Misplaced Pages

Gliese 832: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 01:53, 3 November 2020 editTrurle (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers16,588 edits star type← Previous edit Revision as of 00:48, 16 November 2020 edit undoCitation bot (talk | contribs)Bots5,420,477 edits Add: page, issue, volume, journal, doi, s2cid, author pars. 1-14. | You can use this bot yourself. Report bugs here. | Suggested by Abductive | Category:M-type main-sequence stars | via #UCB_Category 80/291Next edit →
Line 36: Line 36:
| metal_fe = {{val|−0.06|0.04}}<ref name="Lindgren2017"/> | metal_fe = {{val|−0.06|0.04}}<ref name="Lindgren2017"/>
| rotation = {{val|45.7|9.3|u=d}}<ref name=mnras452_3_2745/> | rotation = {{val|45.7|9.3|u=d}}<ref name=mnras452_3_2745/>
| age_gyr = 9.24<ref name="age">{{Cite journal|author-link= |arxiv=1404.0641 |title= Age Aspects of Habitability|journal= International Journal of Astrobiology|volume= 15|issue= 2|pages= 93–105|last1= Safonova|first1= M.|last2= Murthy|first2= J.|last3= Shchekinov|first3= Yu. A.|year= 2014|doi= 10.1017/S1473550415000208|bibcode = 2016IJAsB..15...93S}}</ref> | age_gyr = 9.24<ref name="age">{{Cite journal|author-link= |arxiv=1404.0641 |title= Age Aspects of Habitability|journal= International Journal of Astrobiology|volume= 15|issue= 2|pages= 93–105|last1= Safonova|first1= M.|last2= Murthy|first2= J.|last3= Shchekinov|first3= Yu. A.|year= 2014|doi= 10.1017/S1473550415000208|bibcode = 2016IJAsB..15...93S|s2cid=20205600 }}</ref>
}} }}
{{Starbox catalog {{Starbox catalog
Line 59: Line 59:
This star achieved ] some 52,920&nbsp;years ago when it came within an estimated {{Convert|4.817|pc|ly|abbr=on|lk=off|order=flip}} of the Sun.<ref name=aa575_A35/> This star achieved ] some 52,920&nbsp;years ago when it came within an estimated {{Convert|4.817|pc|ly|abbr=on|lk=off|order=flip}} of the Sun.<ref name=aa575_A35/>


Gliese 832 emits X-rays.<ref name=Schmitt/> Despite of the strong ], '''Gliese 832''' is producing in average less ionizing radiation than the Sun. Only at extremely short radiation wavelengths (<50nm) its radiation intensity raises above level of quiet Sun, but do not reach levels typical for active Sun.<ref>{{citation|arxiv=1608.00934|title=SEMI-EMPIRICAL MODELING OF THE PHOTOSPHERE, CHROMOSPHERE, TRANSITION REGION, AND CORONA OF THE M-DWARF HOST STAR GJ 832|year=2016}}</ref> Gliese 832 emits X-rays.<ref name=Schmitt/> Despite of the strong ], '''Gliese 832''' is producing in average less ionizing radiation than the Sun. Only at extremely short radiation wavelengths (<50nm) its radiation intensity raises above level of quiet Sun, but do not reach levels typical for active Sun.<ref>{{citation|arxiv=1608.00934|title=SEMI-EMPIRICAL MODELING OF THE PHOTOSPHERE, CHROMOSPHERE, TRANSITION REGION, AND CORONA OF THE M-DWARF HOST STAR GJ 832|year=2016|last1=Fontenla|first1=J. M.|last2=Linsky|first2=Jeffrey L.|last3=Witbrod|first3=Jesse|last4=France|first4=Kevin|last5=Buccino|first5=A.|last6=Mauas|first6=Pablo|last7=Vietes|first7=Mariela|last8=Walkowicz|first8=Lucianne M.}}</ref>


==Planetary system== ==Planetary system==
Gliese 832 hosts two known planets. Gliese 832 hosts two known planets.
{{OrbitboxPlanet begin {{OrbitboxPlanet begin
|table_ref=<ref name=Bonfils2011>{{citation|arxiv=1111.5019|title=The HARPS search for southern extra-solar planets XXXI. The M-dwarf sample|year=2011}}</ref> |table_ref=<ref name=Bonfils2011>{{citation|arxiv=1111.5019|title=The HARPS search for southern extra-solar planets XXXI. The M-dwarf sample|year=2011|doi=10.1051/0004-6361/201014704|last1=Bonfils|first1=X.|last2=Delfosse|first2=X.|last3=Udry|first3=S.|last4=Forveille|first4=T.|last5=Mayor|first5=M.|last6=Perrier|first6=C.|last7=Bouchy|first7=F.|last8=Gillon|first8=M.|last9=Lovis|first9=C.|last10=Pepe|first10=F.|last11=Queloz|first11=D.|last12=Santos|first12=N. C.|last13=Ségransan|first13=D.|last14=Bertaux|first14=J. -L.|s2cid=119288366}}</ref>
}} }}
{{OrbitboxPlanet {{OrbitboxPlanet
Line 85: Line 85:
In 2014, a second planet ] was discovered by astronomers at the University of New South Wales. This one is believed to be of super-Earth mass{{r|Mike Wall}} and has since been given the scientific name ].{{r|Mike Wall}} It was announced to orbit in the optimistic ] but outside the conservative habitable zone of its parent star.<ref name="Wittenmyer14" /> The planet ] is believed to be in, or very close to, the right distance from its sun to allow liquid water to exist on its surface.{{r|Mike Wall}} In 2014, a second planet ] was discovered by astronomers at the University of New South Wales. This one is believed to be of super-Earth mass{{r|Mike Wall}} and has since been given the scientific name ].{{r|Mike Wall}} It was announced to orbit in the optimistic ] but outside the conservative habitable zone of its parent star.<ref name="Wittenmyer14" /> The planet ] is believed to be in, or very close to, the right distance from its sun to allow liquid water to exist on its surface.{{r|Mike Wall}}


The region between ] and ] is a zone where additional planets are possible.<ref>{{citation|arxiv=1604.04544|title=Dynamics of a Probable Earth-mass Planet in GJ 832 System|year=2016}}</ref> The region between ] and ] is a zone where additional planets are possible.<ref>{{citation|arxiv=1604.04544|title=Dynamics of a Probable Earth-mass Planet in GJ 832 System|year=2016|doi=10.3847/1538-4357/aa80e2|last1=Satyal|first1=S.|last2=Griffith|first2=J.|last3=Musielak|first3=Z. E.|journal=The Astrophysical Journal|volume=845|issue=2|page=106|s2cid=118663957}}</ref>
===Search for cometary disc=== ===Search for cometary disc===
If this system has a comet disc, it is undetectable "brighter than the fractional dust luminosity 10<sup>−5</sup>" of a recent Herschel study.<ref name=nodebris/> If this system has a comet disc, it is undetectable "brighter than the fractional dust luminosity 10<sup>−5</sup>" of a recent Herschel study.<ref name=nodebris/>
Line 150: Line 150:
|last20=Wilner |last20=Wilner
|first20=D. J. |first20=D. J.
|s2cid=53704989
}}</ref> }}</ref>


Line 179: Line 180:
|bibcode=2009ApJ...690..743B |bibcode=2009ApJ...690..743B
|doi=10.1088/0004-637X/690/1/743 |doi=10.1088/0004-637X/690/1/743
|s2cid=17172233
}}</ref> }}</ref>


<ref name="Wittenmyer14"> <ref name="Wittenmyer14">
Line 222: Line 224:
|last20=Diaz |last20=Diaz
|first20=M. |doi=10.1088/0004-637X/791/2/114 |first20=M. |doi=10.1088/0004-637X/791/2/114
|s2cid=12157837
}}</ref> }}</ref>


Line 257: Line 260:
| bibcode=2010AJ....140.1158T | bibcode=2010AJ....140.1158T
| arxiv = 1008.3913 | arxiv = 1008.3913
| s2cid=119219274
}}</ref> }}</ref>


Line 280: Line 284:
| volume=575 | id=A35 | pages=13 | date=March 2015 | volume=575 | id=A35 | pages=13 | date=March 2015
| doi=10.1051/0004-6361/201425221 | bibcode=2015A&A...575A..35B | doi=10.1051/0004-6361/201425221 | bibcode=2015A&A...575A..35B
| arxiv = 1412.3648 | postscript=. | arxiv = 1412.3648 | s2cid=59039482
| postscript=.
}}</ref> }}</ref>


<ref name="Gaia DR2">{{Cite Gaia DR2|6562924609150908416}}</ref> <ref name="Gaia DR2">{{Cite Gaia DR2|6562924609150908416}}</ref>


<ref name="Lindgren2017">{{cite journal | title=Metallicity determination of M dwarfs. Expanded parameter range in metallicity and effective temperature | url=https://www.aanda.org/articles/aa/full_html/2017/08/aa30715-17/aa30715-17.html | last1=Lindgren | first1=Sara | last2=Heiter | first2=Ulrike | journal=Astronomy and Astrophysics | volume=604 | pages=A97 | year=2017 | arxiv=1705.08785 | bibcode=2017A&A...604A..97L | doi=10.1051/0004-6361/201730715 }}</ref> <ref name="Lindgren2017">{{cite journal | title=Metallicity determination of M dwarfs. Expanded parameter range in metallicity and effective temperature | url=https://www.aanda.org/articles/aa/full_html/2017/08/aa30715-17/aa30715-17.html | last1=Lindgren | first1=Sara | last2=Heiter | first2=Ulrike | journal=Astronomy and Astrophysics | volume=604 | pages=A97 | year=2017 | arxiv=1705.08785 | bibcode=2017A&A...604A..97L | doi=10.1051/0004-6361/201730715 | s2cid=119216828 }}</ref>


<ref name="Simbad">{{cite simbad | title=Gliese 832 | access-date=2018-09-23 }}</ref> <ref name="Simbad">{{cite simbad | title=Gliese 832 | access-date=2018-09-23 }}</ref>
Line 297: Line 302:
| volume=452 | issue=3 | pages=2745–2756 | date=September 2015 | volume=452 | issue=3 | pages=2745–2756 | date=September 2015
| doi=10.1093/mnras/stv1441 | bibcode=2015MNRAS.452.2745S | doi=10.1093/mnras/stv1441 | bibcode=2015MNRAS.452.2745S
| arxiv=1506.08039 | postscript=. | arxiv=1506.08039 | s2cid=119181646 | postscript=.
}}</ref> }}</ref>



Revision as of 00:48, 16 November 2020

Gliese 832
Observation data
Epoch J2000.0      Equinox J2000.0
Constellation Grus
Right ascension 21 33 33.9750
Declination −49° 00′ 32.4035″
Apparent magnitude (V) 8.66
Characteristics
Evolutionary stage main-sequence star
Spectral type M2V
B−V color index 1.52
Astrometry
Radial velocity (Rv)18.0 km/s
Proper motion (μ) RA: −45.834±0.071 mas/yr
Dec.: −816.604±0.064 mas/yr
Parallax (π)201.4073 ± 0.0429 mas
Distance16.194 ± 0.003 ly
(4.965 ± 0.001 pc)
Absolute magnitude (MV)10.19
Details
Mass0.45 ± 0.05 M
Radius0.48 R
Luminosity (bolometric)0.035 L
Luminosity (visual, LV)0.007 L
Surface gravity (log g)4.7 cgs
Temperature3,620 K
Metallicity −0.06±0.04 dex
Rotation45.7±9.3 d
Age9.24 Gyr
Other designations
CD-49°13515, HD 204961, HIP 106440, LHS 3685, PLX 5190
Database references
SIMBADThe star
planet c
planet b
Exoplanet Archivedata
Data sources:
Hipparcos Catalogue,
HD

Gliese 832 (Gl 832 or GJ 832) is a red dwarf of spectral type M2V in the southern constellation Grus. The apparent visual magnitude of 8.66 means that it is too faint to be seen with the naked eye. It is located relatively close to the Sun, at a distance of 16.2 light years and has a high proper motion of 818.93 milliarcseconds per year. Gliese 832 has just under half the mass and radius of the Sun. Its estimated rotation period is a relatively leisurely 46 days. The star is roughly 9.5 billion years old.

This star achieved perihelion some 52,920 years ago when it came within an estimated 15.71 ly (4.817 pc) of the Sun.

Gliese 832 emits X-rays. Despite of the strong flare activity, Gliese 832 is producing in average less ionizing radiation than the Sun. Only at extremely short radiation wavelengths (<50nm) its radiation intensity raises above level of quiet Sun, but do not reach levels typical for active Sun.

Planetary system

Gliese 832 hosts two known planets.

The Gliese 832 planetary system
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
c ≥5.4±1 M🜨 0.162±0-017 35.68±0.03 0.18 ± 0.13
b ≥0.62 MJ 3.46 3507±181 0.08±0.05

In September 2008, it was announced that a Jupiter-like planet, now designated as Gliese 832 b, had been detected in a long-period, near-circular orbit around this star (false alarm probability thus far: a negligible 0.05%). It would induce an astrometric perturbation on its star of at least 0.95 milliarcseconds and is thus a good candidate for being detected by astrometric observations. Despite its relatively large angular distance, direct imaging is problematic due to the star–planet contrast. The orbital solution of the planet was refined in 2011.

In 2014, a second planet Gliese 832 c was discovered by astronomers at the University of New South Wales. This one is believed to be of super-Earth mass and has since been given the scientific name Gliese 832 c. It was announced to orbit in the optimistic habitable zone but outside the conservative habitable zone of its parent star. The planet Gliese 832 c is believed to be in, or very close to, the right distance from its sun to allow liquid water to exist on its surface.

The region between Gliese 832 b and Gliese 832 c is a zone where additional planets are possible.

Search for cometary disc

If this system has a comet disc, it is undetectable "brighter than the fractional dust luminosity 10" of a recent Herschel study.

See also

Notes

  1. Using the absolute visual magnitude of Gliese 832 M V = 10.19 {\displaystyle \scriptstyle M_{V_{\ast }}=10.19} with a bolometric correction of B C = 1.821 {\displaystyle \scriptstyle BC=-1.821} the bolometric magnitude can be calculated as M b o l = 8.369 {\displaystyle \scriptstyle M_{bol_{\ast }}=8.369} , the bolometric magnitude of the Sun M b o l = 4.73 {\displaystyle \scriptstyle M_{bol_{\odot }}=4.73} , and so therefore the bolometric luminosity can be calculated by L b o l L b o l = 10 0.4 ( M b o l M b o l ) {\displaystyle \scriptstyle {\frac {L_{bol_{\ast }}}{L_{bol_{\odot }}}}=10^{0.4\left(M_{bol_{\odot }}-M_{bol_{\ast }}\right)}}
  2. Using the absolute visual magnitude of Gliese 832 M V = 10.19 {\displaystyle \scriptstyle M_{V_{\ast }}=10.19} and the absolute visual magnitude of the Sun M V = 4.83 {\displaystyle \scriptstyle M_{V_{\odot }}=4.83} , the visual luminosity can be calculated by L V L V = 10 0.4 ( M V M V ) {\displaystyle \scriptstyle {\frac {L_{V_{\ast }}}{L_{V_{\odot }}}}=10^{0.4\left(M_{V_{\odot }}-M_{V_{\ast }}\right)}}

References

  1. ^ Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
  2. ^ Bailey, J.; Butler, R. P.; Tinney, C. G.; Jones, H. R. A.; O'Toole, S.; Carter, B. D.; Marcy, G. W. (2009). "A Jupiter-like Planet Orbiting the Nearby M Dwarf GJ832". The Astrophysical Journal. 690 (1): 743–747. arXiv:0809.0172. Bibcode:2009ApJ...690..743B. doi:10.1088/0004-637X/690/1/743. S2CID 17172233.
  3. ^ Suárez Mascareño, A.; et al. (September 2015), "Rotation periods of late-type dwarf stars from time series high-resolution spectroscopy of chromospheric indicators", Monthly Notices of the Royal Astronomical Society, 452 (3): 2745–2756, arXiv:1506.08039, Bibcode:2015MNRAS.452.2745S, doi:10.1093/mnras/stv1441, S2CID 119181646.{{citation}}: CS1 maint: unflagged free DOI (link)
  4. Johnson, H. M.; Wright, C. D. (1983). "Predicted infrared brightness of stars within 25 parsecs of the sun". The Astrophysical Journal Supplement Series. 53: 643–771. Bibcode:1983ApJS...53..643J. doi:10.1086/190905.
  5. Flower, Phillip J. (September 1996). "Transformations from Theoretical Hertzsprung-Russell Diagrams to Color-Magnitude Diagrams: Effective Temperatures, B-V Colors, and Bolometric Corrections". The Astrophysical Journal. 469: 355. Bibcode:1996ApJ...469..355F. doi:10.1086/177785.
  6. Torres, Guillermo (November 2010). "On the Use of Empirical Bolometric Corrections for Stars". The Astronomical Journal. 140 (5): 1158–1162. arXiv:1008.3913. Bibcode:2010AJ....140.1158T. doi:10.1088/0004-6256/140/5/1158. S2CID 119219274. {{cite journal}}: Unknown parameter |layurl= ignored (help)
  7. Interpolated value from NASA Exoplanet Archive, per: Bessell, M. S. (1995). "The Temperature Scale for Cool Dwarfs". In Tinney, C. G. (ed.). The Bottom of the Main Sequence - and Beyond, Proceedings of the ESO Workshop. Springer-Verlag. p. 123. Bibcode:1995bmsb.conf..123B. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  8. Lindgren, Sara; Heiter, Ulrike (2017). "Metallicity determination of M dwarfs. Expanded parameter range in metallicity and effective temperature". Astronomy and Astrophysics. 604: A97. arXiv:1705.08785. Bibcode:2017A&A...604A..97L. doi:10.1051/0004-6361/201730715. S2CID 119216828.
  9. ^ Safonova, M.; Murthy, J.; Shchekinov, Yu. A. (2014). "Age Aspects of Habitability". International Journal of Astrobiology. 15 (2): 93–105. arXiv:1404.0641. Bibcode:2016IJAsB..15...93S. doi:10.1017/S1473550415000208. S2CID 20205600.
  10. "Gliese 832". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2018-09-23.
  11. ^ "Nearby Alien Planet May Be Capable of Supporting Life", Mike Wall, Space.com, June 25, 2014, http://www.space.com/26357-exoplanet-habitable-zone-gliese-832c.html
  12. ^ Bailer-Jones, C. A. L. (March 2015), "Close encounters of the stellar kind", Astronomy & Astrophysics, 575: 13, arXiv:1412.3648, Bibcode:2015A&A...575A..35B, doi:10.1051/0004-6361/201425221, S2CID 59039482, A35.
  13. Schmitt, J. H. M. M.; Fleming, T. A.; Giampapa, M. S. (1995). "The X-ray view of the low-mass stars in the solar neighborhood". The Astrophysical Journal. 450 (9): 392–400. Bibcode:1995ApJ...450..392S. doi:10.1086/176149.
  14. Fontenla, J. M.; Linsky, Jeffrey L.; Witbrod, Jesse; France, Kevin; Buccino, A.; Mauas, Pablo; Vietes, Mariela; Walkowicz, Lucianne M. (2016), SEMI-EMPIRICAL MODELING OF THE PHOTOSPHERE, CHROMOSPHERE, TRANSITION REGION, AND CORONA OF THE M-DWARF HOST STAR GJ 832, arXiv:1608.00934
  15. ^ Bonfils, X.; Delfosse, X.; Udry, S.; Forveille, T.; Mayor, M.; Perrier, C.; Bouchy, F.; Gillon, M.; Lovis, C.; Pepe, F.; Queloz, D.; Santos, N. C.; Ségransan, D.; Bertaux, J. -L. (2011), The HARPS search for southern extra-solar planets XXXI. The M-dwarf sample, arXiv:1111.5019, doi:10.1051/0004-6361/201014704, S2CID 119288366
  16. Wittenmyer, R.A.; Tuomi, M.; Butler, R.P.; Jones, H. R. A.; O'Anglada-Escude, G.; Horner, J.; Tinney, C.G.; Marshall, J.P.; Carter, B.D.; et al. (2014). "GJ 832c: A super-earth in the habitable zone". The Astrophysical Journal. 1406 (2): 5587. arXiv:1406.5587. Bibcode:2014ApJ...791..114W. doi:10.1088/0004-637X/791/2/114. S2CID 12157837.
  17. Satyal, S.; Griffith, J.; Musielak, Z. E. (2016), "Dynamics of a Probable Earth-mass Planet in GJ 832 System", The Astrophysical Journal, 845 (2): 106, arXiv:1604.04544, doi:10.3847/1538-4357/aa80e2, S2CID 118663957{{citation}}: CS1 maint: unflagged free DOI (link)
  18. B. C. Matthews; forthcoming study promised in Lestrade, J.-F.; Matthews, B. C.; Sibthorpe, B.; Kennedy, G. M.; Wyatt, M. C.; Bryden, G.; Greaves, J. S.; Thilliez, E.; Moro-Martín, A.; Booth, M.; Dent, W. R. F.; Duchêne, G.; Harvey, P. M.; Horner, J.; Kalas, P.; Kavelaars, J. J.; Phillips, N. M.; Rodriguez, D. R.; Su, K. Y. L.; Wilner, D. J. (2012). "A DEBRIS Disk Around The Planet Hosting M-star GJ581 Spatially Resolved with Herschel". Astronomy and Astrophysics. 548: A86. arXiv:1211.4898. Bibcode:2012A&A...548A..86L. doi:10.1051/0004-6361/201220325. S2CID 53704989.


Known celestial objects within 20 light-years
Primary member type
Celestial objects by systems. Secondary members are listed in small print.
    0–10 ly
Main-sequence
stars
A-type
G-type
M-type
(red dwarfs)
Brown dwarfs
L-type
  • Luhman 16 (6.5029±0.0011 ly)
  • T-type brown dwarf B
Sub-brown dwarfs
and rogue planets
Y-type
10–15 ly
Subgiant stars
F-type
Main-sequence
stars
G-type
  • Tau Ceti (11.9118±0.0074 ly)
  • 4 (8?) planets: (b), (c), (d), e, f, g, h, (i)
K-type
M-type
(red dwarfs)
Degenerate
stars
White dwarfs
Brown dwarfs
T-type
15–20 ly    
Subgiant stars
G-type
Main-sequence
stars
A-type
G-type
K-type
M-type
(red dwarfs)
Degenerate
stars
White dwarfs
Brown dwarfs
L-type
T-type
Y-type
Sub-brown dwarfs
and rogue planets
Y-type
Italic are systems without known trigonometric parallax.
Constellation of Grus
Stars
Bayer
Variable
HR
HD
Other
Exoplanets
Galaxies
NGC
Other
Galaxy clusters
Category
Categories: