Revision as of 04:27, 20 March 2012 edit150.203.33.207 (talk)No edit summary← Previous edit | Revision as of 17:15, 27 March 2012 edit undoGiftlite (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers39,612 editsm mv section upNext edit → | ||
Line 2: | Line 2: | ||
==Statement of the result== | ==Statement of the result== | ||
Let ''M'' and ''N'' be Riemannian manifolds and let ''u'' : ''M'' → ''N'' be a harmonic map. Let d''u'' denote the derivative (pushforward) of ''u'', ∇ the ], Δ the ], Riem<sub>''N''</sub> the ] on ''N'' and Ric<sub>''M''</sub> the ] on ''M''. Then | Let ''M'' and ''N'' be Riemannian manifolds and let ''u'' : ''M'' → ''N'' be a harmonic map. Let d''u'' denote the derivative (pushforward) of ''u'', ∇ the ], Δ the ], Riem<sub>''N''</sub> the ] on ''N'' and Ric<sub>''M''</sub> the ] on ''M''. Then | ||
:<math>\Delta \big( | \nabla u |^{2} \big) = \big| \nabla ( \mathrm{d} u ) \big|^{2} + \big\langle \mathrm{Ric}_{M} \nabla u, \nabla u \big\rangle - \big\langle \mathrm{Riem}_{N} (u) (\nabla u, \nabla u) \nabla u, \nabla u \big\rangle.</math> | :<math>\Delta \big( | \nabla u |^{2} \big) = \big| \nabla ( \mathrm{d} u ) \big|^{2} + \big\langle \mathrm{Ric}_{M} \nabla u, \nabla u \big\rangle - \big\langle \mathrm{Riem}_{N} (u) (\nabla u, \nabla u) \nabla u, \nabla u \big\rangle.</math> | ||
== |
==See also== | ||
⚫ | *] | ||
==References== | |||
* {{cite journal | * {{cite journal | ||
| last = Eells | | last = Eells | ||
Line 25: | Line 26: | ||
==External links== | ==External links== | ||
* {{MathWorld|urlname=BochnerIdentity|title=Bochner identity}} | * {{MathWorld|urlname=BochnerIdentity|title=Bochner identity}} | ||
==See also== | |||
⚫ | *] | ||
] | ] |
Revision as of 17:15, 27 March 2012
In mathematics — specifically, differential geometry — the Bochner identity is an identity concerning harmonic maps between Riemannian manifolds. The identity is named after the American mathematician Salomon Bochner.
Statement of the result
Let M and N be Riemannian manifolds and let u : M → N be a harmonic map. Let du denote the derivative (pushforward) of u, ∇ the gradient, Δ the Laplace–Beltrami operator, RiemN the Riemann curvature tensor on N and RicM the Ricci curvature tensor on M. Then
See also
References
- Eells, J (1978). "A report on harmonic maps". Bull. London Math. Soc. 10 (1): 1–68. doi:10.1112/blms/10.1.1. MR 0495450.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help)