Revision as of 20:45, 13 November 2018 editCuzkatzimhut (talk | contribs)Extended confirmed users10,421 edits →Weak charge← Previous edit | Revision as of 20:46, 13 November 2018 edit undoCuzkatzimhut (talk | contribs)Extended confirmed users10,421 editsm →Weak chargeNext edit → | ||
Line 47: | Line 47: | ||
I was reading some things about ]. That article was just a redirect to this one, which didn't have any explanation, so I stubbed something for it based on a few papers. I know what the magnitude of the weak charge is, more or less, and that you can tot it up in a nucleus, but it would sure be nice to get expert explanation of what it ''is'', and its relationship if any to ] and ] and ] and so on. ] (]) 03:37, 13 November 2018 (UTC) | I was reading some things about ]. That article was just a redirect to this one, which didn't have any explanation, so I stubbed something for it based on a few papers. I know what the magnitude of the weak charge is, more or less, and that you can tot it up in a nucleus, but it would sure be nice to get expert explanation of what it ''is'', and its relationship if any to ] and ] and ] and so on. ] (]) 03:37, 13 November 2018 (UTC) | ||
: I would strongly resist association of the ] stub to this article. This is an eccentric/parochial usage used ''only'' in nuclear and atomic physics, and ''not'' in particle physics, defined in, e.g. . It is but the vector coupling of the Z-boson to the nucleon, ''g<sub>V |
: I would strongly resist association of the ] stub to this article. This is an eccentric/parochial usage used ''only'' in nuclear and atomic physics, and ''not'' in particle physics, defined in, e.g. . It is but the vector coupling of the Z-boson to the nucleon, ''g<sub>V</sub>'', whose currents are exemplified in the last formula of this article . While the linked definition and reference could usefully be adduced in that stub, any mention of such here would only serve to muddy waters and confuse the reader. ] (]) 20:45, 13 November 2018 (UTC) |
Revision as of 20:46, 13 November 2018
Physics Start‑class Mid‑importance | ||||||||||
|
/Archive 1 — Preceding unsigned comment added by 81.131.80.137 (talk) 19:57, 4 August 2012 (UTC)
Rewritten article
Thanks mostly to the contributions from this user, I've completely rewritten this article. Hopefully it is now somewhat cohesive and comprehensive, and will be helpful to some people. There are probably a few mistakes, especially with formatting, as I haven't edited much before.
I'd say the thing it lacks most is a good discussion of interaction terms, and probably also a few citations.
Cheers, Euan 81.131.80.137 (talk) 20:02, 4 August 2012 (UTC)
Interaction Graph
Neutrinos do not interact with photons. — Preceding unsigned comment added by 68.65.175.12 (talk) 07:15, 3 September 2012 (UTC)
The diagram is now wrong for a different reason
The blue arc between electrons and neutrinos indicates an interaction that does not exist. The relationship is one of grouping, not interaction. Someone should fix this. I recommend placing an oval around all the leptons, linking W and Z to the oval (indicating all leptons), and an arc from photons, crossing that oval, to the charged leptons. 129.67.118.100 (talk) 16:07, 14 April 2014 (UTC)
There is a newer and better interaction graph (created 2014) in the main Standard Model article. I suggest using that same interaction graph in this Standard Model (mathematical formulation) article. K.enevoldsen (talk) 03:26, 17 August 2015 (UTC)
Lagrangian
The description of the Lagrangian is not in line with the linked description from einstein-schrodinger.com. Why not ? Forcefield2 (talk) 18:20, 6 October 2013 (UTC)
Weyl fermions
Within the last several days, a group headed by Princeton has reported observation of Weyl fermions. Is this a topic that should be mentioned in this article? Articles I've read in media suggest it is a massless fermion that carries electrical charge. --74.38.77.101 (talk) 21:07, 21 July 2015 (UTC)
- That's an interesting find, but to my (admittedly limited) knowledge, that find would probably be more suited to an article about Weyl fermions themselves, or maybe something like quasiparticles or solid-state physics, as I believe the observation was not that of a "fundamental" Weyl fermion, but rather or a quasiparticle within condensed matter, which is qualitatively somewhat different. I could be wrong, but I don't believe it's a game changer for the Standard Model itself. — Preceding unsigned comment added by 70.247.166.192 (talk) 00:31, 2 September 2015 (UTC)
Requested move 29 April 2018
- The following is a closed discussion of a requested move. Please do not modify it. Subsequent comments should be made in a new section on the talk page. Editors desiring to contest the closing decision should consider a move review. No further edits should be made to this section.
The result of the move request was: moved as requested per the discussion below. Dekimasuよ! 20:01, 6 May 2018 (UTC)
Standard Model (mathematical formulation) → Mathematical formulation of the Standard Model – A more natural title than current. Also see Mathematical formulation of quantum mechanics. –LaundryPizza03 (dc̄) 23:47, 29 April 2018 (UTC). –LaundryPizza03 (dc̄) 23:47, 29 April 2018 (UTC)
- Good idea. The disambiguation-style title is not appropriate here: 'Standard Model' in both titles referes to the same thing. — dukwon (talk) (contribs) 10:29, 30 April 2018 (UTC)
- The above discussion is preserved as an archive of a requested move. Please do not modify it. Subsequent comments should be made in a new section on this talk page or in a move review. No further edits should be made to this section.
Weak charge
I was reading some things about weak charge. That article was just a redirect to this one, which didn't have any explanation, so I stubbed something for it based on a few papers. I know what the magnitude of the weak charge is, more or less, and that you can tot it up in a nucleus, but it would sure be nice to get expert explanation of what it is, and its relationship if any to weak isospin and weak hypercharge and Weinberg angle and so on. Wnt (talk) 03:37, 13 November 2018 (UTC)
- I would strongly resist association of the weak charge stub to this article. This is an eccentric/parochial usage used only in nuclear and atomic physics, and not in particle physics, defined in, e.g. . It is but the vector coupling of the Z-boson to the nucleon, gV, whose currents are exemplified in the last formula of this article . While the linked definition and reference could usefully be adduced in that stub, any mention of such here would only serve to muddy waters and confuse the reader. Cuzkatzimhut (talk) 20:45, 13 November 2018 (UTC)