Misplaced Pages

Rhizaria: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 15:00, 27 January 2022 editНик Клаус (talk | contribs)205 editsNo edit summaryTags: Mobile edit Mobile web edit← Previous edit Revision as of 22:57, 15 March 2022 edit undoGoszei (talk | contribs)Extended confirmed users, Pending changes reviewers, Template editors86,817 editsm General fixesTag: AWBNext edit →
Line 8: Line 8:
| subdivision_ranks = Phyla | subdivision_ranks = Phyla
| subdivision = | subdivision =
*]<br/> *]
**]<br/> **]
**]<br/> **]
*]<br/> *]
**] **]
**] **]
Line 46: Line 46:
==Evolutionary relationships== ==Evolutionary relationships==
{{See also|Eukaryote#Phylogeny}} {{See also|Eukaryote#Phylogeny}}
Rhizaria are part of the ] (Stramenopiles, Alveolates, Rhizaria), a grouping that had been presaged in 1993 through a study of mitochondrial morphologies.<ref>Seravin LN. Osnovnye tipy i formy tonkogo stroeniia krist mitokhondriĭ: stepen' ikh évoliutsionnoĭ stabil'nosti (sposobnost' k morfologicheskim transformatsiiam) . Tsitologiia. 1993;35(4):3-34. Russian. PMID: 8328023.</ref> SAR is currently placed in the ] along with ], ], ], and several minor clades. Rhizaria are part of the ] (Stramenopiles, Alveolates, Rhizaria), a grouping that had been presaged in 1993 through a study of mitochondrial morphologies.<ref>Seravin LN. Osnovnye tipy i formy tonkogo stroeniia krist mitokhondriĭ: stepen' ikh évoliutsionnoĭ stabil'nosti (sposobnost' k morfologicheskim transformatsiiam) . Tsitologiia. 1993;35(4):3-34. Russian. PMID 8328023.</ref> SAR is currently placed in the ] along with ], ], ], and several minor clades.


Historically, many rhizarians were considered ]s because of their motility and ]. However, when a simple animal-plant dichotomy was superseded by a recognition of additional kingdoms, taxonomists generally placed amoebae in the kingdom ]. When scientists began examining the evolutionary relationships among eukaryotes in the 1970's, it became clear that the kingdom ] was ]. Rhizaria appear to share a common ancestor with ] and ] forming part of the SAR (Stramenopiles+Alveolates+Rhizaria) super assemblage.<ref>{{cite journal | title = Phylogenomics Reshuffles the Eukaryotic Supergroups| journal = ]| year = 2007 | volume = 2 | pages = e790– | issue = 8| doi = 10.1371/journal.pone.0000790 | pmid = 17726520 | last1 = Burki | first1 = F| last2 = Shalchian-Tabrizi | first2 = K | last3 = Minge | first3 = M | last4 = Skjaeveland | first4 = A | last5 = Nikolaev | first5 = SI | last6 = Jakobsen | first6 = KS | last7 = Pawlowski | first7 = J | pmc = 1949142 | editor1-last = Butler | editor1-first = Geraldine Historically, many rhizarians were considered ]s because of their motility and ]. However, when a simple animal-plant dichotomy was superseded by a recognition of additional kingdoms, taxonomists generally placed amoebae in the kingdom ]. When scientists began examining the evolutionary relationships among eukaryotes in the 1970's, it became clear that the kingdom ] was ]. Rhizaria appear to share a common ancestor with ] and ] forming part of the SAR (Stramenopiles+Alveolates+Rhizaria) super assemblage.<ref>{{cite journal | title = Phylogenomics Reshuffles the Eukaryotic Supergroups| journal = ]| year = 2007 | volume = 2 | pages = e790– | issue = 8| doi = 10.1371/journal.pone.0000790 | pmid = 17726520 | last1 = Burki | first1 = F| last2 = Shalchian-Tabrizi | first2 = K | last3 = Minge | first3 = M | last4 = Skjaeveland | first4 = A | last5 = Nikolaev | first5 = SI | last6 = Jakobsen | first6 = KS | last7 = Pawlowski | first7 = J | pmc = 1949142 | editor1-last = Butler | editor1-first = Geraldine

Revision as of 22:57, 15 March 2022

Infrakingdom of protists

Rhizaria
Temporal range: Neoproterozoic - Recent Pha. Proterozoic Archean Had.
Ammonia tepida (Foraminifera)
Scientific classification Edit this classification
Domain: Eukaryota
Clade: Diaphoretickes
Clade: TSAR
Clade: SAR
Clade: Rhizaria
Cavalier-Smith, 2002
Phyla

The Rhizaria are an ill-defined but species-rich supergroup of mostly unicellular eukaryotes. Except for the Chlorarachniophytes and three species in the genus Paulinella in the phylum Cercozoa, they are all non-photosynthethic, but many foraminifera and radiolaria have a symbiotic relationship with unicellular algae. A multicellular form, Guttulinopsis vulgaris, a cellular slime mold, has also been described. This group was used by Cavalier-Smith in 2002, although the term "Rhizaria" had been long used for clades within the currently recognized taxon. Being described mainly from rDNA sequences, they vary considerably in form, having no clear morphological distinctive characters (synapomorphies), but for the most part they are amoeboids with filose, reticulose, or microtubule-supported pseudopods. In the absence of an apomorphy, the group is ill-defined, and its composition has been very fluid. Some Rhizaria possess mineral exoskeleton (thecae or loricas), which is in different clades within Rhizaria made out of opal (SiO2), celestite (SrSO4), or calcite (CaCO3). It can attain sizes of more than a centimeter with some species being able to form cylindrical colonies approximately 1 cm in diameter and greater than 1 m in length. They feed by capturing and engulfing prey with the extensions of their pseudopodia; forms that are symbiotic with unicellular algae contribute significantly to the total primary production of the ocean.

Groups

Further information: wikispecies:Rhizaria

The three main groups of Rhizaria are:

A few other groups may be included in the Cercozoa, but some trees appear closer to the Foraminifera. These are the Phytomyxea and Ascetosporea, parasites of plants and animals, respectively, and the peculiar amoeba Gromia. The different groups of Rhizaria are considered close relatives based mainly on genetic similarities, and have been regarded as an extension of the Cercozoa. The name Rhizaria for the expanded group was introduced by Cavalier-Smith in 2002, who also included the centrohelids and Apusozoa.

A noteworthy order that belongs to Ascetosporea is the Mikrocytida. These are parasites of oysters. This includes the causative agent of Denman Island Disease, Mikrocytos mackini a small (2−3 μm diameter) amitochondriate protistan.

Evolutionary relationships

See also: Eukaryote § Phylogeny

Rhizaria are part of the SAR supergroup (Stramenopiles, Alveolates, Rhizaria), a grouping that had been presaged in 1993 through a study of mitochondrial morphologies. SAR is currently placed in the Diaphoretickes along with Archaeplastida, Cryptista, Haptista, and several minor clades.

Historically, many rhizarians were considered animals because of their motility and heterotrophy. However, when a simple animal-plant dichotomy was superseded by a recognition of additional kingdoms, taxonomists generally placed amoebae in the kingdom Protista. When scientists began examining the evolutionary relationships among eukaryotes in the 1970's, it became clear that the kingdom Protista was paraphyletic. Rhizaria appear to share a common ancestor with Stramenopiles and Alveolates forming part of the SAR (Stramenopiles+Alveolates+Rhizaria) super assemblage. Rhizaria has been supported by molecular phylogenetic studies as a monophyletic group. Biosynthesis of 24-isopropyl cholestane precursors in various rhizaria suggests a relevant ecological role already during the Ediacaran.

Phylogeny

Phylogeny based on Bass et al. 2009, Howe et al. 2011, and Silar 2016.

Rhizaria

Phytomyxea

Vampyrellida

Filosa

Skiomonadea

Chlorarachniophyceae

Granofilosea

Monadofilosa

Metromonadea

Cercomonadida

Glissomonadida-Sainourida clade

Ventrifilosa

Silicofilosea
(Imbricatea)

Thecofilosea

Reticulosida

Gromiidea

Ascetosporea

Retaria

Sticholonchea

Polycystinea

Acantharea

Foraminifera

Cercozoa

In 2019, the Cercozoa were recognized as a basal Rhizaria group, as sister of the Retaria.

References

  1. Christopher Taylor (2004). "Rhizaria". Archived from the original on 2009-04-20.
  2. Nikolaev SI, Berney C, Fahrni JF, et al. (May 2004). "The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes". Proc. Natl. Acad. Sci. U.S.A. 101 (21): 8066–71. doi:10.1073/pnas.0308602101. PMC 419558. PMID 15148395.
  3. Gast, Rebecca J.; Caron, David A. (2001-10-01). "Photosymbiotic associations in planktonic foraminifera and radiolaria". Hydrobiologia. 461 (1): 1–7. doi:10.1023/A:1012710909023. ISSN 1573-5117. S2CID 1387879.
  4. Brown; et al. (2012). "Aggregative Multicellularity Evolved Independently in the Eukaryotic Supergroup Rhizaria". Current Biology. 22 (12): 1123–1127. doi:10.1016/j.cub.2012.04.021. PMID 22608512.
  5. Caron, D. (2016). The rise of Rhizaria. Nature (London), 532(7600), 444–445. https://doi.org/10.1038/nature17892
  6. Moreira D, von der Heyden S, Bass D, López-García P, Chao E, Cavalier-Smith T (July 2007). "Global eukaryote phylogeny: Combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata". Mol. Phylogenet. Evol. 44 (1): 255–66. doi:10.1016/j.ympev.2006.11.001. PMID 17174576.
  7. Cavalier-Smith, Thomas (2002). "The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa". International Journal of Systematic and Evolutionary Microbiology. 52 (2): 297–354. doi:10.1099/00207713-52-2-297. ISSN 1466-5026. PMID 11931142. Retrieved 2007-06-08.
  8. Hartikainen, H; Stentiford, GD; Bateman, KS; Berney, C; Feist, SW; Longshaw, M; Okamura, B; Stone, D; Ward, G; Wood, C; Bass, D (2014). "Mikrocytids are a broadly distributed and divergent radiation of parasites in aquatic invertebrates" (PDF). Curr Biol. 24 (7): 807–12. doi:10.1016/j.cub.2014.02.033. PMID 24656829. S2CID 17180719.
  9. Hine, Pm; Bower, Sm; Meyer, Gr; Cochennec-Laureau, N; Berthe, Fcj (2001). "Ultrastructure of Mikrocytos mackini, the cause of Denman Island disease in oysters Crassostrea spp. and Ostrea spp. in British Columbia, Canada". Diseases of Aquatic Organisms. 45 (3): 215–227. doi:10.3354/dao045215. ISSN 0177-5103. PMID 11558731.
  10. Seravin LN. Osnovnye tipy i formy tonkogo stroeniia krist mitokhondriĭ: stepen' ikh évoliutsionnoĭ stabil'nosti (sposobnost' k morfologicheskim transformatsiiam) . Tsitologiia. 1993;35(4):3-34. Russian. PMID 8328023.
  11. Burki, F; Shalchian-Tabrizi, K; Minge, M; Skjaeveland, A; Nikolaev, SI; Jakobsen, KS; Pawlowski, J (2007). Butler, Geraldine (ed.). "Phylogenomics Reshuffles the Eukaryotic Supergroups". PLoS ONE. 2 (8): e790–. Bibcode:2007PLoSO...2..790B. doi:10.1371/journal.pone.0000790. PMC 1949142. PMID 17726520.
  12. Burki, Fabien; Shalchian-Tabrizi, Kamran; Pawlowski, Jan (August 23, 2008). "Phylogenomics reveals a new 'megagroup' including most photosynthetic eukaryotes". Biology Letters. 4 (4): 366–9. doi:10.1098/rsbl.2008.0224. PMC 2610160. PMID 18522922.
  13. Hallmann, Christian; Stuhr, Marleen; Kucera, Michal; Zonneveld, Karin; Bobrovskiy, Ilya; Bowser, Samuel S.; Pawlowski, Jan; Deckker, Patrick De; Nowack, Eva C. M. (2019-03-04). "Putative sponge biomarkers in unicellular Rhizaria question an early rise of animals". Nature Ecology & Evolution. 3 (4): 577–581. doi:10.1038/s41559-019-0806-5. ISSN 2397-334X. PMID 30833757. S2CID 71148672.
  14. Bass D, Chao EE, Nikolaev S, et al. (February 2009). "Phylogeny of Novel Naked Filose and Reticulose Cercozoa: Granofilosea cl. n. and Proteomyxidea Revised". Protist. 160 (1): 75–109. doi:10.1016/j.protis.2008.07.002. PMID 18952499.
  15. Howe; et al. (2011), "Novel Cultured Protists Identify Deep-branching Environmental DNA Clades of Cercozoa: New Genera Tremula, Micrometopion, Minimassisteria, Nudifila, Peregrinia", Protist, 162 (2): 332–372, doi:10.1016/j.protis.2010.10.002, PMID 21295519
  16. Silar, Philippe (2016), "Protistes Eucaryotes: Origine, Evolution et Biologie des Microbes Eucaryotes", HAL Archives-ouvertes: 1–462
  17. Irwin, Nicholas A.T.; Tikhonenkov, Denis V.; Hehenberger, Elisabeth; Mylnikov, Alexander P.; Burki, Fabien; Keeling, Patrick J. (2019-01-01). "Phylogenomics supports the monophyly of the Cercozoa". Molecular Phylogenetics and Evolution. 130: 416–423. doi:10.1016/j.ympev.2018.09.004. ISSN 1055-7903. PMID 30318266.

External links

Eukaryote classification
Domain
Archaea
Bacteria
Eukaryota
(major groups
Excavata
Diaphoretickes
Hacrobia
Cryptista
Rhizaria
Alveolata
Stramenopiles
Plants
Amorphea
Amoebozoa
Opisthokonta
Animals
Fungi
Mesomycetozoea)
Amorphea
Amoebozoa
   Obazoa   
Opisthokonta
Holomycota
   Holozoa   
Filozoa
Choanozoa
Diaphoretickes
Haptista
    TSAR    
     SAR     
Rhizaria
Alveolata
Myzozoa
Stramenopiles
Bigyra
Gyrista
     CAM     
Pancryptista
Cryptista
Archaeplastida
Viridiplantae
(Plants sensu lato)
Streptophyta
Excavates*
Discoba
Discicristata
Metamonada
Malawimonada
Incertae sedis
Hemimastigophora
Ancyromonadida
CRuMs
Rhizaria classification
Domain
Archaea
Bacteria
Eukaryota
(major groups
Excavata
Diaphoretickes
Hacrobia
Cryptista
Rhizaria
Alveolata
Stramenopiles
Plants
Amorphea
Amoebozoa
Opisthokonta
Animals
Fungi
Mesomycetozoea)
 Cercozoa 
Reticulofilosa*
Skiomonadea
Granofilosea
Chlorarachnea
Monadofilosa
Eoglissa
Metromonadea
Helkesea
Ventrifilosa
Sarcomonadea*
Imbricatea
Silicofilosea
Thecofilosea
Endomyxa
Marimyxia
Gromiidea
Ascetosporea
Proteomyxia
   Retaria   
Radiolaria
Sticholonchea
Acantharea
Polycystinea
Foraminifera
Monothalamea*
Tubothalamea
Globothalamea
Incertae sedis
Incertae sedis
Taxon identifiers
Rhizaria
Categories: