Misplaced Pages

Gompertz distribution: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 11:29, 4 December 2011 edit194.254.137.115 (talk)No edit summary← Previous edit Revision as of 11:54, 4 December 2011 edit undo194.254.137.115 (talk)No edit summaryNext edit →
Line 68: Line 68:
*{{cite web|last=Bemmaor|first=Albert C. |last2=Glady|first2=Nicolas| year = 2011 |title=Implementing the Gamma/Gompertz/NBD Model in MATLAB|url=http://dl.dropbox.com/u/7097708/gg_nbd_MATLAB.pdf| publisher = ESSEC Business School|place = Cergy-Pontoise }} *{{cite web|last=Bemmaor|first=Albert C. |last2=Glady|first2=Nicolas| year = 2011 |title=Implementing the Gamma/Gompertz/NBD Model in MATLAB|url=http://dl.dropbox.com/u/7097708/gg_nbd_MATLAB.pdf| publisher = ESSEC Business School|place = Cergy-Pontoise }}
*{{Cite journal | surname=Gompertz | given=B. | year= 1825 |pages=513–583| title=On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies | journal =Philos. Trans. Roy. Soc. | place=London|volume = 115| }} *{{Cite journal | surname=Gompertz | given=B. | year= 1825 |pages=513–583| title=On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies | journal =Philos. Trans. Roy. Soc. | place=London|volume = 115| }}
*{{Cite journal | surname=Johnson | given=N. L.| | surname2=Kotz | given2=S.| surname3=Balakrishnan | given3=N. |year= 1995 | title=Continuous Univariate Distributions |volume=2 |edition=2nd| publisher=John Wiley & Sons | place=New York }} *{{Cite journal | surname=Johnson | given=Norman L.| | surname2=Kotz | given2=Samuel| surname3=Balakrishnan | given3=N. |year= 1995 | title=Continuous Univariate Distributions |volume=2 |edition=2nd| publisher=John Wiley & Sons | place=New York }}
*{{cite journal|last=Sheikh|first=A. K.|coauthors=Boah, J. K.; Younas, M. |title=Truncated extreme value model for pipeline reliability|journal=Reliability, Engrg. System Safety|year=1989|volume = 25|issue=1|pages=1–14}} *{{cite journal|last=Sheikh|first=A. K.|coauthors=Boah, J. K.; Younas, M. |title=Truncated extreme value model for pipeline reliability|journal=Reliability, Engrg. System Safety|year=1989|volume = 25|issue=1|pages=1–14}}
<references /> <references />

Revision as of 11:54, 4 December 2011

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Gompertz distribution" – news · newspapers · books · scholar · JSTOR (December 2011) (Learn how and when to remove this message)
Gompertz distribution
Probability density functionGompertz distrbution
Note: b=2.322
Cumulative distribution functionGompertz cumulative distribution
Note: b=2.322
Parameters η , b > 0 {\displaystyle \eta ,b>0\,\!}
PDF b η e b x e η exp ( η e b x ) {\displaystyle b\eta e^{bx}e^{\eta }\exp \left(-\eta e^{bx}\right)}
CDF 1 exp ( η ( e b x 1 ) ) {\displaystyle 1-\exp \left(-\eta \left(e^{bx}-1\right)\right)}
Mean ( 1 / b ) e η Ei ( η ) {\displaystyle (-1/b)e^{\eta }{\text{Ei}}\left(-\eta \right)}
where Ei ( z ) = z ( e u / u ) d u {\displaystyle {\text{where Ei}}\left(z\right)=\int \limits _{-z}^{\infty }\left(e^{-u}/u\right)du}
Mode = ( 1 / b ) ln ( 1 / η )   {\displaystyle =\left(1/b\right)\ln \left(1/\eta \right)\ }
with  0 < F ( x ) < 1 e 1 = 0.632121 , 0 < η < 1 {\displaystyle {\text{with }}0<{\text{F}}\left(x^{*}\right)<1-e^{-1}=0.632121,0<\eta <1}
= 0 , η 1 {\displaystyle =0,\quad \eta \geq 1}
Variance ( 1 / b ) 2 e η { 2 η   3 F 3 ( 1 , 1 , 1 ; 2 , 2 , 2 ; η ) + γ 2 {\displaystyle \left(1/b\right)^{2}e^{\eta }\{-2\eta {\ }_{3}{\text{F}}_{3}\left(1,1,1;2,2,2;-\eta \right)+\gamma ^{2}} + ( π 2 / 6 ) + 2 γ ln ( η ) + [ ln ( η ) ] 2 e η [ Ei ( η ) ] 2 } {\displaystyle +\left(\pi ^{2}/6\right)+2\gamma \ln \left(\eta \right)+^{2}-e^{\eta }^{2}\}}
 where  γ  is the Euler constant:  {\displaystyle {\text{ where }}\gamma {\text{ is the Euler constant: }}\,\!}
γ = ψ ( 1 ) = 0.5777215...  {\displaystyle \gamma =-\psi \left(1\right)={\text{0.5777215... }}}  and  3 F 3 ( 1 , 1 , 1 ; 2 , 2 , 2 ; z ) = {\displaystyle {\text{ and }}{}_{3}{\text{F}}_{3}\left(1,1,1;2,2,2;-z\right)=}
k = 0 [ 1 / ( k + 1 ) 3 ] ( 1 ) k ( z k / k ! ) {\displaystyle \sum _{k=0}^{\infty }\left\left(-1\right)^{k}\left(z^{k}/k!\right)}

The Gompertz distribution is an extreme value (reverted Gumbel distribution) distribution (i.e., the distribution of x {\displaystyle -x} ) truncated at zero. It has been used as a model of customer lifetime.

Specification

Probability density function

The probability density function of the Gompertz distribution is:

f ( x | η , b ) = b η e b x e η exp ( η e b x ) {\displaystyle f\left(x|\eta ,b\right)=b\eta e^{bx}e^{\eta }\exp \left(-\eta e^{bx}\right)}

where b > 0 {\displaystyle b>0\,\!} is the scale parameter and η > 0 {\displaystyle \eta >0\,\!} is the shape parameter of the Gompertz distribution.

Cumulative distribution function

The cumulative distribution function of the Gompertz distribution is:

F ( x | η , b ) = 1 exp ( η ( e b x 1 ) ) {\displaystyle F\left(x|\eta ,b\right)=1-\exp \left(-\eta \left(e^{bx}-1\right)\right)}

where η , b > 0 , x > 0 {\displaystyle \eta ,b>0,x>0\,\!} .

Moment generating function

The moment generating function is such as: E ( e t x | η , b ) = η e η E t / b ( η ) {\displaystyle {\text{E}}\left(e^{-tx}|\eta ,b\right)=\eta e^{\eta }{\text{E}}_{t/b}\left(\eta \right)}
With E t / b ( η ) = 1 e η v v t / b d v ,   t > 0 {\displaystyle {\text{E}}_{t/b}\left(\eta \right)=\int _{1}^{\infty }e^{-\eta v}v^{-t/b}dv,\ t>0}

Properties

The Gompertz distribution is right-skewed for all values of η {\displaystyle \eta \,\!} .

Shapes

The Gompertz density function can take on different shapes depending on the values of the shape parameter η {\displaystyle \eta \,\!} :

  • η 1 {\displaystyle \eta \geq 1\,} the probability density function has its mode at 0.
  • η < 1 {\displaystyle \eta <1\,} the probability density function has its mode at
x = ( 1 / b ) ln ( 1 / η ) with  0 < F ( x ) < 1 e 1 = 0.632121 {\displaystyle x^{*}=\left(1/b\right)\ln \left(1/\eta \right){\text{with }}0<{\text{F}}\left(x^{*}\right)<1-e^{-1}=0.632121}

Related distributions

The Gompertz distribution is a natural conjugate to a gamma distribution. If η {\displaystyle \eta \,\!} varies according to a gamma distribution with shape parameter α {\displaystyle \alpha \,\!} and scale parameter β {\displaystyle \beta \,\!} (mean = α β {\displaystyle \alpha \beta \,\!} ), the cumulative distribution function is Gamma/Gompertz (G/G).

See also

Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families

References

Category: