Misplaced Pages

Talk:0.999.../Arguments: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
< Talk:0.999... Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 13:16, 26 February 2006 editHuon (talk | contribs)Administrators51,324 editsNo edit summary← Previous edit Revision as of 18:00, 27 February 2006 edit undo71.248.136.114 (talk)No edit summaryNext edit →
Line 16: Line 16:
:Finally, according to ], a ] is that "which has no parts" (or something to that effect). But even Euclid did not use that definition but rather a set of axioms points shall satisfy. In analogy to my "line" definition above, I could also define a point as a zero-dimensional affine space. :Finally, according to ], a ] is that "which has no parts" (or something to that effect). But even Euclid did not use that definition but rather a set of axioms points shall satisfy. In analogy to my "line" definition above, I could also define a point as a zero-dimensional affine space.
:I fail to see a connection between these definitions and whether 0.9999...=1 or not. ] 11:16, 24 February 2006 (UTC) :I fail to see a connection between these definitions and whether 0.9999...=1 or not. ] 11:16, 24 February 2006 (UTC)

You fail to see what a point has to do with this fact? My, oh my. It has everything to do with it. You are trying to have 0.999... which you claim is a number on the real line equal to 1. Euclid did not define a point: "Simeon estin ou meros outhen" means in Greek: "A point has no part." This so called definition is such a load of rubbish. It is meaningless and was written down by Euclid because he could not define the concept of a point without introducing self-referential terminology. In fact a point and a line are defined in terms of each other. It is completely ridiculous to talk about rigour in modern mathematics because modern mathematics is based on this garbage. It is based on concepts and notions that are not clearly defined. This is one of the reasons real analysis has failed. If you talk about a real number line, you are talking about points and if you are talking about points, one of these points represents 0.999... and another point represents 1. Now I have in the archives shown and proved conclusively that having 0.999... < 1 does not violate any mathematics (not even the archimedean property). I asked you why you compare real numbers differently and you were not able to answer, nor anyone else as for that matter. Again, I ask you this question: Why do you compare the limit of 0.999... with 1 and why do you compare the partial sum of pi with any other number? Just start by answering this last question. We can try to redefine point in a logical, non-referential (or cyclic) way later. This is extremely difficult to do. ] 18:00, 27 February 2006 (UTC)

::Huon, I think it is better in this context to state that a point needn't be defined at all. Every mathematical theory needs several elementary notions which are not defined and receive their meaning from axioms - otherwise the definitions would inevitably be circular. -- ] (]) 07:57, 26 February 2006 (UTC) ::Huon, I think it is better in this context to state that a point needn't be defined at all. Every mathematical theory needs several elementary notions which are not defined and receive their meaning from axioms - otherwise the definitions would inevitably be circular. -- ] (]) 07:57, 26 February 2006 (UTC)
:Meni: My answer is both yes and no. In a purely geometrical context, you are right; lines also can be characterized axiomatically. But I assumed that we wanted to consider the special case of the "real line" and points on that line. In that case, the concept of points is more limited. Yours, ] 13:16, 26 February 2006 (UTC) :Meni: My answer is both yes and no. In a purely geometrical context, you are right; lines also can be characterized axiomatically. But I assumed that we wanted to consider the special case of the "real line" and points on that line. In that case, the concept of points is more limited. Yours, ] 13:16, 26 February 2006 (UTC)

Revision as of 18:00, 27 February 2006

This page is for mathematical arguments concerning 0.999.... Previous discussions have been archived from the main talk page, which is now reserved for editorial discussions:


It does not matter what you think and it is you who appears to have difficulty grasping even the most fundamental concepts in Mathematics. Of course there is a philosophical element; mathematics started with philosophy but you appear to be ignorant of this fact. Tell me, does a finite line have infinitely many points? And now that you mentioned definitions, please tell me what in your opinion a point is. Furthermore, your ignorance shows and if I were you I would refrain from posting comments that you have not given sufficient thought.71.248.147.163 01:28, 24 February 2006 (UTC)

That's your second. Melchoir 01:43, 24 February 2006 (UTC)
I have a lot to say, but this is really getting us nowhere, so I will cease this argument. Sorry. -- Meni Rosenfeld (talk) 06:15, 24 February 2006 (UTC)
Just to give the definitions we were asked for: A line is, in the context of elementary geometry, a one-dimensional affine space. Since here we only consider objects over the field of real numbers, all lines have infinitely many points (even uncountably many). (If we instead considered some finite field, lines would have only finitely many points, but that is irrelevant for the subject at hand.)
I could not find a definition for a "finite line", unless a line segment is meant. Since the interior of a line segment can be bijectively mapped to the entire line, a line section also has infinitely many points.
Finally, according to Euclid, a point is that "which has no parts" (or something to that effect). But even Euclid did not use that definition but rather a set of axioms points shall satisfy. In analogy to my "line" definition above, I could also define a point as a zero-dimensional affine space.
I fail to see a connection between these definitions and whether 0.9999...=1 or not. Huon 11:16, 24 February 2006 (UTC)

You fail to see what a point has to do with this fact? My, oh my. It has everything to do with it. You are trying to have 0.999... which you claim is a number on the real line equal to 1. Euclid did not define a point: "Simeon estin ou meros outhen" means in Greek: "A point has no part." This so called definition is such a load of rubbish. It is meaningless and was written down by Euclid because he could not define the concept of a point without introducing self-referential terminology. In fact a point and a line are defined in terms of each other. It is completely ridiculous to talk about rigour in modern mathematics because modern mathematics is based on this garbage. It is based on concepts and notions that are not clearly defined. This is one of the reasons real analysis has failed. If you talk about a real number line, you are talking about points and if you are talking about points, one of these points represents 0.999... and another point represents 1. Now I have in the archives shown and proved conclusively that having 0.999... < 1 does not violate any mathematics (not even the archimedean property). I asked you why you compare real numbers differently and you were not able to answer, nor anyone else as for that matter. Again, I ask you this question: Why do you compare the limit of 0.999... with 1 and why do you compare the partial sum of pi with any other number? Just start by answering this last question. We can try to redefine point in a logical, non-referential (or cyclic) way later. This is extremely difficult to do. 71.248.136.114 18:00, 27 February 2006 (UTC)

Huon, I think it is better in this context to state that a point needn't be defined at all. Every mathematical theory needs several elementary notions which are not defined and receive their meaning from axioms - otherwise the definitions would inevitably be circular. -- Meni Rosenfeld (talk) 07:57, 26 February 2006 (UTC)
Meni: My answer is both yes and no. In a purely geometrical context, you are right; lines also can be characterized axiomatically. But I assumed that we wanted to consider the special case of the "real line" and points on that line. In that case, the concept of points is more limited. Yours, Huon 13:16, 26 February 2006 (UTC)