Revision as of 20:11, 1 April 2016 editChiswick Chap (talk | contribs)Autopatrolled, Extended confirmed users, Page movers, New page reviewers, Pending changes reviewers, Rollbackers295,997 edits →top: rm image, no idea what it was for← Previous edit | Revision as of 20:12, 1 April 2016 edit undoChiswick Chap (talk | contribs)Autopatrolled, Extended confirmed users, Page movers, New page reviewers, Pending changes reviewers, Rollbackers295,997 edits →Insects in Religious Practices: main link ...Next edit → | ||
Line 92: | Line 92: | ||
==Insects in Religious Practices== | ==Insects in Religious Practices== | ||
{{main|Insects in religion}} | |||
In the Brazilian ], members of the ] language family have been observed using ''Pachycondyla commutata'' ants during female rite-of-passage ceremonies, and prescribing the sting of ''Pseudomyrmex'' spp. for fevers and headaches.<ref>] (2000), "Antiquity of Traditional Ethnobiological Knowledge in Amazonia: a Tupí–Guaraní Family and Time" ''Ethnohistory'' 47(2):399-422.</ref> | In the Brazilian ], members of the ] language family have been observed using ''Pachycondyla commutata'' ants during female rite-of-passage ceremonies, and prescribing the sting of ''Pseudomyrmex'' spp. for fevers and headaches.<ref>] (2000), "Antiquity of Traditional Ethnobiological Knowledge in Amazonia: a Tupí–Guaraní Family and Time" ''Ethnohistory'' 47(2):399-422.</ref> |
Revision as of 20:12, 1 April 2016
Ethnoentomology is the study of the relationship between insects and people. The name is derived from "ethno" - study of people and "entomology" - study of insects. The focus of ethnoentomology is on how insects have been or are being used in human societies around the world. This includes insects used for food, rituals and medicine. As with in entomology, the term is sometimes used more broadly to encompass arthropods more broadly.
Insects as food
Main article: EntomophagyEntomophagy refers to the eating of insects. Many insects are considered a culinary delicacy in many parts of the world, but the practice is uncommon and even taboo in other societies. Insects used in food include caterpillars, silkworms, Maguey worms, Witchetty grubs & other beetle and moth larvae; crickets, grasshoppers & locusts; and arachnids, such as spiders & scorpions. They can be eaten on their own or mixed with other ingredients, such is the case with casu marzu.
Insects in medicine
Main article: Insects in medicineTraditional and Alternative Use of Insects in Medicine
The medicinal uses of insects were often defined by the Doctrine of Signatures, which stated that an organism bearing parts that resemble human body parts, animals, or other objects, was thought to have useful relevance to those parts, animals or objects. So, for example, the femurs of grasshoppers, which were said to resemble the human liver, were used to treat liver ailments by the indigenous peoples of Mexico. This doctrine is common throughout traditional and alternative medicine, but is most prominent where medical traditions are broadly accepted, as in Traditional Chinese Medicine and Ayurveda, and less by community and family based medicine, as is more common in parts of Africa.
Traditional Chinese Medicine
Further information: Traditional Chinese MedicineTraditional Chinese Medicine often makes use of insects as part of its herbal medicine component, and their medical properties and applications are broadly accepted and agreed upon. For example, centipede is used to treat tetanus, seizures, and convulsions. The Chinese Black Mountain Ant, Polyrhachis Vicina, is used as a cure all, especially by the elderly. It is said to prolong life, to have anti-aging properties, to replenish Qi, and to increase virility and fertility. Recent interest in the ants' medicinal qualities by British researchers has led to investigations into the extract's ability to serve as a cancer-fighting agent.
India and Ayurveda
Further information: AyurvedaAyurveda is a traditional treatment used alongside Western medicine in India. Although it is often effective, doses are often inconsistent and contaminated with toxic heavy metals. Termite (insects plus mound) is said to cure a variety of diseases, both specific and vague, including ulcers, rheumatic diseases, anaemia, and pain; and to improve health generally.
The Jatropha Leaf Miner is a major insect agricultural pest which is also a medicinal remedy. The larvae are used boiled to induce lactation, reduce fever, and soothe the gastrointestinal tract.
Africa
The traditional insect medicine of Africa is varied and local, rather than formalised like Ayurveda. Grasshopper is used as food, and as medicine for headaches. Termite is applied to wounds to prevent infection, or consumed to treat internal hemorrhages. Termites are also used as a medical device to insert a medicine that has been spread on the skin subcutaneously.
Americas
The Americas were influenced by the Doctrine of Signatures, most likely because of their colonial history with Europe. The majority of insect use in medicine is associated with Central America and parts of South America, rather than North America, and most of it is based on the medical techniques of indigenous peoples. Insect medicine is practiced much more rarely than in China, India, or Africa, though it is still relatively common in rural areas with large indigenous populations. Grasshoppers, known as Chapulines, are eaten in Mexico, and used as a diuretic to treat kidney diseases, to reduce swelling, and to relieve the pain of intestinal disorders. Ants were sometimes used as medicinal devices by the indigenous peoples of Central America. The soldier caste of the Army ant were used as living sutures by Mayans. The salivary gland secretions of the ant were used to treat infections. The venom of the Red harvester ant was used to cure rheumatism, arthritis, and polimyelitis via the immunological reaction produced by its sting.
The silkworm, Bombyx mori, was used for food and as a medicine in Central America after it was brought to the New World. Boiled pupae were taken to treat apoplexy, aphasy, bronchitis, pneumonia, convulsions, hemorrhages, and frequent urination. The excrement produced by the larvae is also eaten to improve circulation and to alleviate the symptoms of cholera.
Honey bee products
Honey bee products are used medicinally across Asia, Europe, Africa, Australia, and the Americas, despite the fact that the honey bee was not introduced to the Americas until the colonization by Spain and Portugal. They are by far the most common medical insect product both historically and currently.
Honey is the most frequently referenced medical bee material. It can be applied to skin to treat excessive scar tissue, rashes, and burns, and can be applied as a poultice to eyes to treat infection. It is also consumed for digestive problems and as a general health restorative, and can be heated and consumed to treat head colds, cough, throat infections, laryngitis, tuberculosis, and lung diseases.
Additionally, Apitoxin, or honey bee venom, can be applied via direct stings to relieve arthritis, rheumatism, polyneuritis, and asthma. Propolis, a resinous, waxy mixture collected by honeybees and used as a hive insulator and sealant, is often consumed by menopausal women because of its high hormone content, and it is said to have antibiotic, anesthetic, and anti-inflammatory properties. Royal jelly is used to treat anemia, gastrointestinal ulcers, arteriosclerosis, hypo- and hypertension, and inhibition of sexual libido. Finally Bee bread, or bee pollen, is eaten as a generally health restorative, and is said to help treat both internal and external infections. All of these honey bee products are regularly produced and sold, especially online and in health food stores, though none are yet approved by the FDA.
Modern Scientific Use of Insects in Medicine
Though insects were widely used throughout history for medical treatment on nearly every continent, relatively little medical entomological research has been conducted since the revolutionary advent of antibiotics. Heavy reliance on antibiotics, coupled with discomfort with insects in Western culture limited the field of insect pharmacology until the rise of antibiotic resistant infections sparked pharmaceutical research to explore new resources. Arthropods represent a rich and largely unexplored source of new medicinal compounds.
Maggot therapy
One of the most commonly used insects in medical purposes is the blow fly larvae. The first recorded use of it was during World War II. Military surgeons noticed that wounds which were left untreated for several days and which became infested with maggots, healed better than wounds not infested with the blow fly larvae. It was later discovered that the larvae secreted a chemical called allantoin, which had a curative effect. Allantoin is now being used to treat the infectious bone disease, Osteomyelitis.
Maggot Debridement therapy is the intentional introduction of live, disinfected fly larvae into non-healing or dead skin and soft tissue wounds of a human or other animal for the purpose of selectively cleaning out only the necrotic tissue within a wound in order to promote wound healing. It is also used to prevent infection and to speed the healing process.
Apitherapy
Apitherapy is the medical use of honeybee products such as honey, pollen, bee bread, propolis, royal jelly and bee venom. One of the major peptides in bee venom, called Melittin, has the potential to treat inflammation in sufferers of Rheumatoid arthritis and Multiple sclerosis. Melittin blocks the expression of inflammatory genes, thus reducing swelling and pain. It is administered by direct insect sting, or intramuscular injections. Bee products demonstrate a wide array of antimicrobial factors and in laboratory studies and have been shown to kill antibiotic resistant bacteria, pancreatic cancer cells, and many other infectious microbes.
Blister Beetle and Spanish Fly
Cantharidin, the blister-causing oil found in several families of beetles, was accepted by the FDA in 2004 as treatment for warts and other skin problems. It also has historical use by the Greeks and Romans and is used as an aphrodisiac in some societies. Recent studies in cell culture and animal models have demonstrated powerful tumor fighting properties of Cantharidin.
Blood-Feeding Insects
Many blood-feeding insects like ticks, horseflies, and mosquitoes inject multiple bioactive compounds into their prey. These insects have been used by practitioners of Eastern Medicine for hundreds of years to prevent blood clot formation or thrombosis. However, modern medical research has only recently begun to investigate the drug development potential of blood-feeding insect saliva. These compounds in the saliva of blood feeding insects are capable of increasing the ease of blood feeding by preventing coagulation of platelets around the wound and provide protection against the host’s immune response. Currently, over 1280 different protein families have been associated with the saliva of blood feeding organisms. This diverse range of compounds may include:
- inhibitors of platelet aggregation, ADP, arachidonic acid, thrombin, and PAF.
- anticoagulants
- vasodilators
- vasoconstrictors
- antihistamines
- sodium channel blockers
- complement inhibitors
- pore formers
- inhibitors of angiogenesis
- anaesthetics
- AMPs and microbial pattern recognition molecules.
- Parasite enhancers/activators
Currently, some preliminary progress has been made with investigation of the therapeutic properties of tick anticoagulant peptide (TAP) and Ixolaris a novel recombinant tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick, Ixodes scapularis. Additionally, Ixolaris, a tissue factor inhibitor has been shown to block primary tumor growth and angiogenesis in a glioblastoma model. Despite the strong potential of these compounds for use as anticoagulants or immunomodulating drugs no modern medicines, developed from the saliva of blood-sucking insects, are currently on the market.
Arachnids in Modern Medicine
Like plants and insects, arachnids have also been used for thousands of years in traditional medical practices. Recent scientific research in natural bioactive factors has increased, leading to a renewed interest in venom components in many animals. In 1993 Margatoxin was synthesized from the venom of the Centruroides margaritatus the Central American bark scorpion. It is a peptide that selectively inhibits voltage-dependent potassium channels. Patented by Merck, it has the potential to prevent neointimal hyperplasia, a common cause of bypass graft failure.
A great amount of research has recently been directed toward the synthesis and use of spider silk as a scaffolding for ligament generation. Spider silk is an ideal material for the synthesis of medical skin grafts or ligament implants because it is one of the strongest known natural fibers and triggers little immune response in animals. Spider silk may also be used to make fine sutures for stitching nerves or eyes to heal with little scarring. Medical uses of spider silk is not a new idea. Spider silks have been used for thousands of years to fight infection and heal wounds. Efforts to produce industrial quantities and qualities of spider silk in transgenic goat milk are underway.
Psychoactive Scorpions
Recent news reports claim that use of scorpions for psychoactive purposes is gaining in popularity in Asia. Heroin addicts in Afghanistan are purported to smoke dried scorpions or use scorpion stings to get high when heroin is not available. The ‘scorpion sting craze’ has also increased in India with a decreasing availability of other drugs and alcohol available to youth. Young people are reportedly flocking to highway sides where they can purchase scorpion stings that after several minutes of intense pain, supposedly produce a six- to eight-hour feeling of wellbeing.
Insects in Religious Practices
Main article: Insects in religionIn the Brazilian Amazon, members of the Tupí–Guaraní language family have been observed using Pachycondyla commutata ants during female rite-of-passage ceremonies, and prescribing the sting of Pseudomyrmex spp. for fevers and headaches.
Pogonomyrmex californicus, a red harvester ant, has been widely used by natives of Southern California and Northern Mexico for hundreds of years in ceremonies conducted to help tribe members acquire spirit helpers through hallucination. During the ritual, young men are sent away from the tribe and consume large quantities of live, unmasticated ants under the supervision of an elderly member of the tribe. Ingestion of ants should lead to a prolonged state of unconsciousness where dream helpers appear and serve as allies to the dreamer for the rest of his life.
See also
- Cultural entomology
- Economic entomology
- Entomophobia
- Ethnobiology
- Ethnozoology
- Historical ecology
- William Balée
- Scorpions in culture
References
- ^ Ramos-Elorduy de Concini, J. and J.M. Pino Moreno. (1988). The utilization of insects in the empirical medicine of ancient Mexicans. Journal of Ethnobiology, 8(2), 195-202.
- http://tcm.health-info.org/Herbology.Materia.Medica/wugong-properties.htm
- http://news.bbc.co.uk/2/hi/health/1809450.stm
- ^ Chakravorty, J., Ghosh, S., and V.B. Meyer-Rochow. (2011). Practices of entomophagy and entomotherapy by members of the Nyishi and Galo tribes, two ethnic groups of the state of Arunachal Pradesh (North-East India). Journal of Ethnobiology and Ethnomedicine 7(5)
- ^ Srivastava, S.K., Babu, N., and H. Pandey. (2009). Traditional insect bioprospecting--As human food and medicine. Indian Journal of Traditional Knowledge, 8(4): 485-494.
- Feng, Y., Zhao, M., He, Z., Chen, Z., and L. Sun. (2009). Research and utilization of medicinal insects in China. Entomological Research, 39: 313-316.
- Dossey, A.T., 2010. Insects and their chemical weaponry: new potential for drug discovery. Nat. Prod. Rep 27, 1737e1757.
- ^ N.A. Ratcliffe et al. Insect Biochemistry and Molecular Biology 41 (2011) 747e769
- Yang, X., Hu, K., Yan, G., et al., 2000. Fibrinogenolytic components in Tabanid, an ingredient in traditional Chinese medicine and their properties. J. Southwest Agric. Univ. 22, 173e176 (Chinese).
- Ribeiro, J.M.C., Arca, B., 2009. From sialomes to the sialoverse: an insight into salivary potion of blood-feeding insects. Adv. Insect Physiol. 37, 59e118.
- Francischetti, I.M.B., Mather, T.N., Ribeiro, J.M.C., 2005. Tick saliva is a potent inhibitor of endothelial cell proliferation and angiogenesis. Thromb. Haemost. 94, 167e174.
- Maritz-Olivier, C., Stutzer, C., Jongejan, F., et al., 2007. Tick anti-hemostatics: targets for future vaccines and therapeutics. Trends Parasitol. 23, 397e407.
- Carneiro-Lobo, T.C., Konig, S., Machado, D.E., 2009. Ixolaris, a tissue factor inhibitor, blocks primary tumor growth and angiogenesis in a glioblastoma model. J. Thromb. Haemost. 7, 1855e1864.
- E. M. Costa-Neto, An. Acad. Bras. Cienc., 2005, 77(1), 33–43.
- http://www.livescience.com/15443-artificial-skin-spun-spider-silk.html
- Vendrely, C. and Scheibel, T. (2007), Biotechnological Production of Spider-Silk Proteins Enables New Applications. Macromolecular Bioscience, 7: 401–409. doi:10.1002/mabi.200600255
- http://www.wired.com/culture/lifestyle/news/2001/11/48310
- http://www.treatmentsolutionsnetwork.com/blog/index.php/2011/04/08/uses-for-scorpion-venom/
- "Drugs in Afghanistan: opium, outlaws and scorpion tales." David Macdonald. Pluto. 2007
- William Balée (2000), "Antiquity of Traditional Ethnobiological Knowledge in Amazonia: a Tupí–Guaraní Family and Time" Ethnohistory 47(2):399-422.
- Kevin Groark. Taxonomic Identity of "Hallucinogenic" Harvester Ant (Pogonomyrmex californicus) Confirmed. 2001. Journal of Ethnobiology 21(2):133-144
External links
Human interactions with insects | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aspects of insects in culture |
| ||||||||||||||
Pioneers |
| ||||||||||||||
Concerns | |||||||||||||||
Categories, templates | |||||||||||||||
Insects portal |
Ethnobiology | |
---|---|
Primary subdisciplines | |
Other subdisciplines | |
Correlated fields | |
Notable ethnobiologists | |