Misplaced Pages

Electrical resistance and conductance: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 12:50, 27 April 2003 edit81.135.103.17 (talk)No edit summary← Previous edit Revision as of 14:46, 27 April 2003 edit undoLooxix~enwiki (talk | contribs)6,016 editsm rvNext edit →
Line 10: Line 10:
It is thus a measure of the component's opposition to the flow of ]. Electrical resistance is usually denoted by symbol ''R''. The ] unit for electrical resistance is ]. Its ] quantity is '''electrical conductance'''. It is thus a measure of the component's opposition to the flow of ]. Electrical resistance is usually denoted by symbol ''R''. The ] unit for electrical resistance is ]. Its ] quantity is '''electrical conductance'''.


For a wide variety of materials and conditions, the electrical resistance does not depend on the amount of current flowing or the amount of applied ]: the two are ] and the proportionality constant is the electrical resistance. This is the content of ].


Specific electrical resistance, a measure of a material's ability to oppose the flow of electric current, is also known as ]. Specific electrical resistance, a measure of a material's ability to oppose the flow of electric current, is also known as ].
Line 15: Line 16:
The resistance ''R'' of a wire can be computed as The resistance ''R'' of a wire can be computed as


:<math> R = {p \rho \over y} \; , </math> :<math> R = {L \rho \over A} \; , </math>


where ''L'' is the length of the wire, ''A'' is the cross-sectional area and &rho; is the electrical resistivity of the material. where ''L'' is the length of the wire, ''A'' is the cross-sectional area and &rho; is the electrical resistivity of the material.

Revision as of 14:46, 27 April 2003


Electrical resistance is the ratio of the potential difference (i.e. voltage) across an electric component (such as a resistor) to the current passing through it:

R = U / I {\displaystyle R=U/I}

(where U is the voltage and I the current)

It is thus a measure of the component's opposition to the flow of electric charge. Electrical resistance is usually denoted by symbol R. The SI unit for electrical resistance is ohm. Its reciprocal quantity is electrical conductance.

For a wide variety of materials and conditions, the electrical resistance does not depend on the amount of current flowing or the amount of applied voltage: the two are proportional and the proportionality constant is the electrical resistance. This is the content of Ohm's law.

Specific electrical resistance, a measure of a material's ability to oppose the flow of electric current, is also known as electrical resistivity.

The resistance R of a wire can be computed as

R = L ρ A , {\displaystyle R={L\rho \over A}\;,}

where L is the length of the wire, A is the cross-sectional area and ρ is the electrical resistivity of the material.

See electrical conduction for the more information about the physical mechanisms for conduction in materials.

See also Reactance.