universe together with the tables and whatever else you have that is relevant to this subject ...

By then Copernicus' work was nearing its definitive form, and rumors about his theory had reached educated people all over Europe. Despite urgings from many quarters, Copernicus delayed publication of his book, perhaps from fear of criticism—a fear delicately expressed in the subsequent dedication of his masterpiece to Pope Paul III. Scholars disagree on whether Copernicus' concern was limited to possible astronomical and philosophical objections, or whether he was also concerned about religious objections.

The book

De revolutionibus, 1543. Click on image to read book.

Copernicus was still working on De revolutionibus orbium coelestium (even if not convinced that he wanted to publish it) when in 1539 Georg Joachim Rheticus, a Wittenberg mathematician, arrived in Frombork. Philipp Melanchthon, a close theological ally of Martin Luther, had arranged for Rheticus to visit several astronomers and study with them.

Rheticus became Copernicus' pupil, staying with him for two years and writing a book, Narratio prima (First Account), outlining the essence of Copernicus' theory. In 1542 Rheticus published a treatise on trigonometry by Copernicus (later included in the second book of De revolutionibus).

Under strong pressure from Rheticus, and having seen the favorable first general reception of his work, Copernicus finally agreed to give De revolutionibus to his close friend, Tiedemann Giese, bishop of Chełmno (Kulm), to be delivered to Rheticus for printing by the German printer Johannes Petreius at Nuremberg (Nürnberg), Germany. While Rheticus initially supervised the printing, he had to leave Nuremberg before it was completed, and he handed over the task of supervising the rest of the printing to a Lutheran theologian, Andreas Osiander.

Osiander added an unauthorised and unsigned preface, defending the work against those who might be offended by the novel hypotheses. He explained that astronomers may find different causes for observed motions, and choose whatever is easier to grasp. As long as a hypothesis allows reliable computation, it does not have to match what a philosopher might seek as the truth.

Death

Copernicus' 1735 Latin epitaph in Frombork Cathedral. An earlier 1580 epitaph had been destroyed during wars.
Casket with Copernicus' remains, St. James' Cathedral Basilica, Olsztyn, March 2010
Frombork Cathedral
Copernicus' 2010 grave, Frombork Cathedral

Copernicus died in Frauenburg (Frombork) on 24 May 1543. Legend has it that the first printed copy of De revolutionibus was placed in his hands on the very day that he died, allowing him to take farewell of his life's work. He is reputed to have awoken from a stroke-induced coma, looked at his book, and then died peacefully.

Copernicus was reportedly buried in Frombork Cathedral, where archaeologists for over two centuries searched in vain for his remains. Efforts to locate the remains in 1802, 1909, 1939 and 2004 had come to nought. In August 2005, however, a team led by Jerzy Gąssowski, head of an archaeology and anthropology institute in Pułtusk, after scanning beneath the cathedral floor, discovered what they believed to be Copernicus' remains.

The find came after a year of searching, and the discovery was announced only after further research, on November 3, 2008. Gąssowski said he was "almost 100 percent sure it is Copernicus." Forensic expert Capt. Dariusz Zajdel of the Polish Police Central Forensic Laboratory used the skull to reconstruct a face that closely resembled the features—including a broken nose and a scar above the left eye—on a Copernicus self-portrait. The expert also determined that the skull belonged to a man who had died around age 70—Copernicus' age at the time of his death.

The grave was in poor condition, and not all the remains of the skeleton were found; missing, among other things, was the lower jaw. The DNA from the bones found in the grave matched hair samples taken from a book owned by Copernicus which was kept at the library of the University of Uppsala in Sweden.

On 22 May 2010 Copernicus was given a second funeral in a Mass led by Józef Kowalczyk, the former papal nuncio to Poland and newly named Primate of Poland. Copernicus' remains were reburied in the same spot in Frombork Cathedral where part of his skull and other bones had been found. A black granite tombstone now identifies him as the founder of the heliocentric theory and also a church canon. The tombstone bears a representation of Copernicus' model of the solar system—a golden sun encircled by six of the planets.

Copernican system

Main article: Copernican heliocentrism

Predecessors

Philolaus (c. 480–385 BCE), a Greek philosopher of the Pythagorean school, described an astronomical system in which the Earth, Moon, Sun, planets, and stars all revolved about a central fire. Heraclides Ponticus (387–312 BCE) proposed that the Earth rotates on its axis. According to Archimedes, Aristarchus of Samos (310–230 BCE) wrote of heliocentric hypotheses in a book that does not survive. Plutarch wrote that Aristarchus was accused of impiety for "putting the Earth in motion".

In a manuscript of De revolutionibus, Copernicus wrote, "It is likely that ... Philolaus perceived the mobility of the earth, which also some say was the opinion of Aristarchus of Samos", but later struck out the passage and omitted it from the published book.

Ptolemy

Main article: Almagest

The prevailing theory in Europe during Copernicus' lifetime was the one that Ptolemy published in his Almagest circa 150 CE. Ptolemy's system drew on previous Greek theories in which the Earth was the stationary center of the universe. Stars were embedded in a large outer sphere which rotated rapidly, approximately daily, while each of the planets, the Sun, and the Moon were embedded in their own, smaller spheres. Ptolemy's system employed devices, including epicycles, deferents and equants, to account for observations that the paths of these bodies differed from simple, circular orbits centered on the Earth. Ptolemy's model was refined by the 10th-century astronomer Muhammad al Battani, working at Ar-Raqqah in modern-day Syria. Although al Battani accepted the validity of the Ptolemaic model, Copernicus made much use of his astronomical observations in demonstrating the heliocentric theory, and gave acknowledgement to his predecessor in De revolutionibus.

Copernicus

Copernicus' vision of the universe in De revolutionibus orbium coelestium

Copernicus' major theory was published in De revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres), in the year of his death, 1543, though he had formulated the theory several decades earlier.

Copernicus' "Commentariolus" summarized his heliocentric theory. It listed the "assumptions" upon which the theory was based as follows:

1. There is no one center of all the celestial circles or spheres.
2. The center of the earth is not the center of the universe, but only of gravity and of the lunar sphere.
3. All the spheres revolve about the sun as their mid-point, and therefore the sun is the center of the universe.
4. The ratio of the earth's distance from the sun to the height of the firmament (outermost celestial sphere containing the stars) is so much smaller than the ratio of the earth's radius to its distance from the sun that the distance from the earth to the sun is imperceptible in comparison with the height of the firmament.
5. Whatever motion appears in the firmament arises not from any motion of the firmament, but from the earth's motion. The earth together with its circumjacent elements performs a complete rotation on its fixed poles in a daily motion, while the firmament and highest heaven abide unchanged.
6. What appear to us as motions of the sun arise not from its motion but from the motion of the earth and our sphere, with which we revolve about the sun like any other planet. The earth has, then, more than one motion.

7. The apparent retrograde and direct motion of the planets arises not from their motion but from the earth's. The motion of the earth alone, therefore, suffices to explain so many apparent inequalities in the heavens.

De revolutionibus itself was divided into six parts, called "books":

  1. General vision of the heliocentric theory, and a summarized exposition of his idea of the World
  2. Mainly theoretical, presents the principles of spherical astronomy and a list of stars (as a basis for the arguments developed in the subsequent books)
  3. Mainly dedicated to the apparent motions of the Sun and to related phenomena
  4. Description of the Moon and its orbital motions
  5. Concrete exposition of the new system
  6. Concrete exposition of the new system

Successors

Georg Joachim Rheticus could have been Copernicus' successor, but did not rise to the occasion. Erasmus Reinhold could have been his successor, but died prematurely. The first of the great successors was Tycho Brahe, followed by his erstwhile co-worker, Johannes Kepler.

Copernicanism

See also: Catholic Church and science
Copernicus, astronomer

At original publication, Copernicus' epoch-making book caused only mild controversy, and provoked no fierce sermons about contradicting Holy Scripture. It was only three years later, in 1546, that a Dominican, Giovanni Maria Tolosani, denounced the theory in an appendix to a work defending the absolute truth of Scripture. He also noted that the Master of the Sacred Palace (i.e., the Catholic Church's chief censor), Bartolomeo Spina, a friend and fellow Dominican, had planned to condemn De revolutionibus but had been prevented from doing so by his illness and death.

Arthur Koestler, in his popular book The Sleepwalkers, asserted that Copernicus' book had not been widely read on its first publication. This claim was trenchantly criticised by Edward Rosen, and has been decisively disproved by Owen Gingerich, who examined every surviving copy of the first two editions and found copious marginal notes by their owners throughout many of them. Gingerich published his conclusions in 2004 in The Book Nobody Read.

It has been much debated why it was not until six decades after Spina and Tolosani's attacks on Copernicus's work that the Catholic Church took any official action against it. Proposed reasons have included the personality of Galileo Galilei and the availability of evidence such as telescope observations.

In March 1616, in connection with the Galileo affair, the Roman Catholic Church's Congregation of the Index issued a decree suspending De revolutionibus until it could be "corrected," on the grounds that the supposedly Pythagorean doctrine that the Earth moves and the Sun does not was "false and altogether opposed to Holy Scripture." The same decree also prohibited any work that defended the mobility of the Earth or the immobility of the Sun, or that attempted to reconcile these assertions with Scripture.

On the orders of Pope Paul V, Cardinal Robert Bellarmine gave Galileo prior notice that the decree was about to be issued, and warned him that he could not "hold or defend" the Copernican doctrine. The corrections to De revolutionibus, which omitted or altered nine sentences, were issued four years later, in 1620.

In 1633 Galileo Galilei was convicted of grave suspicion of heresy for "following the position of Copernicus, which is contrary to the true sense and authority of Holy Scripture," and was placed under house arrest for the rest of his life.

The Catholic Church's 1758 Index of Prohibited Books omitted the general prohibition of works defending heliocentrism, but retained the specific prohibitions of the original uncensored versions of De revolutionibus and Galileo's Dialogue Concerning the Two Chief World Systems. Those prohibitions were finally dropped from the 1835 Index.

Nationality

Bust by Schadow, 1807, Walhalla temple
File:Kopernik.PNG
Former Polish coins with image of Copernicus, by Gosławski

The question of Copernicus' nationality, and indeed whether it is meaningful to ascribe to him a nationality in the modern sense, has been the subject of some discussion.

Historian Michael Burleigh describes the nationality debate as a "totally insignificant battle" between German and Polish scholars during the interwar period.

Astronomer Konrad Rudnicki calls the discussion a "fierce scholarly quarrel in... times of nationalism", and describes Copernicus as an inhabitant of a German-speaking territory belonging to Poland, himself of mixed Polish-German extraction.

According to Czesław Miłosz, the debate is an "absurd" projection of a modern understanding of nationality on Renaissance people, who identified with their home territories rather than with a nation.

Similarly, historian Norman Davies states that Copernicus, as was common for his era, was "largely indifferent" to nationality, being a local patriot who considered himself "Prussian".

Miłosz and Davies both say that despite Copernicus' German-speaking background, his working language was Latin, though according to Davies there is evidence that Copernicus also knew Polish. Davies concludes: "Taking everything into consideration, there is good reason to regard him both as a German and as a Pole, yet in the sense that modern nationalists understand it, he was neither."

The Stanford Encyclopedia of Philosophy describes Copernicus as "the child of a German family was a subject of the Polish crown." Encyclopædia Britannica, Encyclopedia Americana, The Columbia Encyclopedia, The Oxford World Encyclopedia, and the Microsoft Encarta Online Encyclopedia identify Copernicus as Polish.

Copernicium

On July 14, 2009, the discoverers, from the Gesellschaft für Schwerionenforschung in Darmstadt, Germany, of chemical element 112 (temporarily named ununbium) proposed to the International Union of Pure and Applied Chemistry that its permanent name be "copernicium" (symbol Cn). "After we had named elements after our city and our state, we wanted to make a statement with a name that was known to everyone," said Hofmann. "We didn't want to select someone who was a German. We were looking world-wide." On the 537th anniversary of his birthday the official naming was released to the public.

Veneration

Copernicus is honored, together with Johannes Kepler, in the liturgical calendar of the Episcopal Church (USA), with a feast day on May 23.

See also

Notes

  1. Nicolaus Copernicus Gesamtausgabe: Urkunden, Akten und Nachrichten: Texte und Übersetzungen, ISBN 3-05-003009-7, pp.23ff. (online); Marian Biskup: Regesta Copernicana (calendar of Copernicus' Papers), Ossolineum, 1973, p.32 (online). This spelling of the surname is rendered in many publications (Auflistung)
  2. http://www.newadvent.org/cathen/04352b.htm
  3. http://justus.anglican.org/resources/bio/165.html
  4. http://books.google.com/books?id=vFcqRuHLMwEC&pg=PR12&lpg=PR12&dq=Nicolaus+Copernicus+priest&source=bl&ots=X_QyFuJQnK&sig=zPUS85Xxat9fmrwIuDk5X3yjpwM&hl=en&ei=l-zATIzLG4LWtQPmmb3eCw&sa=X&oi=book_result&ct=result&resnum=9&ved=0CEMQ6AEwCA#v=onepage&q=Nicolaus%20Copernicus%20priest&f=false
  5. Copernicus was not, however, the first to propose some form of heliocentric system. A Greek mathematician and astronomer, Aristarchus of Samos, had already done so as early as the third century BCE. Nevertheless, there is little evidence that he ever developed his ideas beyond a very basic outline (Dreyer, 1953, pp. 135–48; Linton, 2004, p. 39).
  6. A self-portrait helped confirm the identity of his cranium when it was discovered at Frombork Cathedral in 2008. Kraków's Jagiellonian University has a 17th-century copy of Copernicus' 16th-century self-portrait. "Copernicus," Encyclopaedia Britannica, 15th ed., 2005, vol. 16, p. 760.
  7. Jerzy Dobrzycki and Leszek Hajdukiewicz, "Kopernik, Mikołaj", Polski słownik biograficzny, vol. XIV, 1969, p. 4.
  8. "The name of the village, not unlike that of the astronomer's family, has been variously spelled. A large German atlas of Silesia, published by Wieland in Nuremberg in 1731, spells it Kopernik." Stephen Mizwa, Nicolaus Copernicus, 1543-1943, Kessinger Publishing, 1943, p. 36. ()
  9. Jerzy Dobrzycki and Leszek Hajdukiewicz, "Kopernik, Mikołaj", Polski słownik biograficzny, vol. XIV, 1969, p. 3.
  10. Barbara Bieńkowska, The Scientific World of Copernicus, Springer, 1973
  11. Eugeniusz Rybka for Polska Akademia Nauk (the Polish Academy of Sciences), The Review of the Polish Academy of Sciences: Nicolaus Copernicus' Relationship with Cracow, Ossolineum, 1973, p. 23.
  12. Josh Sakolsky, Copernicus and Modern Astronomy, Rosen Publishing Group, 2005, p. 8.
  13. Marian Biskup, Regesta Copernicana (calendar of Copernicus' papers), Ossolineum, 1973, p. 16.
  14. "The mother of Barbara and Lucas was a Modlibog." Alexandre Koyre, Astronomical Revolution: Copernicus – Kepler – Borelli, Cornell University Press, 1973, ISBN 0-486-27095-5, p. 78. ()
  15. ^ "Adrian Krzyzanowski and John Sniadecki: Copernicus and His Native Land," The Foreign and Colonial Quarterly Review, Smith, Elder & Co., 1844, p. 367. ()
  16. ^ Stephen Mizwa: Nicolaus Copernicus, 1543-1943. Kessinger Publishing, 1943, p. 38.
  17. Czesław Miłosz, The History of Polish Literature, University of California Press, 1983, p. 38.
  18. Dobrzycki and Hajdukiewicz, Polski słownik biograficzny, vol. XIV, 1969, p. 4.
  19. The Head Office of State Archives, Poland, "Copernicus' Biography", accessed 5/22/09,
  20. Jerzy Dobrzycki and Leszek Hajdukiewicz, "Kopernik, Mikołaj", Polski słownik biograficzny, vol. XIV, 1969, p. 4.
  21. Jeremi Wasiutyński, The Solar Mystery: An Inquiry Into the Temporal and the Eternal Background of the Rise of Modern Civilization, Solum Forlag, 2003, p. 29.
  22. "In 1512, Bishop Watzenrode died suddenly after attending King Sigismund's wedding feast in Kraków. Rumors abounded that the bishop had been poisoned by agents of his long-time foe, the Teutonic Knights." Alan Hirshfeld: Parallax: The race to Measure the Cosmos. W.H. Freemand and Company, 2001, ISBN 0-7167-3711-6, p. 38. ()
  23. "The Watzelrodes—or Watzenrodes—in spite of their rather Germanic name seemed to have been good Poles (enemies of the Teutonic Order)." Alexandre Koyre, Astronomical Revolution, Copernicus - Kepler - Borelli, New York, Cornell University Press, 1973, ISBN 0-486-27095-5, p. 38. ()
  24. " was also firm, and the Teutonic Knights, who remained a constant menace, did not like him at all; the Grand Master of the order once described him as 'the devil incarnate'. was the trusted friend and advisor of three kings in succession: John Albert, Alexander (not to be confused with the poisoning pope), and Sigismund; and his influence greatly strengthened the ties between Warmia and Poland proper." Patrick Moore: The Great Astronomical Revolution: 1534-1687 and the Space Age Epilogue. Albion Publishing, 1994, ISBN 1-898563-18-7, pp. 52, 62 ().
  25. Wojciech Iwanczak (1998). "WATZENRODE, Lucas". In Bautz, Traugott (ed.). Biographisch-Bibliographisches Kirchenlexikon (BBKL) (in German). Vol. 13. Herzberg: Bautz. col. 389-393. ISBN 3-88309-072-7.
  26. "Lucas was on more friendly terms with his successors, Johann Albert (Jan Olbracht) (from 1492 to 1501), and later Alexander (Aleksander) (from 1501 to 1506), and Sigismund (Zygmunt) I (from 1506)." Pierre Gassendi & Olivier Thill: The Life of Copernicus (1473-1543): The Man Who Did Not Change the World. Xulon Press, 2002, ISBN 1-59160-193-2, p. 22. ()
  27. " was also firm, and the Teutonic Knights, who remained a constant menace, did not like him at all; the Grand Master of the order once described him as 'the devil incarnate'. was the trusted friend and advisor of three kings in succession: John Albert, Alexander (not to be confused with the poisoning pope), and Sigismund; and his influence greatly strengthened the ties between Warmia and Poland proper." Patrick Moore: The Great Astronomical Revolution: 1534-1687 and the Space Age Epilogue. Albion Publishing, 1994, ISBN 1-898563-18-7, pp. 52, 62. ()
  28. "He spoke German, Polish and Latin with equal fluency as well as Italian." Daniel Stone: The Polish-Lithuanian State, 1386-1795. University of Washington Press, 2001, ISBN 0-295-98093-1, p. 101. ()
  29. "He spoke Polish, Latin and Greek." Barbara Somerville: Nicolaus Copernicus: Father of Modern Astronomy. Compass Point Books, 2005, ISBN 0-7565-0812-6, p. 10. ().
  30. "He was a linguist with a command of Polish, German and Latin, and he possessed also a knowledge of Greek rare at that period in northeastern Europe and probably had some acquaintance with Italian and Hebrew." Angus Armitage: Copernicus and Modern Astronomy. Dover Publications, 2004 (originally 1957), ISBN 0-486-43907-0, p. 62.
  31. He used Latin and German, knew enough Greek to translate the 7th-century Byzantine poet Theophylact Simocatta's verses into Latin prose (Armitage, The World of Copernicus, pp. 75–77), and "there is ample evidence that he knew the Polish language" (Norman Davies, God's Playground, vol. II, p. 26). During his several years' studies in Italy, Copernicus presumably would also have learned some Italian. Professor Stefan Melkowski of Nicolaus Copernicus University in Toruń likewise asserts that Copernicus spoke both Polish and German. ( "O historii i o współczesności" ("About History and Contemporaneity"), May 2003.])
  32. "Deutsch war für Kopernikus Muttersprache und Alltagssprache, wenn auch der schriftliche Umgang fast ausschließlich auf Lateinisch erfolgte." Martin Carrier: Nikolaus Kopernikus. Beck'sche Reihe, C. H. Beck, 2001, ISBN 3-406-47577-9, 9783406475771, p. 192. (online)
  33. ^ Rudnicki, Konrad (2006). "The Genuine Copernican Cosmological Principle". Southern Cross Review: note 2. Retrieved 2010-01-21. {{cite journal}}: Unknown parameter |month= ignored (help)
  34. "Although great importance has frequently been ascribed to this fact, it does not imply that Copernicus considered himself to be a German. The 'nationes' of a medieval university had nothing in common with nations in the modern sense of the word. Students who were natives of Prussia and Silesia were automatically described as belonging to the Natio Germanorum. Furthmore, at Bologna, this was the 'privileged' nation; consequently, Copernicus had very good reason for inscribing himself on its register." Alexandre Koyre: Astronomical Revolution, Copernicus - Kepler - Borelli. Cornell University Press, 1973, ISBN 0-486-27095-5, p. 21. ()
  35. "It is important to recognize, however, that the medievel Latin concept of natio, or "nation," referred to the community of feudal lords both in Germany and elsewhere, not to "the people" in the nineteenth-century democratic or nationalistic sense of the word." Lonnie Johnson: Central Europe: Enemies, Neighbors, Friends. Oxford University Press, 1996, ISBN 0-19-510071-9, p. 23. ()
  36. Arthur Koestler, The Sleepwalkers, 1968, p. 129.
  37. Pierre Gassendi, Oliver Thill, The Life of Copernicus (1473-1543), 2002, p. 37.
  38. Nicolaus Copernicus et al., Nicolaus Copernicus Gesamtausgabe. Documenta Copernicana I.: Briefe, Texte und Übersetzungen, 1996, p. 39.
  39. Rosen (1995, p. 127).
  40. "Many writers, for example, Krzycki, Janiciusz, and Copernicus, wrote only in Latin. Some poets, most notably Kochanowski, Klonowic, and Szymonowic, used both Latin and Polish throughout their lives. But the majority of literary works of the period was written and published in , for example, by Biernat, Rej, Górnicki, Kochanowski, Skarga, and Sęp Szarzyński... Their masterly use of various genres of poetry and prose led to the emergence of modern Polish literature and contributed to the consolidation of a national language." Michael J. Mikoś, Polish Literature from the Middle Ages to the End of the Eighteenth Century: a Bilingual Anthology, Warsaw, Constans, 1999, p. 185.
  41. Melkowski, Stefan (2003). "O historii i o współczesności (On History and the Present Day)" (in Polish). Retrieved 2007-04-22. {{cite web}}: Unknown parameter |month= ignored (help)
  42. "Kopernik, Koperek, Kopr and Koprnik in Polish—also similarly in other Slavonic languages—means simply dill such as is used in dill pickling. Be it as it may, although the present writer is more inclined towards the occupational interpretation, it is interesting to note ..." Stephen Mizwa, Nicolaus Copernicus, 1543–1943, Kessinger Publishing, 1943, p. 37.
  43. Armitage, p. 51.
  44. ^ Gingerich (2004), p. 143.
  45. Nicolaus Copernicus Gesamtausgabe: Urkunden, Akten und Nachrichten: Texte und Übersetzungen, p. 23 ff. ISBN 3-05-003009-7.
  46. Marian Biskup, Regesta Copernicana (Calendar of Copernicus' Papers), Ossolineum, 1973, page 32.
  47. Biskup (1973), pp. 38, 82.
  48. Carlo Malagola, Della vita e delle opere di Antonio Urceo detto Codro: studi e ricerche, 1878, pp. 562–65.
  49. "Copernicus, Nicolaus". Encyclopædia Britannica Online. Encyclopædia Britannica. 2009. Retrieved 2009-11-21.
  50. Maximilian Curtze, Ueber die Orthographie des Namens Coppernicus, 1879, .
  51. ^ Czesław Miłosz, The History of Polish Literature, p. 38.
  52. Angus Armitage, The World of Copernicus, p. 55.
  53. Jerzy Dobrzycki and Leszek Hajdukiewicz, "Kopernik, Mikołaj", Polski słownik biograficzny, pp. 4-5.
  54. ^ Jerzy Dobrzycki and Leszek Hajdukiewicz, "Kopernik, Mikołaj", Polski słownik biograficzny, p. 5.
  55. Jerzy Dobrzycki and Leszek Hajdukiewicz, "Kopernik, Mikołaj", Polski słownik biograficzny, pp. 5-6.
  56. ^ Jerzy Dobrzycki and Leszek Hajdukiewicz, "Kopernik, Mikołaj", Polski słownik biograficzny, p. 6.
  57. ^ Jerzy Dobrzycki and Leszek Hajdukiewicz, "Kopernik, Mikołaj", Polski słownik biograficzny, p. 6.
  58. Rabin (2005).
  59. Gingerich (2004, pp. 187–89, 201); Koyré (1973, p. 94); Kuhn (1957, p. 93); Rosen (2004, p. 123); Rabin (2005). Robbins (1964, p.x), however, includes Copernicus among a list of Renaissance astronomers who "either practiced astrology themselves or countenanced its practice."
  60. Sedlar (1994).
  61. Angus Armitage, The World of Copernicus, pp. 75–77.
  62. ^ Jerzy Dobrzycki and Leszek Hajdukiewicz, "Kopernik, Mikołaj", Polski słownik biograficzny, p. 7.
  63. Jerzy Dobrzycki and Leszek Hajdukiewicz, "Kopernik, Mikołaj", Polski słownik biograficzny, pp. 7-8.
  64. Repcheck (2007), p. 66.
  65. Copernicus, Nicolaus, Minor Works (Edward Rosen, translator), Baltimore: Johns Hopkins University Press, 1992, pp. 176–215.
  66. Oliver Volckart, "Early Beginnings of the Quantity Theory of Money and Their Context in Polish and Prussian Monetary Policies, c. 1520–1550", The Economic History Review, New Series 50 (August 1997) 3, pp. 430–49.
  67. ^ Repcheck, Jack (2007). Copernicus' Secret. New York, NY: Simon & Schuster. pp. 79, 78, 184, 186. ISBN 978-0-7432-8951-1.
  68. ^ Jerzy Dobrzycki and Leszek Hajdukiewicz, "Kopernik, Mikołaj", Polski słownik biograficzny, vol. XIV, 1969, p. 11.
  69. Angus Armitage, The World of Copernicus, pp. 97–98.
  70. Angus Armitage, The World of Copernicus, p. 98.
  71. Kuhn, 1957, pp. 187–88.
  72. Photograph of a portrait of Copernicus by an unknown painter. The original was looted—possibly destroyed—by the Germans in World War II. Jan Świeczyński, Katalog skradzionych i zaginionych dóbr kultury (Catalog of Stolen and Missing Cultural Property), Warsaw, Ośrodek Informacyjno-Koordynacyjny Ochrony Obiektów Muzealnych (Center of Information and Coordination for the Safeguarding of Museum Objects), 1988.
  73. A reference to the "Commentariolus" is contained in a library catalogue, dated May 1st, 1514, of a 16th-century historian, Matthew of Miechow, so it must have begun circulating before that date (Koyré, 1973, p.85; Gingerich, 2004, p.32). Thoren (1990, p.99) gives the length of the manuscript as 40 pages.
  74. Schönberg, Nicholas, Letter to Nicolaus Copernicus, translated by Edward Rosen.
  75. Koyré (1973, pp. 27, 90) and Rosen (1995, pp. 64,184) take the view that Copernicus was indeed concerned about possible objections from theologians, while Lindberg and Numbers (1986) argue against it. Koestler (1963) also denies it. Indirect evidence that Copernicus was concerned about objections from theologians comes from a letter written to him by Andreas Osiander in 1541, in which Osiander advises Copernicus to adopt a proposal by which he says "you will be able to appease the Peripatetics and theologians whose opposition you fear." (Koyré, 1973, pp. 35, 90)
  76. Dreyer (1953, p.319).
  77. ^ Easton, Adam (21 November 2008). "Polish tests 'confirm Copernicus'". BBC News. Retrieved 18 January 2010.
  78. Bowcott, Owen (21 November 2008). "16th-century skeleton identified as astronomer Copernicus" The Guardian. Retrieved 18 January 2010.
  79. Bogdanowicz, W.; Allen, M.; Branicki, W.; Gajewska, M.; Kupiec, T.; et al. (2009). "Genetic identification of putative remains of the famous astronomer Nicolaus Copernicus". PNAS. 106 (30): 12279–12282. doi:10.1073/pnas.0901848106. PMC 2718376. PMID 19584252. {{cite journal}}: Explicit use of et al. in: |last4= (help).
  80. Gingerich, O. (2009). "The Copernicus grave mystery". PNAS. 106 (30): 12215–12216. doi:10.1073/pnas.0907491106. PMC 2718392. PMID 19622737..
  81. Astronomer Copernicus Reburied as Hero (New York Times, May 22, 2010)
  82. Dreyer (1953, pp. 40–52); Linton (2004, p. 20).
  83. Dreyer (1953, pp. 123–35); Linton (2004, p. 24).
  84. Archimedes refers to Aristarchus's book in The Sand Reckoner. Heath's (1913, p.302) translation of the relevant passage reads: "You are aware that 'universe' is the name given by most astronomers to the sphere the center of which is the center of the Earth, while its radius is equal to the straight line between the center of the Sun and the center of the Earth. This is the common account as you have heard from astronomers. But Aristarchus has brought out a book consisting of certain hypotheses, wherein it appears, as a consequence of the assumptions made, that the universe is many times greater than the 'universe' just mentioned. His hypotheses are that the fixed stars and the Sun remain unmoved, that the Earth revolves about the Sun on the circumference of a circle, the Sun lying in the middle of the orbit, and that the sphere of the fixed stars, situated about the same center as the Sun, is so great that the circle in which he supposes the Earth to revolve bears such a proportion to the distance of the fixed stars as the center of the sphere bears to its surface." The bracketed insertion is in Heath's translation.
  85. Tassoul, Jean-Louis & Monique (2004). Concise History of Solar and Stellar Physics. Princeton University.
  86. Dreyer (1953, pp. 314–15).
  87. Hoskin, Michael A. (1999). The Cambridge Concise History of Astronomy. Cambridge, England: Cambridge University Press. p. 58. ISBN 0-521-57600-8.
  88. Rosen (2004, pp. 58–59).
  89. Rosen (1995, pp.151–59)
  90. Rosen (1995, p.158)
  91. Koestler (1959, p.191)
  92. Rosen (1995, pp.187–192), originally published in 1967 in Saggi su Galileo Galilei . Rosen is particularly scathing about this and other statements in The Sleepwalkers which he criticises as inaccurate.
  93. Gingerich (2004), DeMarco (2004)
  94. In fact, in the Pythagorean cosmological system the Sun was not motionless.
  95. Decree of the General Congregation of the Index, March 5, 1616, translated from the Latin by Finocchiaro (1989, pp.148-149). An on-line copy of Finocchiaro's translation has been made available by Gagné (2005).
  96. Fantoli (2005, pp.118–19); Finocchiaro (1989, pp.148, 153). On-line copies of Finocchiaro's translations of the relevant documents, Inquisition Minutes of 25 February, 1616 and Cardinal Bellarmine's certificate of 26 May, 1616, have been made available by Gagné (2005). This notice of the decree would not have prevented Galileo from discussing heliocentrism solely as a mathematical hypothesis, but a stronger formal injunction (Finocchiaro, 1989, p.147-148) not to teach it "in any way whatever, either orally or in writing", allegedly issued to him by the Commissary of the Holy Office, Father Michelangelo Segizzi, would certainly have done so (Fantoli, 2005, pp.119–20, 137). There has been much controversy over whether the copy of this injunction in the Vatican archives is authentic; if so, whether it was ever issued; and if so, whether it was legally valid (Fantoli, 2005, pp.120–43).
  97. Catholic Encyclopedia.
  98. From the Inquisition's sentence of June 22, 1633 (de Santillana, 1976, pp.306-10; Finocchiaro 1989, pp. 287-91)
  99. Heilbron (2005, p. 307); Coyne (2005, p. 347).
  100. McMullin (2005, p. 6); Coyne (2005, pp. 346-47).
  101. Burleigh, Michael (1988). Germany turns eastwards. A study of Ostforschung in the Third Reich. CUP Archive. pp. 60, 133, 280. ISBN 0521351200.
  102. ^ Miłosz, Czesław (1983). The history of Polish literature (2 ed.). University of California Press. p. 37. ISBN 0520044770.
  103. ^ Davies, Norman (2005). God's playground. A History of Poland in Two Volumes. Vol. II. Oxford University Press. p. 20. ISBN 0199253404.
  104. "Nicolaus Copernicus". Stanford Encyclopedia of Philosophy. Retrieved 2007-04-22.
  105. "Copernicus, Nicolaus". Encyclopædia Britannica Online. Encyclopædia Britannica. 2007. Retrieved 2007-09-21.
  106. "Copernicus, Nicolaus", Encyclopedia Americana, 1986, vol. 7, pp. 755–56.
  107. "Nicholas Copernicus", The Columbia Encyclopedia, sixth edition, 2008. Encyclopedia.com. 18 July 2009.
  108. "Copernicus, Nicolaus", The Oxford World Encyclopedia, Oxford University Press, 1998.
  109. "Nicolaus Copernicus, Polish astronomer". Microsoft Encarta Online Encyclopedia. Microsoft. 2007. Archived from the original on 2009-11-01. Retrieved 2007-09-21. {{cite encyclopedia}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  110. July 14, 2009 - Element 112 shall be named “copernicium”, http://www.popsci.com/
  111. Renner, Terrence (2010-02-20). "Element 112 is Named Copernicium". International Union of Pure and Applied Chemistry. Retrieved 2010-02-20.
  112. Calendar of the Church Year according to the Episcopal Church

References

Further reading

External links

Primary Sources
General
About De Revolutionibus
Legacy
Prizes
German-Polish cooperation

Template:Persondata

Template:Link FA

Categories:
Nicolaus Copernicus: Difference between revisions Add topic