Misplaced Pages

Wrangellia terrane: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 23:03, 17 December 2019 editAnthony Appleyard (talk | contribs)209,150 edits Extent and terminology: clearer← Previous edit Revision as of 15:40, 23 December 2019 edit undoFama Clamosa (talk | contribs)Autopatrolled, Extended confirmed users, Rollbackers19,320 edits +northern hypothesisNext edit →
Line 18: Line 18:


Wrangellia collided and amalgamated with the ] by Pennsylvanian time. By the end of the Triassic, the Peninsular Terrane had also joined the Wrangellia composite terrane. A subduction zone existed on the west side of Wrangellia. Seafloor rocks too light to be subducted were compressed against the west edge of Wrangellia; these rocks are now known as the ]. A complex fault system, known as the ], is the modern expression of the suture zone between Wrangellia and Chugach Terranes. Over time, ] moved this amalgamation of crust generally northeastward into contact with the North American continental margin. The Wrangellia composite terrane collided with and docked to North America by ] time. ] displacement, with Wrangellia travelling northward, continued after docking, although the amount of post-] displacement is controversial.<ref>{{Harvnb|Nokleberg|Jones|Silberling|1985|loc=Abstract}}; {{Harvnb|Trop|Ridgway|Manuszak|Layer|2002|loc=Abstract}}; {{Harvnb|Israel|2009|loc=Abstract}}; {{Harvnb|Greene|Scoates|Weis|2005|p=211}}</ref> Wrangellia collided and amalgamated with the ] by Pennsylvanian time. By the end of the Triassic, the Peninsular Terrane had also joined the Wrangellia composite terrane. A subduction zone existed on the west side of Wrangellia. Seafloor rocks too light to be subducted were compressed against the west edge of Wrangellia; these rocks are now known as the ]. A complex fault system, known as the ], is the modern expression of the suture zone between Wrangellia and Chugach Terranes. Over time, ] moved this amalgamation of crust generally northeastward into contact with the North American continental margin. The Wrangellia composite terrane collided with and docked to North America by ] time. ] displacement, with Wrangellia travelling northward, continued after docking, although the amount of post-] displacement is controversial.<ref>{{Harvnb|Nokleberg|Jones|Silberling|1985|loc=Abstract}}; {{Harvnb|Trop|Ridgway|Manuszak|Layer|2002|loc=Abstract}}; {{Harvnb|Israel|2009|loc=Abstract}}; {{Harvnb|Greene|Scoates|Weis|2005|p=211}}</ref>

===Northern hypothesis===
Geological evidences indicate that the Caledonide closure of the Iapetus and Rheic oceans along the Laurentian westcoast (modern coordinates) also opened an ocean between the northern margin of Laurentia and Baltica on one side and Siberia on the other. This effectively dispersed continental fragments&nbsp;&mdash; the Alexander, Eastern Klamath, Northern Sierra and Okanagan terranes&nbsp;&mdash; westward along the shores of this ocean in a back-arc process similar to that of the present-day Scotia Plate between South America and Antarctica. During the Carboniferous, the Alexander terrane migrated westward into the northern Panthalassa Ocean where it merged with Wrangellia in the late Carboniferous&nbsp;&mdash; the two continental fragments remained isolated in the open ocean until they were accreted to Laurentia in the Middle Jurassic.<ref>{{Harvnb|Colpron|Nelson|2009|loc=Geodynamic model, pp. 295-299}}</ref>


==See also== ==See also==
Line 33: Line 36:
===Sources=== ===Sources===
{{Refbegin}} {{Refbegin}}
* {{Cite journal
| last1 = Colpron | first1 = M.
| last2 = Nelson | first2 = J. L.
| title = A Palaeozoic Northwest Passage: Incursion of Caledonian, Baltican and Siberian terranes into eastern Panthalassa, and the early evolution of the North American Cordillera
| year = 2009 | journal = Geological Society, London, Special Publications | volume = 318 | issue = 1 | pages = 273-307
| url = https://www.researchgate.net/profile/J_Nelson3/publication/258357209_A_Palaeozoic_Northwest_Passage_Incursion_of_Caledonian_Baltican_and_Siberan_terranes_into_eastern_Panthalassa_and_the_early_evolution_of_the_North_American_Cordillera/links/56b12bbf08ae795dd5c4f750/A-Palaeozoic-Northwest-Passage-Incursion-of-Caledonian-Baltican-and-Siberan-terranes-into-eastern-Panthalassa-and-the-early-evolution-of-the-North-American-Cordillera.pdf | access-date = 23 December 2019
| doi = 10.1144/SP318.10 | ref = harv}}<!-- {{Harvnb|Colpron|Nelson|2009}} -->
* {{Cite book * {{Cite book
| last1 = Greene | first1 = A. R. | last1 = Greene | first1 = A. R.

Revision as of 15:40, 23 December 2019

A terrane extending from south-central Alaska through southwestern Yukon and along the Coast of British Columbia

The Wrangellia Terrane (named for the Wrangell Mountains, Alaska) is a terrane extending from the south-central part of Alaska through southwestern Yukon and along the Coast of British Columbia in Canada. Some workers contend that Wrangellia extends southward to Oregon, although this is not generally accepted.

Extent and terminology

The term Wrangellia is confusingly applied to all of:

Earlier workers sometimes used the term, "Talkeetna Superterrane," to describe Wrangellia.

Origin

There are two conflicting hypotheses whether the Wrangellia Superterrane originated at polar or equatorial latitudes:

  1. That Wrangellia accreted at a northerly latitude near its current location (when North America, or Laurentia, was farther east as part of Pangaea).
  2. That it originated c. 3,000 km (1,900 mi) south of its current location, approximately where Baja California is now. This hypothesis is not favoured in most plate tectonic reconstructions, since it introduces rapid implausible displacements of Wrangellia across the Panthalassic Ocean.

Southern hypothesis

Rocks of Wrangellia (the individual terrane, not the composite terrane) were originally created in the Pennsylvanian to the Jurassic somewhere, but probably near the equator, in the Panthalassic Ocean off the west coast of the North American craton as island arcs, oceanic plateaus, and rock assemblages of the associated tectonic settings. It is composed of many rocks types, of various composition, age, and tectonic affinity, but the Late Triassic flood basalts are the defining unit of Wrangellia. These basalts, extruded onto land over 5 million years about 230 million years ago, on top of an extinct Pennsylvanian and Permian island arc, constitute a large igneous province, currently exposed in a 2,500 km (1,553 mi) long belt.

Wrangellia collided and amalgamated with the Alexander Terrane by Pennsylvanian time. By the end of the Triassic, the Peninsular Terrane had also joined the Wrangellia composite terrane. A subduction zone existed on the west side of Wrangellia. Seafloor rocks too light to be subducted were compressed against the west edge of Wrangellia; these rocks are now known as the Chugach Terrane. A complex fault system, known as the Border Ranges Fault, is the modern expression of the suture zone between Wrangellia and Chugach Terranes. Over time, plate tectonics moved this amalgamation of crust generally northeastward into contact with the North American continental margin. The Wrangellia composite terrane collided with and docked to North America by Cretaceous time. Strike-slip displacement, with Wrangellia travelling northward, continued after docking, although the amount of post-accretion displacement is controversial.

Northern hypothesis

Geological evidences indicate that the Caledonide closure of the Iapetus and Rheic oceans along the Laurentian westcoast (modern coordinates) also opened an ocean between the northern margin of Laurentia and Baltica on one side and Siberia on the other. This effectively dispersed continental fragments — the Alexander, Eastern Klamath, Northern Sierra and Okanagan terranes — westward along the shores of this ocean in a back-arc process similar to that of the present-day Scotia Plate between South America and Antarctica. During the Carboniferous, the Alexander terrane migrated westward into the northern Panthalassa Ocean where it merged with Wrangellia in the late Carboniferous — the two continental fragments remained isolated in the open ocean until they were accreted to Laurentia in the Middle Jurassic.

See also

External links

References

Notes

  1. Sarewitz 1983, Abstract
  2. Wallace, Hanks & Rogers 1989, Abstract
  3. Nokleberg et al. 1998, Paleomagnetic Dilemma: Loci of Accretion of Wrangellia Superterrane, pp. 9–10
  4. Rogers & Schmidt 2002, Abstract; Greene et al. 2004, Introduction, p. 10 harvnb error: no target: CITEREFGreeneScoatesWeisIsrael2004 (help)
  5. Nokleberg, Jones & Silberling 1985, Abstract; Trop et al. 2002, Abstract; Israel 2009, Abstract; Greene, Scoates & Weis 2005, p. 211
  6. Colpron & Nelson 2009, Geodynamic model, pp. 295-299

Sources

59°59′02″N 140°35′17″W / 59.984°N 140.588°W / 59.984; -140.588

Categories: