Misplaced Pages

Groombridge 34: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 19:02, 17 September 2020 editTheWhistleGag (talk | contribs)Extended confirmed users2,221 edits Planetary system: The only Neptune-mass exoplanets with longer periods are Uranus and, well, Neptune.← Previous edit Revision as of 10:45, 8 October 2020 edit undoCitation bot (talk | contribs)Bots5,420,380 edits Add: s2cid. | You can use this bot yourself. Report bugs here. | Suggested by Abductive | Category:Objects with variable star designations | via #UCB_CategoryNext edit →
Line 98: Line 98:
In August 2014, a planet orbiting around Groombridge 34 A was reported.<ref name=apj794_1_51/> The planet's existence was deduced from analysis of the ] of the parent Star by the Eta-Earth Survey using HIRES at ]. At the time of its discovery, it was the sixth-nearest known ]. In August 2014, a planet orbiting around Groombridge 34 A was reported.<ref name=apj794_1_51/> The planet's existence was deduced from analysis of the ] of the parent Star by the Eta-Earth Survey using HIRES at ]. At the time of its discovery, it was the sixth-nearest known ].


Using the ] spectrograph combined with the measurements of the HARPS and HIRES spectrographs, researchers failed to detect the purported Groombridge 34 Ab. However, they did propose another that another planet (Groombridge 34 Ac, GJ 15 Ac) could be orbiting the parent star.<ref name=Trifonov>{{cite journal|doi=10.1051/0004-6361/201731442|title=The CARMENES search for exoplanets around M dwarfs. First visual-channel radial-velocity measurements and orbital parameter updates of seven M-dwarf planetary systems|journal=Astronomy & Astrophysics|volume=609|pages=A117|year=2018|last1=Trifonov|first1=T|last2=Kürster|first2=M|last3=Zechmeister|first3=M|last4=Tal-Or|first4=L|last5=Caballero|first5=J|last6=Quirrenbach|first6=A|last7=Ribas|first7=I|last8=Reiners|first8=A|arxiv=1710.01595|bibcode=2018A&A...609A.117T}}</ref> Using the ] spectrograph combined with the measurements of the HARPS and HIRES spectrographs, researchers failed to detect the purported Groombridge 34 Ab. However, they did propose another that another planet (Groombridge 34 Ac, GJ 15 Ac) could be orbiting the parent star.<ref name=Trifonov>{{cite journal|doi=10.1051/0004-6361/201731442|title=The CARMENES search for exoplanets around M dwarfs. First visual-channel radial-velocity measurements and orbital parameter updates of seven M-dwarf planetary systems|journal=Astronomy & Astrophysics|volume=609|pages=A117|year=2018|last1=Trifonov|first1=T|last2=Kürster|first2=M|last3=Zechmeister|first3=M|last4=Tal-Or|first4=L|last5=Caballero|first5=J|last6=Quirrenbach|first6=A|last7=Ribas|first7=I|last8=Reiners|first8=A|arxiv=1710.01595|bibcode=2018A&A...609A.117T|s2cid=119340839}}</ref>


This discrepancy was later reconciled with new HIRES observations, covering a longer span of time, where both planets were recovered, constraining their minimum mass to 3.03 {{Earth mass|link=yes}} for Groombridge 34 Ab and 36 {{Earth mass}} for Groombridge Ac. Their orbital periods are 11.4 and approximately 7,600 days, respectively. To date, this is the fifth-closest multi-planet system to our ], hosting the longest period Neptune-mass exoplanet discovered so far.<ref name=Pinamonti2018/> This discrepancy was later reconciled with new HIRES observations, covering a longer span of time, where both planets were recovered, constraining their minimum mass to 3.03 {{Earth mass|link=yes}} for Groombridge 34 Ab and 36 {{Earth mass}} for Groombridge Ac. Their orbital periods are 11.4 and approximately 7,600 days, respectively. To date, this is the fifth-closest multi-planet system to our ], hosting the longest period Neptune-mass exoplanet discovered so far.<ref name=Pinamonti2018/>
Line 143: Line 143:
| volume=794 | issue=1 | id=51 | pages=9 | volume=794 | issue=1 | id=51 | pages=9
| doi=10.1088/0004-637X/794/1/51 | bibcode=2014ApJ...794...51H | doi=10.1088/0004-637X/794/1/51 | bibcode=2014ApJ...794...51H
| arxiv=1408.5645 | postscript=. | arxiv=1408.5645 | s2cid=17361592 | postscript=.
}}</ref> }}</ref>


Line 155: Line 155:
| date=May 2015 | date=May 2015
| doi=10.1088/0004-637X/804/1/64 | bibcode=2015ApJ...804...64M | doi=10.1088/0004-637X/804/1/64 | bibcode=2015ApJ...804...64M
| arxiv=1501.01635 | postscript=. }}</ref> | arxiv=1501.01635 | s2cid=19269312 | postscript=. }}</ref>


<ref name=SIMBAD>{{cite simbad <ref name=SIMBAD>{{cite simbad
Line 175: Line 175:
| volume=141 | issue=2 | pages=503–522 | date=August 2002 | volume=141 | issue=2 | pages=503–522 | date=August 2002
| arxiv=astro-ph/0112477 | bibcode=2002ApJS..141..503N | arxiv=astro-ph/0112477 | bibcode=2002ApJS..141..503N
| doi=10.1086/340570 | postscript=. }}</ref> | doi=10.1086/340570 | s2cid=51814894 | postscript=. }}</ref>


<ref name=groombridge1838>{{citation <ref name=groombridge1838>{{citation
Line 208: Line 208:
| doi=10.1051/0004-6361/201425221 | doi=10.1051/0004-6361/201425221
| bibcode=2015A&A...575A..35B | bibcode=2015A&A...575A..35B
| arxiv = 1412.3648 }}</ref> | arxiv = 1412.3648 | s2cid=59039482 }}</ref>


<ref name="aaa555_A104">{{citation | display-authors=1 <ref name="aaa555_A104">{{citation | display-authors=1
Line 216: Line 216:
| journal=The Astronomical Journal | volume=146 | issue=4 | page=99 | journal=The Astronomical Journal | volume=146 | issue=4 | page=99
| date=October 2013 | doi=10.1088/0004-6256/146/4/99 | date=October 2013 | doi=10.1088/0004-6256/146/4/99
| bibcode=2013AJ....146...99C | arxiv=1307.7038 | postscript=. }}</ref> | bibcode=2013AJ....146...99C | arxiv=1307.7038 | s2cid=44208180 | postscript=. }}</ref>


<ref name=Morris2018>{{cite journal|bibcode=2018MNRAS.476.5408M|title=Spotting stellar activity cycles in Gaia astrometry|journal=Monthly Notices of the Royal Astronomical Society|volume=476|issue=4|pages=5408|last1=Morris|first1=Brett M.|last2=Agol|first2=Eric|last3=Davenport|first3=James R. A.|last4=Hawley|first4=Suzanne L.|year=2018|arxiv=1802.09943|doi=10.1093/mnras/sty568}}</ref> <ref name=Morris2018>{{cite journal|bibcode=2018MNRAS.476.5408M|title=Spotting stellar activity cycles in Gaia astrometry|journal=Monthly Notices of the Royal Astronomical Society|volume=476|issue=4|pages=5408|last1=Morris|first1=Brett M.|last2=Agol|first2=Eric|last3=Davenport|first3=James R. A.|last4=Hawley|first4=Suzanne L.|year=2018|arxiv=1802.09943|doi=10.1093/mnras/sty568|s2cid=73564680}}</ref>


<ref name=Pinamonti2018>{{cite journal|bibcode=2018A&A...617A.104P|title=The HADES RV Programme with HARPS-N at TNG. VIII. GJ15A: A multiple wide planetary system sculpted by binary interaction|journal=Astronomy and Astrophysics|volume=617|pages=A104|last1=Pinamonti|first1=M.|last2=Damasso|first2=M.|last3=Marzari|first3=F.|last4=Sozzetti|first4=A.|last5=Desidera|first5=S.|last6=Maldonado|first6=J.|last7=Scandariato|first7=G.|last8=Affer|first8=L.|last9=Lanza|first9=A. F.|last10=Bignamini|first10=A.|last11=Bonomo|first11=A. S.|last12=Borsa|first12=F.|last13=Claudi|first13=R.|last14=Cosentino|first14=R.|last15=Giacobbe|first15=P.|last16=González-Álvarez|first16=E.|last17=González Hernández|first17=J. I.|last18=Gratton|first18=R.|last19=Leto|first19=G.|last20=Malavolta|first20=L.|last21=Martinez Fiorenzano|first21=A.|last22=Micela|first22=G.|last23=Molinari|first23=E.|last24=Pagano|first24=I.|last25=Pedani|first25=M.|last26=Perger|first26=M.|last27=Piotto|first27=G.|last28=Rebolo|first28=R.|last29=Ribas|first29=I.|last30=Suárez Mascareño|first30=A.|displayauthors=29|year=2018|arxiv=1804.03476|doi=10.1051/0004-6361/201732535}}</ref> <ref name=Pinamonti2018>{{cite journal|bibcode=2018A&A...617A.104P|title=The HADES RV Programme with HARPS-N at TNG. VIII. GJ15A: A multiple wide planetary system sculpted by binary interaction|journal=Astronomy and Astrophysics|volume=617|pages=A104|last1=Pinamonti|first1=M.|last2=Damasso|first2=M.|last3=Marzari|first3=F.|last4=Sozzetti|first4=A.|last5=Desidera|first5=S.|last6=Maldonado|first6=J.|last7=Scandariato|first7=G.|last8=Affer|first8=L.|last9=Lanza|first9=A. F.|last10=Bignamini|first10=A.|last11=Bonomo|first11=A. S.|last12=Borsa|first12=F.|last13=Claudi|first13=R.|last14=Cosentino|first14=R.|last15=Giacobbe|first15=P.|last16=González-Álvarez|first16=E.|last17=González Hernández|first17=J. I.|last18=Gratton|first18=R.|last19=Leto|first19=G.|last20=Malavolta|first20=L.|last21=Martinez Fiorenzano|first21=A.|last22=Micela|first22=G.|last23=Molinari|first23=E.|last24=Pagano|first24=I.|last25=Pedani|first25=M.|last26=Perger|first26=M.|last27=Piotto|first27=G.|last28=Rebolo|first28=R.|last29=Ribas|first29=I.|last30=Suárez Mascareño|first30=A.|displayauthors=29|year=2018|arxiv=1804.03476|doi=10.1051/0004-6361/201732535|s2cid=54990041}}</ref>


}} }}

Revision as of 10:45, 8 October 2020

Groombridge 34
Observation data
Epoch J2000      Equinox J2000
Constellation Andromeda
Groombridge 34 A
Right ascension 00 18 22.8850
Declination +44° 01′ 22.6373″
Apparent magnitude (V) 8.119
Groombridge 34 B
Right ascension 00 18 25.8244
Declination +44° 01′ 38.0912″
Apparent magnitude (V) 11.007
Characteristics
Spectral type M1.4V + M4.1V
U−B color index +1.24/+1.40
B−V color index +1.56/+1.80
Variable type Flare stars
Astrometry
Groombridge 34 A
Radial velocity (Rv)+11.62±0.08 km/s
Proper motion (μ) RA: 2891.525±0.061 mas/yr
Dec.: 411.903±0.034 mas/yr
Parallax (π)280.6902 ± 0.0429 mas
Distance11.620 ± 0.002 ly
(3.5626 ± 0.0005 pc)
Groombridge 34 B
Proper motion (μ) RA: 2863.284±0.069 mas/yr
Dec.: 336.529±0.039 mas/yr
Parallax (π)280.7866 ± 0.0519 mas
Distance11.616 ± 0.002 ly
(3.5614 ± 0.0007 pc)
Orbit
CompanionGroombridge 34 B
Period (P)2,600 yr
Semi-major axis (a)41.15″
Eccentricity (e)0.00
Inclination (i)61.4°
Longitude of the node (Ω)45.3°
Periastron epoch (T)1745
Details
Groombridge 34 A
Mass0.38±0.05 M
Radius0.38±0.05 R
Luminosity~0.022 L
Habitable zone inner limit0.112 AU
Habitable zone outer limit0.239 AU
Surface gravity (log g)4.87±0.04 cgs
Temperature3607±68 K
Metallicity −0.34±0.09 dex
Rotation43.86±0.56 days
Rotational velocity (v sin i)1.09±0.79 km/s
Age~3.02 Gyr
Groombridge 34 B
Mass0.15±0.02 M
Radius0.18±0.03 R
Luminosity~8.5×10 L
Habitable zone inner limit0.048 AU
Habitable zone outer limit0.103 AU
Surface gravity (log g)5.08±0.15 cgs
Temperature3304±70 K
Metallicity −0.37±0.10 dex
Age~2.754 Gyr
Other designations
GX/GQ Andromedae, BD+43° 44, GCTP 49, GJ 15 A/B, G 171-047/171-048, HD 1326, HIP 1475, LHS 3/4, LTT 10108/10109, SAO 36248.
Database references
SIMBADGJ 15 A
GJ 15 Ab
GJ 15 B
ARICNSGJ 15 A
GJ 15 B

Groombridge 34 is a binary star system in the northern constellation of Andromeda. It was listed as entry number 34 in A Catalogue of Circumpolar Stars, published posthumously in 1838 by British astronomer Stephen Groombridge. Based upon parallax measurements taken by the Gaia spacecraft, the system is located about 11.6 light-years from the Sun. This positions the pair among the nearest stars to the Solar System.

Both components are small, dim red dwarf stars that are too faint to be seen with the naked eye. They orbit around their common barycenter in a nearly circular orbit with a separation of about 147 AU and a period of around 2,600 years. Both stars exhibit random variation in luminosity due to flares and they have been given variable star designations: the brighter member Groombridge 34 A is designated GX And, while the smaller component is designated GQ And.

The star system has a relatively high proper motion of 2.9 arc seconds per year, and is moving away from the Solar System at a velocity of 11.6 km/s. It achieved perihelion some 15,000 years ago when it came within 11 ly (3.5 pc) of the Sun.

GX Andromedae

The most massive and luminous component of the pair has the variable star designation GX Andromedae. It is a main sequence red dwarf star of spectral type M1.4 that varies his brightness due to stellar flares. Gaia observations suggest a rotation period of 44 days and a magnetic activity cycle of roughly 9 years.

GQ Andromedae

The smaller companion bears the variable star name GQ Andromedae. It's a red dwarf main sequence star that undergoes flare events like the primary; it has a spectral type M4.1, so it has also a lower effective temperature.

Planetary system

In August 2014, a planet orbiting around Groombridge 34 A was reported. The planet's existence was deduced from analysis of the radial velocities of the parent Star by the Eta-Earth Survey using HIRES at Keck Observatory. At the time of its discovery, it was the sixth-nearest known exoplanet.

Using the CARMENES spectrograph combined with the measurements of the HARPS and HIRES spectrographs, researchers failed to detect the purported Groombridge 34 Ab. However, they did propose another that another planet (Groombridge 34 Ac, GJ 15 Ac) could be orbiting the parent star.

This discrepancy was later reconciled with new HIRES observations, covering a longer span of time, where both planets were recovered, constraining their minimum mass to 3.03 ME for Groombridge 34 Ab and 36 ME for Groombridge Ac. Their orbital periods are 11.4 and approximately 7,600 days, respectively. To date, this is the fifth-closest multi-planet system to our Sun, hosting the longest period Neptune-mass exoplanet discovered so far.

The Groombridge 34 A planetary system
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
Ab ≥ 3.03+0.46
−0.44 M🜨
0.072+0.003
−0.004
11.4407+0.0017
−0.0016
0.094+0.091
−0.065
Ac ≥ 36+25
−18 M🜨
5.4+1.0
−0.9
~7,600 0.27+0.28
−0.19

See also

References

  1. ^ Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
  2. ^ Mann, Andrew W.; et al. (May 2015), "How to Constrain Your M Dwarf: Measuring Effective Temperature, Bolometric Luminosity, Mass, and Radius", The Astrophysical Journal, 804 (1): 38, arXiv:1501.01635, Bibcode:2015ApJ...804...64M, doi:10.1088/0004-637X/804/1/64, S2CID 19269312, 64.
  3. ^ Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
  4. ^ Mermilliod, J.-C. (1986), "Compilation of Eggen's UBV data, transformed to UBV (unpublished)", Catalogue of Eggen's UBV Data. SIMBAD, Bibcode:1986EgUBV........0M.
  5. ^ Nidever, David L.; et al. (August 2002), "Radial Velocities for 889 Late-Type Stars", The Astrophysical Journal Supplement Series, 141 (2): 503–522, arXiv:astro-ph/0112477, Bibcode:2002ApJS..141..503N, doi:10.1086/340570, S2CID 51814894.
  6. ^ Lippincott, S. L. (March 1972), "Parallax and orbital motion of the two nearby long period visual binaries Groombridge 34 and ADS 9090.", Astronomical Journal, 77: 165–168, Bibcode:1972AJ.....77..165L, doi:10.1086/111261.
  7. ^ Pinamonti, M.; Damasso, M.; Marzari, F.; Sozzetti, A.; Desidera, S.; Maldonado, J.; Scandariato, G.; Affer, L.; Lanza, A. F.; Bignamini, A.; Bonomo, A. S.; Borsa, F.; Claudi, R.; Cosentino, R.; Giacobbe, P.; González-Álvarez, E.; González Hernández, J. I.; Gratton, R.; Leto, G.; Malavolta, L.; Martinez Fiorenzano, A.; Micela, G.; Molinari, E.; Pagano, I.; Pedani, M.; Perger, M.; Piotto, G.; Rebolo, R.; Ribas, I.; Suárez Mascareño, A. (2018). "The HADES RV Programme with HARPS-N at TNG. VIII. GJ15A: A multiple wide planetary system sculpted by binary interaction". Astronomy and Astrophysics. 617: A104. arXiv:1804.03476. Bibcode:2018A&A...617A.104P. doi:10.1051/0004-6361/201732535. S2CID 54990041. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  8. ^ Cantrell, Justin R.; et al. (October 2013), "The Solar Neighborhood XXIX: The Habitable Real Estate of Our Nearest Stellar Neighbors", The Astronomical Journal, 146 (4): 99, arXiv:1307.7038, Bibcode:2013AJ....146...99C, doi:10.1088/0004-6256/146/4/99, S2CID 44208180.
  9. "V* GX And". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2016-02-09.{{cite web}}: CS1 maint: postscript (link)
  10. Groombridge, Stephen (1838), Airy, George Biddell (ed.), A Catalogue of Circumpolar Stars, J. Murray, p. 2.
  11. Petit, M. (October 1990), "Catalogue des étoiles variables ou suspectes dans le voisinage du Soleil", Astronomy and Astrophysics Supplement (in French), 85 (2): 971, Bibcode:1990A&AS...85..971P.
  12. ^ Bailer-Jones, C. A. L. (March 2015). "Close encounters of the stellar kind". Astronomy & Astrophysics. 575: 13. arXiv:1412.3648. Bibcode:2015A&A...575A..35B. doi:10.1051/0004-6361/201425221. S2CID 59039482. A35.
  13. Morris, Brett M.; Agol, Eric; Davenport, James R. A.; Hawley, Suzanne L. (2018). "Spotting stellar activity cycles in Gaia astrometry". Monthly Notices of the Royal Astronomical Society. 476 (4): 5408. arXiv:1802.09943. Bibcode:2018MNRAS.476.5408M. doi:10.1093/mnras/sty568. S2CID 73564680.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  14. Howard, Andrew W.; et al. (October 2014), "The NASA-UC-UH ETA-Earth Program. IV. A Low-mass Planet Orbiting an M Dwarf 3.6 PC from Earth", The Astrophysical Journal, 794 (1): 9, arXiv:1408.5645, Bibcode:2014ApJ...794...51H, doi:10.1088/0004-637X/794/1/51, S2CID 17361592, 51.
  15. Trifonov, T; Kürster, M; Zechmeister, M; Tal-Or, L; Caballero, J; Quirrenbach, A; Ribas, I; Reiners, A (2018). "The CARMENES search for exoplanets around M dwarfs. First visual-channel radial-velocity measurements and orbital parameter updates of seven M-dwarf planetary systems". Astronomy & Astrophysics. 609: A117. arXiv:1710.01595. Bibcode:2018A&A...609A.117T. doi:10.1051/0004-6361/201731442. S2CID 119340839.

External links

Celestial objects within 15–20 light-years    
Primary member type
Celestial objects by systems.
Subgiant stars
G-type
Main-sequence
stars
A-type
G-type
K-type
M-type
(red dwarfs)
Degenerate
stars
White dwarfs
Brown dwarfs
L-type
T-type
Y-type
Sub-brown dwarfs
and rogue planets
Y-type
Constellation of Andromeda
Stars
Bayer
Flamsteed
Variable
HR
HD
Other
Exoplanets
Star
clusters
NGC
Other
Nebulae
NGC
Galaxies
Messier
NGC
Numbered
Other
Galaxy clusters
Astronomical events
Category
Categories: