Misplaced Pages

Lehmann discontinuity: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 19:50, 2 September 2024 editTc14Hd (talk | contribs)Extended confirmed users1,344 edits Updated short descriptionTags: Mobile edit Mobile app edit Android app edit App description change← Previous edit Latest revision as of 19:51, 2 September 2024 edit undoTc14Hd (talk | contribs)Extended confirmed users1,344 edits topTags: Mobile edit Mobile app edit Android app edit App section source 
Line 1: Line 1:
{{short description|Layer separating Earth's outer core from its inner core}}
{{about|a discontinuity in Earth's mantle|the discontinuity in the core|Earth's inner core}} {{about|a discontinuity in Earth's mantle|the discontinuity in the core|Earth's inner core}}
__NOTOC__ __NOTOC__

Latest revision as of 19:51, 2 September 2024

This article is about a discontinuity in Earth's mantle. For the discontinuity in the core, see Earth's inner core.
Velocity of seismic S-waves in the Earth near the surface in three tectonic provinces: TNA = Tectonic North America, SNA = Shield North America and ATL = North Atlantic.

The Lehmann discontinuity is an abrupt increase of P-wave and S-wave velocities at the depth of 220 km (140 mi) in Earth's mantle, discovered by seismologist Inge Lehmann. The thickness is 220 km . It appears beneath continents, but not usually beneath oceans, and does not readily appear in globally averaged studies. Several explanations have been proposed: a lower limit to the pliable asthenosphere, a phase transition, and most plausibly, depth variation in the shear wave anisotropy.


Notes

  1. Figure patterned after Don L Anderson (2007). New Theory of the Earth (2nd ed.). Cambridge University Press. p. 102, Figure 8.6. ISBN 978-0-521-84959-3.; Original figure attributed to Grand and Helmberger (1984)
  2. William Lowrie (1997). Fundamentals of geophysics. Cambridge University Press. p. 158. ISBN 0-521-46728-4.
  3. Lehmann, I. (1936): P', Publications du Bureau Central Seismologique International, Série A, Travaux Scientifique, 14, 87–115.
  4. Martina Kölbl-Ebert (December 2001). "Inge Lehmann's paper: " P' " (1936)" (PDF).
  5. Lars Stixrude and Carolina Lithgow-Bertolloni (2005). "Mineralogy and elasticity of the oceanic upper mantle: Origin of the low-velocity zone". J. Geophys. Res. 110 (B3): B03204. Bibcode:2005JGRB..110.3204S. doi:10.1029/2004JB002965. hdl:2027.42/94924. The first possible explanation is that the Lehmann is not a global feature...the Lehmann is more prevalent under continents and may be absent under all or most of the oceans.
  6. Kent C. Condie (1997). Plate tectonics and crustal evolution (4th ed.). Butterworth-Heinemann. p. 123. ISBN 0-7506-3386-7.
  7. MK Savage, KM Fischer CE Hall (2004). "Strain modelling, seismic anisotropy and coupling at strike-slip boundaries...". In John Gocott (ed.). Vertical coupling and decoupling in the lithosphere; Volume 227 of special publications. Geological Society. p. 14. ISBN 1-86239-159-9.

General references

Further reading

Shun-ichirō Karato (2008). Deformation of earth materials: an introduction to the rheology of solid earth. Cambridge University Press. p. 318. ISBN 978-0-521-84404-8.

External links

Structure of Earth
Shells
Global discontinuities
Regional discontinuities


Stub icon

This tectonics article is a stub. You can help Misplaced Pages by expanding it.

Stub icon

This geophysics-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: