Misplaced Pages

Mini-Neptune: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 07:40, 29 July 2024 editJosve05a (talk | contribs)Autopatrolled, Extended confirmed users, New page reviewers, Pending changes reviewers, Rollbackers154,738 edits Properties: in use← Previous edit Revision as of 07:41, 29 July 2024 edit undoCitation bot (talk | contribs)Bots5,414,802 edits Altered template type. Add: pmid, display-authors, doi-access, page, issue, bibcode, pages, volume, journal, date, title, doi, arxiv, authors 1-30. Removed URL that duplicated identifier. Changed bare reference to CS1/2. | Use this bot. Report bugs. | Suggested by Josve05a | #UCB_toolbarNext edit →
Line 6: Line 6:


==Properties== ==Properties==
Theoretical studies of such planets are loosely based on knowledge about Uranus and Neptune. Without a thick atmosphere, it would be classified as an ] instead.<ref>https://arxiv.org/abs/1111.2628</ref> An estimated dividing line between a rocky planet and a gaseous planet is around 1.6–2.0 Earth radii.<ref>https://arxiv.org/abs/1202.6328</ref><ref>, blogs.scientificamerican.com, 20 June 2012</ref> Planets with larger radii and measured masses are mostly low-density and require an extended atmosphere to simultaneously explain their masses and radii, and observations show that planets larger than approximately 1.6 Earth-radius (and more massive than approximately 6 Earth-masses) contain significant amounts of volatiles or H–He gas, likely acquired during formation.<ref name="dangelo_bodenheimer_2013">{{cite journal|last=D'Angelo|first=G.|author2= Bodenheimer, P. |title=Three-Dimensional Radiation-Hydrodynamics Calculations of the Envelopes of Young Planets Embedded in Protoplanetary Disks|journal=]|year=2013|volume=778|issue=1|pages=77 (29 pp.)|doi=10.1088/0004-637X/778/1/77|arxiv = 1310.2211 |bibcode = 2013ApJ...778...77D |s2cid=118522228}}</ref><ref name="dangelo_bodenheimer_2016"/> Such planets appear to have a diversity of compositions that is not well-explained by a single mass–radius relation as that found for denser, rocky planets.<ref>https://doi.org/10.3847/1538-3881/aa80eb</ref><ref>https://arxiv.org/abs/1412.8687</ref><ref>https://arxiv.org/abs/1407.4457</ref><ref>https://arxiv.org/abs/1312.0936</ref><ref>https://arxiv.org/abs/1404.2960</ref><ref>https://arxiv.org/abs/1401.4195</ref> Theoretical studies of such planets are loosely based on knowledge about Uranus and Neptune. Without a thick atmosphere, it would be classified as an ] instead.<ref>{{cite journal | arxiv=1111.2628 | doi=10.1051/0004-6361/201117205 | title=Optical to near-infrared transit observations of super-Earth GJ 1214b: Water-world or mini-Neptune? | date=2012 | last1=De Mooij | first1=E. J. W. | last2=Brogi | first2=M. | last3=De Kok | first3=R. J. | last4=Koppenhoefer | first4=J. | last5=Nefs | first5=S. V. | last6=Snellen | first6=I. A. G. | last7=Greiner | first7=J. | last8=Hanse | first8=J. | last9=Heinsbroek | first9=R. C. | last10=Lee | first10=C. H. | last11=Van Der Werf | first11=P. P. | journal=Astronomy & Astrophysics | volume=538 | pages=A46 | bibcode=2012A&A...538A..46D }}</ref> An estimated dividing line between a rocky planet and a gaseous planet is around 1.6–2.0 Earth radii.<ref>{{cite journal | arxiv=1202.6328 | doi=10.1088/0004-637X/790/2/146 | title=ARCHITECTURE OF ''KEPLER'' 'S MULTI-TRANSITING SYSTEMS. II. NEW INVESTIGATIONS WITH TWICE AS MANY CANDIDATES | date=2014 | last1=Fabrycky | first1=Daniel C. | last2=Lissauer | first2=Jack J. | last3=Ragozzine | first3=Darin | last4=Rowe | first4=Jason F. | last5=Steffen | first5=Jason H. | last6=Agol | first6=Eric | last7=Barclay | first7=Thomas | last8=Batalha | first8=Natalie | last9=Borucki | first9=William | last10=Ciardi | first10=David R. | last11=Ford | first11=Eric B. | last12=Gautier | first12=Thomas N. | last13=Geary | first13=John C. | last14=Holman | first14=Matthew J. | last15=Jenkins | first15=Jon M. | last16=Li | first16=Jie | last17=Morehead | first17=Robert C. | last18=Morris | first18=Robert L. | last19=Shporer | first19=Avi | last20=Smith | first20=Jeffrey C. | last21=Still | first21=Martin | last22=Van Cleve | first22=Jeffrey | journal=The Astrophysical Journal | volume=790 | issue=2 | page=146 | bibcode=2014ApJ...790..146F }}</ref><ref>, blogs.scientificamerican.com, 20 June 2012</ref> Planets with larger radii and measured masses are mostly low-density and require an extended atmosphere to simultaneously explain their masses and radii, and observations show that planets larger than approximately 1.6 Earth-radius (and more massive than approximately 6 Earth-masses) contain significant amounts of volatiles or H–He gas, likely acquired during formation.<ref name="dangelo_bodenheimer_2013">{{cite journal|last=D'Angelo|first=G.|author2= Bodenheimer, P. |title=Three-Dimensional Radiation-Hydrodynamics Calculations of the Envelopes of Young Planets Embedded in Protoplanetary Disks|journal=]|year=2013|volume=778|issue=1|pages=77 (29 pp.)|doi=10.1088/0004-637X/778/1/77|arxiv = 1310.2211 |bibcode = 2013ApJ...778...77D |s2cid=118522228}}</ref><ref name="dangelo_bodenheimer_2016"/> Such planets appear to have a diversity of compositions that is not well-explained by a single mass–radius relation as that found for denser, rocky planets.<ref>{{cite journal | doi=10.3847/1538-3881/aa80eb | doi-access=free | title=The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets | date=2017 | last1=Fulton | first1=Benjamin J. | last2=Petigura | first2=Erik A. | last3=Howard | first3=Andrew W. | last4=Isaacson | first4=Howard | last5=Marcy | first5=Geoffrey W. | last6=Cargile | first6=Phillip A. | last7=Hebb | first7=Leslie | last8=Weiss | first8=Lauren M. | last9=Johnson | first9=John Asher | last10=Morton | first10=Timothy D. | last11=Sinukoff | first11=Evan | last12=Crossfield | first12=Ian J. M. | last13=Hirsch | first13=Lea A. | journal=The Astronomical Journal | volume=154 | issue=3 | page=109 | arxiv=1703.10375 | bibcode=2017AJ....154..109F }}</ref><ref>{{cite journal | arxiv=1412.8687 | doi=10.1088/0004-637X/800/2/135 | title=THE MASS OF Kepler-93b AND THE COMPOSITION OF TERRESTRIAL PLANETS | date=2015 | last1=Dressing | first1=Courtney D. | last2=Charbonneau | first2=David | last3=Dumusque | first3=Xavier | last4=Gettel | first4=Sara | last5=Pepe | first5=Francesco | last6=Collier Cameron | first6=Andrew | last7=Latham | first7=David W. | last8=Molinari | first8=Emilio | last9=Udry | first9=Stéphane | last10=Affer | first10=Laura | last11=Bonomo | first11=Aldo S. | last12=Buchhave | first12=Lars A. | last13=Cosentino | first13=Rosario | last14=Figueira | first14=Pedro | last15=Fiorenzano | first15=Aldo F. M. | last16=Harutyunyan | first16=Avet | last17=Haywood | first17=Raphaëlle D. | last18=Johnson | first18=John Asher | last19=Lopez-Morales | first19=Mercedes | last20=Lovis | first20=Christophe | last21=Malavolta | first21=Luca | last22=Mayor | first22=Michel | last23=Micela | first23=Giusi | last24=Motalebi | first24=Fatemeh | last25=Nascimbeni | first25=Valerio | last26=Phillips | first26=David F. | last27=Piotto | first27=Giampaolo | last28=Pollacco | first28=Don | last29=Queloz | first29=Didier | last30=Rice | first30=Ken | journal=The Astrophysical Journal | volume=800 | issue=2 | page=135 | bibcode=2015ApJ...800..135D | display-authors=1 }}</ref><ref>{{cite journal | arxiv=1407.4457 | doi=10.1088/0004-637X/801/1/41 | title=''MOST'' 1.6 EARTH-RADIUS PLANETS ARE NOT ROCKY | date=2015 | last1=Rogers | first1=Leslie A. | journal=The Astrophysical Journal | volume=801 | issue=1 | page=41 | bibcode=2015ApJ...801...41R }}</ref><ref>{{cite journal | arxiv=1312.0936 | doi=10.1088/2041-8205/783/1/L6 | title=The Mass-Radius Relation for 65 Exoplanets Smaller Than 4 Earth Radii | date=2014 | last1=Weiss | first1=Lauren M. | last2=Marcy | first2=Geoffrey W. | journal=The Astrophysical Journal | volume=783 | issue=1 | pages=L6 | bibcode=2014ApJ...783L...6W }}</ref><ref>{{cite journal | arxiv=1404.2960 | doi=10.1073/pnas.1304197111 | title=Occurrence and core-envelope structure of 1–4× Earth-size planets around Sun-like stars | date=2014 | last1=Marcy | first1=Geoffrey W. | last2=Weiss | first2=Lauren M. | last3=Petigura | first3=Erik A. | last4=Isaacson | first4=Howard | last5=Howard | first5=Andrew W. | last6=Buchhave | first6=Lars A. | journal=Proceedings of the National Academy of Sciences | volume=111 | issue=35 | pages=12655–12660 | doi-access=free | pmid=24912169 | bibcode=2014PNAS..11112655M }}</ref><ref>{{cite journal | arxiv=1401.4195 | doi=10.1088/0067-0049/210/2/20 | title=MASSES, RADII, AND ORBITS OF SMALL ''KEPLER'' PLANETS: THE TRANSITION FROM GASEOUS TO ROCKY PLANETS | date=2014 | last1=Marcy | first1=Geoffrey W. | last2=Isaacson | first2=Howard | last3=Howard | first3=Andrew W. | last4=Rowe | first4=Jason F. | last5=Jenkins | first5=Jon M. | last6=Bryson | first6=Stephen T. | last7=Latham | first7=David W. | last8=Howell | first8=Steve B. | last9=Gautier | first9=Thomas N. | last10=Batalha | first10=Natalie M. | last11=Rogers | first11=Leslie | last12=Ciardi | first12=David | last13=Fischer | first13=Debra A. | last14=Gilliland | first14=Ronald L. | last15=Kjeldsen | first15=Hans | last16=Christensen-Dalsgaard | first16=Jørgen | last17=Huber | first17=Daniel | last18=Chaplin | first18=William J. | last19=Basu | first19=Sarbani | last20=Buchhave | first20=Lars A. | last21=Quinn | first21=Samuel N. | last22=Borucki | first22=William J. | last23=Koch | first23=David G. | last24=Hunter | first24=Roger | last25=Caldwell | first25=Douglas A. | last26=Van Cleve | first26=Jeffrey | last27=Kolbl | first27=Rea | last28=Weiss | first28=Lauren M. | last29=Petigura | first29=Erik | last30=Seager | first30=Sara | journal=The Astrophysical Journal Supplement Series | volume=210 | issue=2 | page=20 | bibcode=2014ApJS..210...20M | display-authors=1 }}</ref>


The lower limit for mass can vary widely for different planets depending on their compositions; the dividing mass can vary from as low as one to as high as 20 {{Earth mass}}. Smaller gas planets and planets closer to their star will lose atmospheric mass more quickly via ] than larger planets and planets farther out.<ref>{{cite journal | citeseerx = 10.1.1.122.9085 | title = Transonic hydrodynamic escape of hydrogen from extrasolar planetary atmospheres | author1 = Feng Tian | first2 = Owen B. | last2 = Toon | first3 = Alexander A. | last3 = Pavlov | first4 = H. | last4 = De Sterck | journal = The Astrophysical Journal | volume = 621 | issue = 2 | pages = 1049–1060 |date=March 10, 2005 |bibcode = 2005ApJ...621.1049T |doi = 10.1086/427204 | s2cid = 6475341 }}</ref><ref>https://arxiv.org/abs/1001.4851</ref><ref name="Martinez2019">{{cite journal|last1=Martinez|first1=Cintia F.|last2=Cunha|first2=Katia|last3=Ghezzi|first3=Luan|last4=Smith|first4=Verne V.|title=A Spectroscopic Analysis of the California-Kepler Survey Sample. I. Stellar Parameters, Planetary Radii, and a Slope in the Radius Gap|journal=The Astrophysical Journal|publisher=American Astronomical Society|volume=875|issue=1|date=2019-04-10|page=29 |doi=10.3847/1538-4357/ab0d93|doi-access=free|hdl=10150/633733|hdl-access=free}}</ref> A low-mass gas planet can still have a radius resembling that of a gas giant if it has the right temperature.<ref>https://arxiv.org/abs/1304.5157</ref> The lower limit for mass can vary widely for different planets depending on their compositions; the dividing mass can vary from as low as one to as high as 20 {{Earth mass}}. Smaller gas planets and planets closer to their star will lose atmospheric mass more quickly via ] than larger planets and planets farther out.<ref>{{cite journal | citeseerx = 10.1.1.122.9085 | title = Transonic hydrodynamic escape of hydrogen from extrasolar planetary atmospheres | author1 = Feng Tian | first2 = Owen B. | last2 = Toon | first3 = Alexander A. | last3 = Pavlov | first4 = H. | last4 = De Sterck | journal = The Astrophysical Journal | volume = 621 | issue = 2 | pages = 1049–1060 |date=March 10, 2005 |bibcode = 2005ApJ...621.1049T |doi = 10.1086/427204 | s2cid = 6475341 }}</ref><ref>{{cite journal | arxiv=1001.4851 | doi=10.1088/0004-637X/744/1/59 | title=Mass-Radius Relationships for Exoplanets | date=2012 | last1=Swift | first1=D. C. | last2=Eggert | first2=J. H. | last3=Hicks | first3=D. G. | last4=Hamel | first4=S. | last5=Caspersen | first5=K. | last6=Schwegler | first6=E. | last7=Collins | first7=G. W. | last8=Nettelmann | first8=N. | last9=Ackland | first9=G. J. | journal=The Astrophysical Journal | volume=744 | issue=1 | page=59 | bibcode=2012ApJ...744...59S }}</ref><ref name="Martinez2019">{{cite journal|last1=Martinez|first1=Cintia F.|last2=Cunha|first2=Katia|last3=Ghezzi|first3=Luan|last4=Smith|first4=Verne V.|title=A Spectroscopic Analysis of the California-Kepler Survey Sample. I. Stellar Parameters, Planetary Radii, and a Slope in the Radius Gap|journal=The Astrophysical Journal|publisher=American Astronomical Society|volume=875|issue=1|date=2019-04-10|page=29 |doi=10.3847/1538-4357/ab0d93|doi-access=free|arxiv=1903.00174 |bibcode=2019ApJ...875...29M |hdl=10150/633733|hdl-access=free}}</ref> A low-mass gas planet can still have a radius resembling that of a gas giant if it has the right temperature.<ref>{{cite journal | arxiv=1304.5157 | doi=10.1088/2041-8205/769/1/L9 | title=Mass-Radius Relationships for Very Low Mass Gaseous Planets | date=2013 | last1=Batygin | first1=Konstantin | last2=Stevenson | first2=David J. | journal=The Astrophysical Journal | volume=769 | issue=1 | pages=L9 | bibcode=2013ApJ...769L...9B }}</ref>


Neptune-like planets are considerably rarer than sub-Neptunes, despite being only slightly bigger.<ref name="cliff">{{Cite web|url=https://astrobites.org/2019/12/17/why-are-there-so-many-sub-neptune-exoplanets/|title = Why are there so many sub-Neptune exoplanets?|date = 17 December 2019}}</ref><ref>https://arxiv.org/abs/1912.02701</ref> This "radius cliff" separates ]s (radius < 3 Earth radii) from Neptunes (radius > 3 Earth radii).<ref name="cliff"/> This is thought to arise because, during formation when gas is accreting, the atmospheres of planets of that size reach the pressures required to force the hydrogen into the magma ocean, stalling radius growth. Then, once the magma ocean saturates, radius growth can continue. However, planets that have enough gas to reach saturation are much rarer, because they require much more gas.<ref name="cliff"/> Neptune-like planets are considerably rarer than sub-Neptunes, despite being only slightly bigger.<ref name="cliff">{{Cite web|url=https://astrobites.org/2019/12/17/why-are-there-so-many-sub-neptune-exoplanets/|title = Why are there so many sub-Neptune exoplanets?|date = 17 December 2019}}</ref><ref>{{cite journal | arxiv=1912.02701 | doi=10.3847/2041-8213/ab59d9 | doi-access=free | title=Superabundance of Exoplanet Sub-Neptunes Explained by Fugacity Crisis | date=2019 | last1=Kite | first1=Edwin S. | last2=Bruce Fegley Jr. | last3=Schaefer | first3=Laura | last4=Ford | first4=Eric B. | journal=The Astrophysical Journal Letters | volume=887 | issue=2 | pages=L33 | bibcode=2019ApJ...887L..33K }}</ref> This "radius cliff" separates ]s (radius < 3 Earth radii) from Neptunes (radius > 3 Earth radii).<ref name="cliff"/> This is thought to arise because, during formation when gas is accreting, the atmospheres of planets of that size reach the pressures required to force the hydrogen into the magma ocean, stalling radius growth. Then, once the magma ocean saturates, radius growth can continue. However, planets that have enough gas to reach saturation are much rarer, because they require much more gas.<ref name="cliff"/>


==Examples== ==Examples==

Revision as of 07:41, 29 July 2024

Not to be confused with Sub-Neptune.
Artist's conception of a mini-Neptune or "gas dwarf"
Planet smaller than Neptune with a gas atmosphere

A Mini-Neptune (sometimes known as a gas dwarf or transitional planet) is a planet less massive than Neptune but resembling Neptune in that it has a thick hydrogen-helium atmosphere, probably with deep layers of ice, rock or liquid oceans (made of water, ammonia, a mixture of both, or heavier volatiles).

A gas dwarf is a gas planet with a rocky core that has accumulated a thick envelope of hydrogen, helium, and other volatiles, having, as a result, a total radius between 1.7 and 3.9 Earth radii (1.7–3.9 R🜨). The term is used in a three-tier, metallicity-based classification regime for short-period exoplanets, which also includes the rocky, terrestrial-like planets with less than 1.7 R🜨 and planets greater than 3.9 R🜨, namely ice giants and gas giants.

Properties

Theoretical studies of such planets are loosely based on knowledge about Uranus and Neptune. Without a thick atmosphere, it would be classified as an ocean planet instead. An estimated dividing line between a rocky planet and a gaseous planet is around 1.6–2.0 Earth radii. Planets with larger radii and measured masses are mostly low-density and require an extended atmosphere to simultaneously explain their masses and radii, and observations show that planets larger than approximately 1.6 Earth-radius (and more massive than approximately 6 Earth-masses) contain significant amounts of volatiles or H–He gas, likely acquired during formation. Such planets appear to have a diversity of compositions that is not well-explained by a single mass–radius relation as that found for denser, rocky planets.

The lower limit for mass can vary widely for different planets depending on their compositions; the dividing mass can vary from as low as one to as high as 20 ME. Smaller gas planets and planets closer to their star will lose atmospheric mass more quickly via hydrodynamic escape than larger planets and planets farther out. A low-mass gas planet can still have a radius resembling that of a gas giant if it has the right temperature.

Neptune-like planets are considerably rarer than sub-Neptunes, despite being only slightly bigger. This "radius cliff" separates sub-Neptunes (radius < 3 Earth radii) from Neptunes (radius > 3 Earth radii). This is thought to arise because, during formation when gas is accreting, the atmospheres of planets of that size reach the pressures required to force the hydrogen into the magma ocean, stalling radius growth. Then, once the magma ocean saturates, radius growth can continue. However, planets that have enough gas to reach saturation are much rarer, because they require much more gas.

Examples

The smallest known extrasolar planet that might be a gas dwarf is Kepler-138d, which is less massive than Earth but has a 60% larger volume and therefore has a density 2.1+2.2
−1.2 g/cm that indicates either a substantial water content or possibly a thick gas envelope. However, more recent evidence suggests that it may be more dense than previously thought, and could be an ocean planet instead.

See also

References

  1. ^ D'Angelo, G.; Bodenheimer, P. (2016). "In Situ and Ex Situ Formation Models of Kepler 11 Planets". The Astrophysical Journal. 828 (1): id. 33. arXiv:1606.08088. Bibcode:2016ApJ...828...33D. doi:10.3847/0004-637X/828/1/33. S2CID 119203398.
  2. Three regimes of extrasolar planets inferred from host star metallicities, Buchhave et al.
  3. De Mooij, E. J. W.; Brogi, M.; De Kok, R. J.; Koppenhoefer, J.; Nefs, S. V.; Snellen, I. A. G.; Greiner, J.; Hanse, J.; Heinsbroek, R. C.; Lee, C. H.; Van Der Werf, P. P. (2012). "Optical to near-infrared transit observations of super-Earth GJ 1214b: Water-world or mini-Neptune?". Astronomy & Astrophysics. 538: A46. arXiv:1111.2628. Bibcode:2012A&A...538A..46D. doi:10.1051/0004-6361/201117205.
  4. Fabrycky, Daniel C.; Lissauer, Jack J.; Ragozzine, Darin; Rowe, Jason F.; Steffen, Jason H.; Agol, Eric; Barclay, Thomas; Batalha, Natalie; Borucki, William; Ciardi, David R.; Ford, Eric B.; Gautier, Thomas N.; Geary, John C.; Holman, Matthew J.; Jenkins, Jon M.; Li, Jie; Morehead, Robert C.; Morris, Robert L.; Shporer, Avi; Smith, Jeffrey C.; Still, Martin; Van Cleve, Jeffrey (2014). "ARCHITECTURE OF KEPLER 'S MULTI-TRANSITING SYSTEMS. II. NEW INVESTIGATIONS WITH TWICE AS MANY CANDIDATES". The Astrophysical Journal. 790 (2): 146. arXiv:1202.6328. Bibcode:2014ApJ...790..146F. doi:10.1088/0004-637X/790/2/146.
  5. When Does an Exoplanet's Surface Become Earth-Like?, blogs.scientificamerican.com, 20 June 2012
  6. D'Angelo, G.; Bodenheimer, P. (2013). "Three-Dimensional Radiation-Hydrodynamics Calculations of the Envelopes of Young Planets Embedded in Protoplanetary Disks". The Astrophysical Journal. 778 (1): 77 (29 pp.). arXiv:1310.2211. Bibcode:2013ApJ...778...77D. doi:10.1088/0004-637X/778/1/77. S2CID 118522228.
  7. Fulton, Benjamin J.; Petigura, Erik A.; Howard, Andrew W.; Isaacson, Howard; Marcy, Geoffrey W.; Cargile, Phillip A.; Hebb, Leslie; Weiss, Lauren M.; Johnson, John Asher; Morton, Timothy D.; Sinukoff, Evan; Crossfield, Ian J. M.; Hirsch, Lea A. (2017). "The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets". The Astronomical Journal. 154 (3): 109. arXiv:1703.10375. Bibcode:2017AJ....154..109F. doi:10.3847/1538-3881/aa80eb.
  8. Dressing, Courtney D.; et al. (2015). "THE MASS OF Kepler-93b AND THE COMPOSITION OF TERRESTRIAL PLANETS". The Astrophysical Journal. 800 (2): 135. arXiv:1412.8687. Bibcode:2015ApJ...800..135D. doi:10.1088/0004-637X/800/2/135.
  9. Rogers, Leslie A. (2015). "MOST 1.6 EARTH-RADIUS PLANETS ARE NOT ROCKY". The Astrophysical Journal. 801 (1): 41. arXiv:1407.4457. Bibcode:2015ApJ...801...41R. doi:10.1088/0004-637X/801/1/41.
  10. Weiss, Lauren M.; Marcy, Geoffrey W. (2014). "The Mass-Radius Relation for 65 Exoplanets Smaller Than 4 Earth Radii". The Astrophysical Journal. 783 (1): L6. arXiv:1312.0936. Bibcode:2014ApJ...783L...6W. doi:10.1088/2041-8205/783/1/L6.
  11. Marcy, Geoffrey W.; Weiss, Lauren M.; Petigura, Erik A.; Isaacson, Howard; Howard, Andrew W.; Buchhave, Lars A. (2014). "Occurrence and core-envelope structure of 1–4× Earth-size planets around Sun-like stars". Proceedings of the National Academy of Sciences. 111 (35): 12655–12660. arXiv:1404.2960. Bibcode:2014PNAS..11112655M. doi:10.1073/pnas.1304197111. PMID 24912169.
  12. Marcy, Geoffrey W.; et al. (2014). "MASSES, RADII, AND ORBITS OF SMALL KEPLER PLANETS: THE TRANSITION FROM GASEOUS TO ROCKY PLANETS". The Astrophysical Journal Supplement Series. 210 (2): 20. arXiv:1401.4195. Bibcode:2014ApJS..210...20M. doi:10.1088/0067-0049/210/2/20.
  13. Feng Tian; Toon, Owen B.; Pavlov, Alexander A.; De Sterck, H. (March 10, 2005). "Transonic hydrodynamic escape of hydrogen from extrasolar planetary atmospheres". The Astrophysical Journal. 621 (2): 1049–1060. Bibcode:2005ApJ...621.1049T. CiteSeerX 10.1.1.122.9085. doi:10.1086/427204. S2CID 6475341.
  14. Swift, D. C.; Eggert, J. H.; Hicks, D. G.; Hamel, S.; Caspersen, K.; Schwegler, E.; Collins, G. W.; Nettelmann, N.; Ackland, G. J. (2012). "Mass-Radius Relationships for Exoplanets". The Astrophysical Journal. 744 (1): 59. arXiv:1001.4851. Bibcode:2012ApJ...744...59S. doi:10.1088/0004-637X/744/1/59.
  15. Martinez, Cintia F.; Cunha, Katia; Ghezzi, Luan; Smith, Verne V. (2019-04-10). "A Spectroscopic Analysis of the California-Kepler Survey Sample. I. Stellar Parameters, Planetary Radii, and a Slope in the Radius Gap". The Astrophysical Journal. 875 (1). American Astronomical Society: 29. arXiv:1903.00174. Bibcode:2019ApJ...875...29M. doi:10.3847/1538-4357/ab0d93. hdl:10150/633733.
  16. Batygin, Konstantin; Stevenson, David J. (2013). "Mass-Radius Relationships for Very Low Mass Gaseous Planets". The Astrophysical Journal. 769 (1): L9. arXiv:1304.5157. Bibcode:2013ApJ...769L...9B. doi:10.1088/2041-8205/769/1/L9.
  17. ^ "Why are there so many sub-Neptune exoplanets?". 17 December 2019.
  18. Kite, Edwin S.; Bruce Fegley Jr.; Schaefer, Laura; Ford, Eric B. (2019). "Superabundance of Exoplanet Sub-Neptunes Explained by Fugacity Crisis". The Astrophysical Journal Letters. 887 (2): L33. arXiv:1912.02701. Bibcode:2019ApJ...887L..33K. doi:10.3847/2041-8213/ab59d9.
  19. Jontof-Hutter, D; Rowe, J; et al. (18 June 2015). "Mass of the Mars-sized Exoplanet Kepler-138b from Transit Timing". Nature. 522 (7556): 321–323. arXiv:1506.07067. Bibcode:2015Natur.522..321J. doi:10.1038/nature14494. PMID 26085271. S2CID 205243944.
  20. Earth-mass exoplanet is no Earth twin – Gaseous planet challenges assumption that Earth-mass planets should be rocky
  21. Timmer, John (15 December 2022). "Scientists may have found the first water worlds". Ars Technica. Retrieved 17 December 2022.

Further reading

External links

Exoplanets
Main topics
Sizes
and
types
Terrestrial
Gaseous
Other types
Formation
and
evolution
Systems
Host stars
Detection
Habitability
Catalogues
Lists
Other
Portals: Categories: