Misplaced Pages

Inverse kinematics: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 21:50, 7 May 2006 editDvavasour (talk | contribs)Extended confirmed users2,876 editsm Spelling - protein← Previous edit Revision as of 23:34, 8 July 2006 edit undo207.200.116.74 (talk)No edit summaryNext edit →
Line 1: Line 1:
'''Inverse kinematics''' is the process of determining the parameters of a jointed flexible object in order to achieve a desired pose. For example, with a 3D model of a human body, what are the required wrist and elbow angles to move the hand from a resting position to a waving position? This question is vital in ], where manipulator arms are commanded in terms of joint angles. Inverse kinematics are also relevant to ] and ]ing, though its importance there has decreased with the rise of use of large libraries of ] data. '''Inveirse kinematics''' is the process of determining the parameters of a jointed flexible object in order to achieve a desired pose. For example, with a 3D model of a human body, what are the required wrist and elbow angles to move the hand from a resting position to a waving position? This question is vital in ], where manipulator arms are commanded in terms of joint angles. Inverse kinematics are also relevant to ] and ]ing, though its importance there has decreased with the rise of use of large libraries of ] data.


An articulated figure consists of a set of rigid segments connected with joints. Varying angles of the joints yields an indefinite number of configurations. The solution to the forward ] problem, given these angles, is the pose of the figure. The more difficult solution to the ''inverse kinematics problem'' is to find the joint angles given the desired configuration of the figure (i.e., end-effector). In the general case there is no analytic solution for the inverse kinematics problem. However, inverse kinematics may be solved via ] techniques. Certain special kinematic chains—those with a ]—permit ]. This treats the end-effector's orientation and position independently and permits an efficient closed-form solution. An articulated figure consists of a set of rigid segments connected with joints. Varying angles of the joints yields an indefinite number of configurations. The solution to the forward ] problem, given these angles, is the pose of the figure. The more difficult solution to the ''inverse kinematics problem'' is to find the joint angles given the desired configuration of the figure (i.e., end-effector). In the general case there is no analytic solution for the inverse kinematics problem. However, inverse kinematics may be solved via ] techniques. Certain special kinematic chains—those with a ]—permit ]. This treats the end-effector's orientation and position independently and permits an efficient closed-form solution.

Revision as of 23:34, 8 July 2006

Inveirse kinematics is the process of determining the parameters of a jointed flexible object in order to achieve a desired pose. For example, with a 3D model of a human body, what are the required wrist and elbow angles to move the hand from a resting position to a waving position? This question is vital in robotics, where manipulator arms are commanded in terms of joint angles. Inverse kinematics are also relevant to game programming and 3D modeling, though its importance there has decreased with the rise of use of large libraries of motion capture data.

An articulated figure consists of a set of rigid segments connected with joints. Varying angles of the joints yields an indefinite number of configurations. The solution to the forward kinematics problem, given these angles, is the pose of the figure. The more difficult solution to the inverse kinematics problem is to find the joint angles given the desired configuration of the figure (i.e., end-effector). In the general case there is no analytic solution for the inverse kinematics problem. However, inverse kinematics may be solved via nonlinear programming techniques. Certain special kinematic chains—those with a spherical wrist—permit kinematic decoupling. This treats the end-effector's orientation and position independently and permits an efficient closed-form solution.

For animators, the inverse kinematics problem is of great importance. These artists find it far simpler to express spatial appearance rather than joint angles. Applications of inverse kinematic algorithms include interactive manipulation, animation control and collision avoidance.

See also: Inverse kinematic animation

External links

Categories:
Inverse kinematics: Difference between revisions Add topic