Revision as of 20:18, 20 October 2022 editColonies Chris (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers, Rollbackers445,699 editsm Redirect bypass from Hobby-Eberly Telescope to Hobby–Eberly Telescope using popups← Previous edit |
Revision as of 02:28, 30 October 2022 edit undoCitation bot (talk | contribs)Bots5,452,687 edits Add: s2cid. | Use this bot. Report bugs. | Suggested by Whoop whoop pull up | #UCB_webform 249/976Next edit → |
Line 42: |
Line 42: |
|
A follow-up study,<ref name=Emsellem>{{cite journal |last=Emsellem |first=Eric |title=Is the black hole in NGC 1277 really overmassive? |journal=] |volume=433 |issue=3 |pages=1862–1870 |date=Aug 2013 |doi=10.1093/mnras/stt840 |bibcode = 2013MNRAS.433.1862E |arxiv = 1305.3630 }}</ref> based on the same data and published the following year, reached a very different conclusion. The black hole that was initially suggested at {{math|{{val|1.7|e=10|u=solar mass}}}} was not as massive as once thought. The black hole was estimated to be between 2 and 5 billion solar masses. This is less than a third of the previously estimated mass, a significant decrease. Models with no black hole at all were also found to provide reasonably good fits to the data, including the central region. |
|
A follow-up study,<ref name=Emsellem>{{cite journal |last=Emsellem |first=Eric |title=Is the black hole in NGC 1277 really overmassive? |journal=] |volume=433 |issue=3 |pages=1862–1870 |date=Aug 2013 |doi=10.1093/mnras/stt840 |bibcode = 2013MNRAS.433.1862E |arxiv = 1305.3630 }}</ref> based on the same data and published the following year, reached a very different conclusion. The black hole that was initially suggested at {{math|{{val|1.7|e=10|u=solar mass}}}} was not as massive as once thought. The black hole was estimated to be between 2 and 5 billion solar masses. This is less than a third of the previously estimated mass, a significant decrease. Models with no black hole at all were also found to provide reasonably good fits to the data, including the central region. |
|
|
|
|
|
Subsequent investigations employed ] to acquire a better estimate of the mass of the black hole.<ref name=walsh>{{cite journal|last1=Walsh|first1=Jonelle L.|last2=van den Bosch|first2=Remco C. E.|last3=Gebhardt|first3=Karl|last4=Yildirim|first4=Akin|last5=Richstone|first5=Douglas O.|last6=Gültekin|first6=Kayhan|last7=Husemann|first7=Bernd|title=A 5 x 109 Msun Black Hole in NGC 1277 from Adaptive Optics Spectroscopy|journal=The Astrophysical Journal|date=1 January 2016|volume=817|issue=1|pages=2|doi=10.3847/0004-637X/817/1/2|issn=0004-637X|bibcode=2016ApJ...817....2W|arxiv = 1511.04455 |s2cid=118487689}}</ref><ref name=graham>{{cite journal|last1=Graham|first1=Alister W.|last2=Durré|first2=Mark|last3=Savorgnan|first3=Giulia A. D.|last4=Medling|first4=Anne M.|last5=Batcheldor|first5=Dan|last6=Scott|first6=Nicholas|last7=Watson|first7=Beverly|last8=Marconi|first8=Alessandro|title=A Normal Supermassive Black Hole in NGC 1277|journal=The Astrophysical Journal|date=1 March 2016|volume=819|issue=1|pages=43|doi=10.3847/0004-637X/819/1/43|issn=0004-637X|bibcode=2016ApJ...819...43G|arxiv = 1601.05151 }}</ref> |
|
Subsequent investigations employed ] to acquire a better estimate of the mass of the black hole.<ref name=walsh>{{cite journal|last1=Walsh|first1=Jonelle L.|last2=van den Bosch|first2=Remco C. E.|last3=Gebhardt|first3=Karl|last4=Yildirim|first4=Akin|last5=Richstone|first5=Douglas O.|last6=Gültekin|first6=Kayhan|last7=Husemann|first7=Bernd|title=A 5 x 109 Msun Black Hole in NGC 1277 from Adaptive Optics Spectroscopy|journal=The Astrophysical Journal|date=1 January 2016|volume=817|issue=1|pages=2|doi=10.3847/0004-637X/817/1/2|issn=0004-637X|bibcode=2016ApJ...817....2W|arxiv = 1511.04455 |s2cid=118487689}}</ref><ref name=graham>{{cite journal|last1=Graham|first1=Alister W.|last2=Durré|first2=Mark|last3=Savorgnan|first3=Giulia A. D.|last4=Medling|first4=Anne M.|last5=Batcheldor|first5=Dan|last6=Scott|first6=Nicholas|last7=Watson|first7=Beverly|last8=Marconi|first8=Alessandro|title=A Normal Supermassive Black Hole in NGC 1277|journal=The Astrophysical Journal|date=1 March 2016|volume=819|issue=1|pages=43|doi=10.3847/0004-637X/819/1/43|issn=0004-637X|bibcode=2016ApJ...819...43G|arxiv = 1601.05151 |s2cid=36974319 }}</ref> |
|
One group made observations using the Gemini Near Infrared Integral Field Spectrometer to better determine the mass of the black hole at the center of NGC 1277.<ref name="walsh"/> The group used similar models to that of van den Bosch, but with higher spatial resolution. After using stellar dynamics and luminosity models to estimate the mass of the black hole, they came to a mass of {{math|{{val|4.9|e=9|u=solar mass}}}}, similar to the estimate from the follow-up study done by Emsellem,<ref name="Emsellem"/> which estimated a mass between 2–5 billion solar masses. |
|
One group made observations using the Gemini Near Infrared Integral Field Spectrometer to better determine the mass of the black hole at the center of NGC 1277.<ref name="walsh"/> The group used similar models to that of van den Bosch, but with higher spatial resolution. After using stellar dynamics and luminosity models to estimate the mass of the black hole, they came to a mass of {{math|{{val|4.9|e=9|u=solar mass}}}}, similar to the estimate from the follow-up study done by Emsellem,<ref name="Emsellem"/> which estimated a mass between 2–5 billion solar masses. |
|
More recently, a new group<ref name="graham"/> made observations using the larger ] with superior spatial resolution, and calculated that a black hole with mass {{math|{{val|1.2|e=9|u=solar mass}}}} fits best. Moreover, this value is an order of magnitude smaller than first reported by van den Bosch,<ref name="vandenBosch"/> and was noted to probably be an upper limit due to the edge-on rotating disk in NGC 1277. |
|
More recently, a new group<ref name="graham"/> made observations using the larger ] with superior spatial resolution, and calculated that a black hole with mass {{math|{{val|1.2|e=9|u=solar mass}}}} fits best. Moreover, this value is an order of magnitude smaller than first reported by van den Bosch,<ref name="vandenBosch"/> and was noted to probably be an upper limit due to the edge-on rotating disk in NGC 1277. |
A follow-up study, based on the same data and published the following year, reached a very different conclusion. The black hole that was initially suggested at 1.7×10 M☉ was not as massive as once thought. The black hole was estimated to be between 2 and 5 billion solar masses. This is less than a third of the previously estimated mass, a significant decrease. Models with no black hole at all were also found to provide reasonably good fits to the data, including the central region.