Revision as of 19:38, 25 November 2011 editCheMoBot (talk | contribs)Bots141,565 edits Updating {{chembox}} (no changed fields - added verified revid - updated 'DrugBank_Ref', 'UNII_Ref', 'ChEMBL_Ref', 'ChEBI_Ref', 'KEGG_Ref', 'CASNo_Ref') per Chem/Drugbox validation (report [[Wikipedia_talk:WikiProject_Chemicals|er...← Previous edit | Revision as of 09:20, 12 October 2012 edit undoYobot (talk | contribs)Bots4,733,870 editsm WP:CHECKWIKI error 61 fix, References after punctuation per WP:REFPUNC and WP:PAIC using AWB (8459)Next edit → | ||
Line 21: | Line 21: | ||
}} | }} | ||
The '''triphenylmethyl radical''' is a ] and the first-ever ] described in ]. It can be prepared by ] of ] '''1''' (''scheme 1'') by a metal like ] or ] in ] or ]. The radical '''2''' forms a ] with the ] type ] '''3'''. In benzene the concentration of the radical is 2% |
The '''triphenylmethyl radical''' is a ] and the first-ever ] described in ]. It can be prepared by ] of ] '''1''' (''scheme 1'') by a metal like ] or ] in ] or ]. The radical '''2''' forms a ] with the ] type ] '''3'''. In benzene the concentration of the radical is 2%.<ref>''Advanced Organic Chemistry'' J. March, John Wiley & Sons ISBN 0-471-88841-9</ref> | ||
] | ] | ||
Line 33: | Line 33: | ||
The radical was discovered by ] in 1900.<ref>{{cite journal | title = An instance of trivalent carbon: triphenylmethyl | author = ] | journal = ] | year = 1900 | volume = 22 | issue = 11 | pages = 757–771 | doi = 10.1021/ja02049a006}}</ref><ref>{{cite journal | title = On trivalent carbon | author = ] | journal = ] | year = 1901 | volume = 23 | issue = 7 | pages = 496–502 | doi = 10.1021/ja02033a015}} (Note: radical is also called a ''cadicle'')</ref><ref>{{cite journal | title = On trivalent carbon | author = ] | journal = ] | year = 1902 | volume = 24 | issue = 7 | pages = 597–628 | doi = 10.1021/ja02021a001}}</ref> He tried to prepare hexaphenylethane from ] and ] in ] in a ] and found that the product, based on its behaviour towards iodine and oxygen, was far more reactive than anticipated. | The radical was discovered by ] in 1900.<ref>{{cite journal | title = An instance of trivalent carbon: triphenylmethyl | author = ] | journal = ] | year = 1900 | volume = 22 | issue = 11 | pages = 757–771 | doi = 10.1021/ja02049a006}}</ref><ref>{{cite journal | title = On trivalent carbon | author = ] | journal = ] | year = 1901 | volume = 23 | issue = 7 | pages = 496–502 | doi = 10.1021/ja02033a015}} (Note: radical is also called a ''cadicle'')</ref><ref>{{cite journal | title = On trivalent carbon | author = ] | journal = ] | year = 1902 | volume = 24 | issue = 7 | pages = 597–628 | doi = 10.1021/ja02021a001}}</ref> He tried to prepare hexaphenylethane from ] and ] in ] in a ] and found that the product, based on its behaviour towards iodine and oxygen, was far more reactive than anticipated. | ||
The correct quinoid structure for the dimer was suggested as early as 1904 but this structure was soon after abandoned by the scientific community in favor of ] which is structure '''4''' in scheme 1 |
The correct quinoid structure for the dimer was suggested as early as 1904 but this structure was soon after abandoned by the scientific community in favor of ] which is structure '''4''' in scheme 1.<ref>{{cite journal | title = The hexaphenylethane riddle | author = J. M. McBride | journal = ] | volume = 30 | issue = 14 | year = 1974 | pages = 2009–2022 | doi = 10.1016/S0040-4020(01)97332-6}}</ref> It subsequently took until 1968 for its rediscovery when researchers at the ] published ] data.<ref>{{cite journal | title = A new interpretation of the monomer-dimer equilibrium of triphenylmethyl- and alkylsubstituted-diphenyl methyl-radicals in solution | author = H. Lankamp, W. Th. Nauta and C. MacLean | journal = ] | volume = 9 | issue = 2 |year = 1968 | pages = 249–254 | doi = 10.1016/S0040-4039(00)75598-5}}</ref> In hindsight the substituted ] molecule does not make sense at all because it is simply too ]. | ||
==Miscellany== | ==Miscellany== |
Revision as of 09:20, 12 October 2012
Identifiers | |
---|---|
3D model (JSmol) | |
ChemSpider | |
CompTox Dashboard (EPA) | |
InChI
| |
SMILES
| |
Properties | |
Chemical formula | C19H15 |
Molar mass | 243.329 g·mol |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Y verify (what is ?) Infobox references |
The triphenylmethyl radical is a persistent radical and the first-ever radical described in organic chemistry. It can be prepared by homolysis of triphenylmethyl chloride 1 (scheme 1) by a metal like silver or zinc in benzene or diethyl ether. The radical 2 forms a chemical equilibrium with the quinoid type dimer 3. In benzene the concentration of the radical is 2%.
Solutions containing the radical are yellow and when the temperature of the solution is increased the yellow color becomes more intense as the equilibrium is shifted in favor of the radical following Le Chatelier's principle. Conversely when the solution is cooled it becomes less yellow.
When exposed to air the radical rapidly oxidizes to the peroxide (Scheme 2) and the color of the solution changes from yellow to colorless. Likewise, the radical reacts with iodine to triphenylmethyl iodide.
The radical was discovered by Moses Gomberg in 1900. He tried to prepare hexaphenylethane from triphenylmethyl chloride and zinc in benzene in a Wurtz reaction and found that the product, based on its behaviour towards iodine and oxygen, was far more reactive than anticipated.
The correct quinoid structure for the dimer was suggested as early as 1904 but this structure was soon after abandoned by the scientific community in favor of hexaphenylethane which is structure 4 in scheme 1. It subsequently took until 1968 for its rediscovery when researchers at the Vrije Universiteit Amsterdam published proton NMR data. In hindsight the substituted ethane molecule does not make sense at all because it is simply too sterically overcrowded.
Miscellany
Gomberg concluded his 1900 article with the sentence "This work will be continued and I wish to reserve the field for myself." He ended his 1901 article by writing, "It is my intention to extend this study to other oxygen compounds, as well as to nitrogen derivatives, and I beg to reserve this field for further work." It is true that nineteenth-century chemists did not intrude on each other's research; to his dismay, Gomberg found out that this was not the case in the twentieth century.
References
- Advanced Organic Chemistry J. March, John Wiley & Sons ISBN 0-471-88841-9
- M. Gomberg (1900). "An instance of trivalent carbon: triphenylmethyl". J. Am. Chem. Soc. 22 (11): 757–771. doi:10.1021/ja02049a006.
- M. Gomberg (1901). "On trivalent carbon". J. Am. Chem. Soc. 23 (7): 496–502. doi:10.1021/ja02033a015. (Note: radical is also called a cadicle)
- M. Gomberg (1902). "On trivalent carbon". J. Am. Chem. Soc. 24 (7): 597–628. doi:10.1021/ja02021a001.
- J. M. McBride (1974). "The hexaphenylethane riddle". Tetrahedron. 30 (14): 2009–2022. doi:10.1016/S0040-4020(01)97332-6.
- H. Lankamp, W. Th. Nauta and C. MacLean (1968). "A new interpretation of the monomer-dimer equilibrium of triphenylmethyl- and alkylsubstituted-diphenyl methyl-radicals in solution". Tetrahedron Letters. 9 (2): 249–254. doi:10.1016/S0040-4039(00)75598-5.
External links
- Molecule of the Month June 1997 Link
- Experimental procedures Link